Lowest fractal dimensions for universal differentiability

Olga Maleva University of Birmingham, UK

July 17, 2014

◆□▶ ◆□▶ ◆注▶ ◆注▶ 三注 …

We consider real-valued Lipschitz functions $f : X \to \mathbb{R}$.

æ –

We consider real-valued Lipschitz functions $f : X \to \mathbb{R}$.

If X is finite-dimensional, then Rademacher theorem implies f is differentiable almost everywhere w.r.t. the Lebesgue measure.

通 と く ヨ と く ヨ と

We consider real-valued Lipschitz functions $f : X \to \mathbb{R}$.

- If X is finite-dimensional, then Rademacher theorem implies f is differentiable almost everywhere w.r.t. the Lebesgue measure.
 - If A has positive measure, then {x ∈ A : f is differentiable at x} is not empty.

We consider real-valued Lipschitz functions $f : X \to \mathbb{R}$.

- If X is finite-dimensional, then Rademacher theorem implies f is differentiable almost everywhere w.r.t. the Lebesgue measure.
 - If A has positive measure, then {x ∈ A : f is differentiable at x} is not empty.
 - What if A has measure 0?

We consider real-valued Lipschitz functions $f : X \to \mathbb{R}$.

- If X is finite-dimensional, then Rademacher theorem implies f is differentiable almost everywhere w.r.t. the Lebesgue measure.
 - If A has positive measure, then {x ∈ A : f is differentiable at x} is not empty.
 - What if A has measure 0?
- Remark: For infinite-dimensional separable X, the dual X* must be separable as otherwise there is an equivalent norm on X which is everywhere Fréchet non-differentiable.

-

We consider real-valued Lipschitz functions $f : X \to \mathbb{R}$.

- If X is finite-dimensional, then Rademacher theorem implies f is differentiable almost everywhere w.r.t. the Lebesgue measure.
 - If A has positive measure, then {x ∈ A : f is differentiable at x} is not empty.
 - What if A has measure 0?
- Remark: For infinite-dimensional separable X, the dual X* must be separable as otherwise there is an equivalent norm on X which is everywhere Fréchet non-differentiable.
- X^* separable \implies every Lipschitz function is differentiable on a dense subset of X [Preiss, 1990] and ...

We consider real-valued Lipschitz functions $f : X \to \mathbb{R}$.

- If X is finite-dimensional, then Rademacher theorem implies f is differentiable almost everywhere w.r.t. the Lebesgue measure.
 - If A has positive measure, then {x ∈ A : f is differentiable at x} is not empty.
 - What if A has measure 0?
- Remark: For infinite-dimensional separable X, the dual X* must be separable as otherwise there is an equivalent norm on X which is everywhere Fréchet non-differentiable.
- Solution → every Lipschitz function is differentiable on a dense subset of X [Preiss, 1990] and ...
- ...moreover, points of differentiability can be found inside any fixed beforehand dense G_δ subset S of X satisfying the condition that S contains a dense set of lines.

イロト 不得下 イヨト イヨト 二日

We consider real-valued Lipschitz functions $f : X \to \mathbb{R}$.

- If X is finite-dimensional, then Rademacher theorem implies f is differentiable almost everywhere w.r.t. the Lebesgue measure.
 - If A has positive measure, then {x ∈ A : f is differentiable at x} is not empty.
 - What if A has measure 0?
- Remark: For infinite-dimensional separable X, the dual X* must be separable as otherwise there is an equivalent norm on X which is everywhere Fréchet non-differentiable.
- Solution → every Lipschitz function is differentiable on a dense subset of X [Preiss, 1990] and ...
- ...moreover, points of differentiability can be found inside any fixed beforehand dense G_δ subset S of X satisfying the condition that S contains a dense set of lines.

Universal Differentiability Set (UDS)

A Borel set $S \subseteq X$ is a UDS if for every Lipschitz function $f : X \to \mathbb{R}$ there is an $x \in S$ such that f is (Fréchet) differentiable at x.

• Every subset of \mathbb{R}^n of positive measure is a UDS.

- Every subset of \mathbb{R}^n of positive measure is a UDS.
- If n ≥ 2 one can choose a G_δ set S ⊆ ℝⁿ to contain all rational lines and to have measure 0. Hence there are Lebesgue null universal differentiability subsets of ℝⁿ, n ≥ 2.

- Every subset of \mathbb{R}^n of positive measure is a UDS.
- If n ≥ 2 one can choose a G_δ set S ⊆ ℝⁿ to contain all rational lines and to have measure 0. Hence there are *Lebesgue null* universal differentiability subsets of ℝⁿ, n ≥ 2.
- In ℝ¹, however, for every subset *E* of measure 0 one can find a Lipschitz function which fails to have a derivative inside *E*.

- Every subset of \mathbb{R}^n of positive measure is a UDS.
- If n ≥ 2 one can choose a G_δ set S ⊆ ℝⁿ to contain all rational lines and to have measure 0. Hence there are *Lebesgue null* universal differentiability subsets of ℝⁿ, n ≥ 2.
- In \mathbb{R}^1 , however, for every subset *E* of measure 0 one can find a Lipschitz function which fails to have a derivative inside *E*.
 - Zahorski (1946)

- Every subset of \mathbb{R}^n of positive measure is a UDS.
- If n ≥ 2 one can choose a G_δ set S ⊆ ℝⁿ to contain all rational lines and to have measure 0. Hence there are *Lebesgue null* universal differentiability subsets of ℝⁿ, n ≥ 2.
- In ℝ¹, however, for every subset *E* of measure 0 one can find a Lipschitz function which fails to have a derivative inside *E*.
 - Zahorski (1946)
 - Fowler–Preiss (2009)

- Every subset of \mathbb{R}^n of positive measure is a UDS.
- If n ≥ 2 one can choose a G_δ set S ⊆ ℝⁿ to contain all rational lines and to have measure 0. Hence there are *Lebesgue null* universal differentiability subsets of ℝⁿ, n ≥ 2.
- In ℝ¹, however, for every subset *E* of measure 0 one can find a Lipschitz function which fails to have a derivative inside *E*.
 - Zahorski (1946)
 - Fowler–Preiss (2009)

Given any G_{δ} set $G \subseteq \mathbb{R}$ of measure zero, there exists a Lipschitz function $g : \mathbb{R} \to \mathbb{R}$ with Lipschitz constant 1, which is differentiable everywhere outside G and for any $x \in G$, $g'_{\pm}(x) = \pm 1$.

伺 とう きょう うちょう

- Every subset of \mathbb{R}^n of positive measure is a UDS.
- If n ≥ 2 one can choose a G_δ set S ⊆ ℝⁿ to contain all rational lines and to have measure 0. Hence there are *Lebesgue null* universal differentiability subsets of ℝⁿ, n ≥ 2.

In ℝ¹, however, for every subset *E* of measure 0 one can find a Lipschitz function which fails to have a derivative inside *E*.

- Zahorski (1946)
- Fowler–Preiss (2009)

Given any G_{δ} set $G \subseteq \mathbb{R}$ of measure zero, there exists a Lipschitz function $g : \mathbb{R} \to \mathbb{R}$ with Lipschitz constant 1, which is differentiable everywhere outside G and for any $x \in G$, $g'_{\pm}(x) = \pm 1$.

Sharpness of the result, $n \ge 2$

[Preiss, 1990] [Alberti, Csörnyei, Preiss 2010] [Doré–M., 2010, '11, '12] [Dymond–M., 2013] [Preiss–Speight, 2013] [Csörnyei, Jones 2013] If $n \ge 2$, then \mathbb{R}^n contains Lebesgue null universal differentiability subsets.

< ロト < 同ト < ヨト < ヨト

Classical results

1. $E \subseteq X$ is porous. **Def.** Let $\lambda > 0$. $E \subseteq X$ is λ -porous at $x \in X$ if for every r > 0 there is a $z \in B(x, r)$ such that $B(z, \lambda || z - x ||) \cap E = \emptyset$. Х

Classical results

1. $E \subseteq X$ is porous. **Def.** Let $\lambda > 0$. $E \subseteq X$ is λ -porous at $x \in X$ if for every r > 0 there is a $z \in B(x, r)$ such that $B(z, \lambda || z - x ||) \cap E = \emptyset$. *E* is porous at $x \in E \Rightarrow$ f(y) = dist(y, E) is 1-Lipschitz and is not differentiable at x. Х

Classical results

1. $E \subseteq X$ is porous. **Def.** Let $\lambda > 0$. $E \subseteq X$ is λ -porous at $x \in X$ if for every r > 0 there is a $z \in B(x, r)$ such that $B(z, \lambda || z - x ||) \cap E = \emptyset$.

E is porous at $x \in E \Rightarrow$ $f(y) = \operatorname{dist}(y, E)$ is 1-Lipschitz and is not differentiable at x.

$$\frac{f(z)-f(x)}{\|z-x\|} \ge \lambda$$

Classical results

1. $E \subseteq X$ is porous. **Def.** Let $\lambda > 0$. $E \subseteq X$ is λ -porous at $x \in X$ if for every r > 0 there is a $z \in B(x, r)$ such that $B(z, \lambda || z - x ||) \cap E = \emptyset$.

E is porous at $x \in E \Rightarrow$ $f(y) = \operatorname{dist}(y, E)$ is 1-Lipschitz and is not differentiable at *x*.

$$\frac{f(z) - f(x)}{\|z - x\|} \ge \lambda$$

 $E \subseteq X$ is porous if $\exists \lambda > 0$ s.t. it is λ -porous at each of its points.

1. $E \subseteq X$ is porous, then f(x) = dist(x, E) is a 1-Lipschitz function and the set of points where f is not Fréchet differentiable contains E.

Thus porous sets are not UDS.

b) a (E) b) a (E) b

-

1. $E \subseteq X$ is porous, then f(x) = dist(x, E) is a 1-Lipschitz function and the set of points where f is not Fréchet differentiable contains E.

Thus porous sets are **not** UDS.

2. $E \subseteq X$ is σ -porous, i.e. a countable union of porous sets.

A = > < = >
A
A = >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

1. $E \subseteq X$ is porous, then f(x) = dist(x, E) is a 1-Lipschitz function and the set of points where f is not Fréchet differentiable contains E.

Thus porous sets are **not** UDS.

2. $E \subseteq X$ is σ -porous, i.e. a countable union of porous sets.

B. Kirchheim, D. Preiss, L. Zajíček (1980s): There exists a Lipschitz function $f: X \to \mathbb{R}$ that is nowhere diff. on E.

Thus σ -porous sets are **not** UDS.

1. $E \subseteq X$ is porous, then f(x) = dist(x, E) is a 1-Lipschitz function and the set of points where f is not Fréchet differentiable contains E.

Thus porous sets are **not** UDS.

2. $E \subseteq X$ is σ -porous, i.e. a countable union of porous sets.

B. Kirchheim, D. Preiss, L. Zajíček (1980s): There exists a Lipschitz function $f: X \to \mathbb{R}$ that is nowhere diff. on E.

Thus σ -porous sets are **not** UDS.

Classical results: UDS

< 同 > < 三 > < 三 >

1. $E \subseteq X$ is porous, then f(x) = dist(x, E) is a 1-Lipschitz function and the set of points where f is not Fréchet differentiable contains E.

Thus porous sets are **not** UDS.

2. $E \subseteq X$ is σ -porous, i.e. a countable union of porous sets.

B. Kirchheim, D. Preiss, L. Zajíček (1980s): There exists a Lipschitz function $f: X \to \mathbb{R}$ that is nowhere diff. on E.

Thus σ -porous sets are **not** UDS.

Classical results: UDS

3. D. Preiss (1990): X^* separable \implies any G_{δ} set containing a dense set of lines is a UDS.

ヘロト ヘアト ヘビト ヘビト

UDS existence results

Search for null or small universal differentiability sets

1. D. Preiss (1990) Lebesgue null G_{δ} UDS,

UDS existence results

Search for null or small universal differentiability sets

1. D. Preiss (1990) Lebesgue null G_{δ} UDS, however its <u>closure</u> is always equal to the whole space.

UDS existence results

Search for null or small universal differentiability sets

1. D. Preiss (1990) Lebesgue null G_{δ} UDS, however its <u>closure</u> is always equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): $n \ge 1 \implies$ there is a compact UDS in \mathbb{R}^n of Hausdorff dimension 1 (so its Lebesgue measure is zero if $n \ge 2$).

1. D. Preiss (1990) Lebesgue null G_{δ} UDS, however its <u>closure</u> is always equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): $n \ge 1 \implies$ there is a compact UDS in \mathbb{R}^n of Hausdorff dimension 1 (so its Lebesgue measure is zero if $n \ge 2$).

3. M. Doré–O.M. (2012): X^* separable \implies there is a closed bounded totally disconnected UDS of Hausdorff dimension 1.

1. D. Preiss (1990) Lebesgue null G_{δ} UDS, however its <u>closure</u> is always equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): $n \ge 1 \implies$ there is a compact UDS in \mathbb{R}^n of Hausdorff dimension 1 (so its Lebesgue measure is zero if $n \ge 2$).

3. M. Doré–O.M. (2012): X^* separable \implies there is a closed bounded totally disconnected UDS of Hausdorff dimension 1.

Question (Lars Olsen): Can you do better than Hausdorff dim. 1?

Olga Maleva University of Birmingham, UK

1. D. Preiss (1990) Lebesgue null G_{δ} UDS, however its <u>closure</u> is always equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): $n \ge 1 \implies$ there is a compact UDS in \mathbb{R}^n of Hausdorff dimension 1 (so its Lebesgue measure is zero if $n \ge 2$).

3. M. Doré–O.M. (2012): X^* separable \implies there is a closed bounded totally disconnected UDS of Hausdorff dimension 1.

Question (Lars Olsen): Can you do better than Hausdorff dim. 1? 4. M. Dymond–O.M. (2013): In any \mathbb{R}^n there is a (compact) UDS of Minkowski (box counting) dimension 1 (and it is Hausdorff dim 1 too).

1. D. Preiss (1990) Lebesgue null G_{δ} UDS, however its <u>closure</u> is always equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): $n \ge 1 \implies$ there is a compact UDS in \mathbb{R}^n of Hausdorff dimension 1 (so its Lebesgue measure is zero if $n \ge 2$).

3. M. Doré–O.M. (2012): X^* separable \implies there is a closed bounded totally disconnected UDS of Hausdorff dimension 1.

Question (Lars Olsen): Can you do better than Hausdorff dim. 1? 4. M. Dymond–O.M. (2013): In any \mathbb{R}^n there is a (compact) UDS of Minkowski (box counting) dimension 1 (and it is Hausdorff dim 1 too).

5. D. Preiss-G. Speight (2013):

 $n > m \ge 1$, $\varepsilon > 0 \implies$ there is a set $E \subseteq \mathbb{R}^n$ of Hausdorff dimension less than $m + \varepsilon$ such that it is a UDS w.r.t. Lipschitz $f : \mathbb{R}^n \to \mathbb{R}^m$.

1. D. Preiss (1990) Lebesgue null G_{δ} UDS, however its <u>closure</u> is always equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): $n \ge 1 \implies$ there is a compact UDS in \mathbb{R}^n of Hausdorff dimension 1 (so its Lebesgue measure is zero if $n \ge 2$).

3. M. Doré–O.M. (2012): X^* separable \implies there is a closed bounded totally disconnected UDS of Hausdorff dimension 1.

Question (Lars Olsen): Can you do better than Hausdorff dim. 1? 4. M. Dymond–O.M. (2013): In any \mathbb{R}^n there is a (compact) UDS of Minkowski (box counting) dimension 1 (and it is Hausdorff dim 1 too).

5. D. Preiss-G. Speight (2013):

 $n > m \ge 1$, $\varepsilon > 0 \implies$ there is a set $E \subseteq \mathbb{R}^n$ of Hausdorff dimension less than $m + \varepsilon$ such that it is a UDS w.r.t. Lipschitz $f : \mathbb{R}^n \to \mathbb{R}^m$.

6. G. Alberti, M. Csörnyei, D. Preiss (2010): $n = m = 2 \implies \forall E \subset \mathbb{R}^2$ of Lebesgue measure 0 is non-UDS w.r.t. Lipschitz $f : \mathbb{R}^2 \to \mathbb{R}^2$.

1. D. Preiss (1990) Lebesgue null G_{δ} UDS, however its <u>closure</u> is always equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): $n \ge 1 \implies$ there is a compact UDS in \mathbb{R}^n of Hausdorff dimension 1 (so its Lebesgue measure is zero if $n \ge 2$).

3. M. Doré–O.M. (2012): X^* separable \implies there is a closed bounded totally disconnected UDS of Hausdorff dimension 1.

Question (Lars Olsen): Can you do better than Hausdorff dim. 1? 4. M. Dymond–O.M. (2013): In any \mathbb{R}^n there is a (compact) UDS of Minkowski (box counting) dimension 1 (and it is Hausdorff dim 1 too).

5. D. Preiss–G. Speight (2013): $n > m \ge 1, \varepsilon > 0 \implies$ there is a set $E \subseteq \mathbb{R}^n$ of Hausdorff dimension less than $m + \varepsilon$ such that it is a UDS w.r.t. Lipschitz $f : \mathbb{R}^n \to \mathbb{R}^m$.

6. G. Alberti, M. Csörnyei, D. Preiss (2010): $n = m = 2 \implies \forall E \subset \mathbb{R}^2$ of Lebesgue measure 0 is non-UDS w.r.t. Lipschitz $f : \mathbb{R}^2 \to \mathbb{R}^2$. 7. M. Csörnyei–P. Jones (2013): $n = m > 2 \implies \forall E \subset \mathbb{R}^n$ of Lebesgue measure 0 is non-UDS w.r.t. Lipschitz $f : \mathbb{R}^n \to \mathbb{R}^m$.

Hausdorff and Minkowski dimension

Let $A \subset \mathbb{R}^n$.

Hausdorff dimension

$$\mathcal{H}^{p}(A) = \lim_{\delta \downarrow 0} \inf \left\{ \sum_{i} \operatorname{diam}(E_{i})^{p} : A \subseteq \bigcup_{i} E_{i}, \operatorname{diam}(E_{i}) \leq \delta \right\}.$$

is the *p*-dimensional Hausdorff measure of *A*.

★ Ξ → ★ Ξ → ...

э

Hausdorff and Minkowski dimension

Let $A \subset \mathbb{R}^n$.

Hausdorff dimension

$$\mathcal{H}^{p}(A) = \lim_{\delta \downarrow 0} \inf \left\{ \sum_{i} \operatorname{diam}(E_{i})^{p} : A \subseteq \bigcup_{i} E_{i}, \operatorname{diam}(E_{i}) \leq \delta \right\}.$$

is the *p*-dimensional Hausdorff measure of *A*.

Hausdorff dimension:

$$\dim_{\mathcal{H}}(A) = \inf\{p : \mathcal{H}^p(A) = 0\}.$$

白 マイ キャー・

э.
Hausdorff and Minkowski dimension

Let $A \subset \mathbb{R}^n$.

Hausdorff dimension

$$\mathcal{H}^{p}(A) = \lim_{\delta \downarrow 0} \inf \left\{ \sum_{i} \operatorname{diam}(E_{i})^{p} : A \subseteq \bigcup_{i} E_{i}, \operatorname{diam}(E_{i}) \leq \delta \right\}.$$

is the *p*-dimensional Hausdorff measure of *A*.

Hausdorff dimension:

$$\underline{\dim_{\mathcal{H}}(A)} = \inf\{p : \mathcal{H}^p(A) = 0\}.$$

Minkowski (box counting) dimension

Now for each $\delta > 0$ let N_{δ} be the minimal possible number of balls of radius δ with which it is possible to cover A. Then

$$\overline{\dim}_{\mathcal{M}}(A)/\underline{\dim}_{\mathcal{M}}(A) = \inf\{p : \overline{\lim}_{\delta \downarrow 0}/\underline{\lim}_{\delta \downarrow 0} N_{\delta} \delta^{p} = 0\}$$

is the upper (lower) Minkowski dimension of A.

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Olga Maleva University of Birmingham, UK Lowest fractal dimensions for universal differentiability

э

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Assume $|P(E \cap D_f)| = 0$, let $G \supseteq P(E \cap D_f)$ be a G_{δ} set of measure 0.

(周) (日) (日) (日)

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Assume $|P(E \cap D_f)| = 0$, let $G \supseteq P(E \cap D_f)$ be a G_{δ} set of measure 0. Let Pe = 1 and $F := f + 2||e|| \operatorname{Lip}(f)g \circ P$. Then $E \cap D_F = \emptyset$.

-

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Assume $|P(E \cap D_f)| = 0$, let $G \supseteq P(E \cap D_f)$ be a G_{δ} set of measure 0. Let Pe = 1 and $F := f + 2||e|| \operatorname{Lip}(f)g \circ P$. Then $E \cap D_F = \emptyset$.

(weak Projection property)

・ 「「」 ・ (三) ・ 三)

-

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Assume $|P(E \cap D_f)| = 0$, let $G \supseteq P(E \cap D_f)$ be a G_{δ} set of measure 0. Let Pe = 1 and $F := f + 2||e|| \operatorname{Lip}(f)g \circ P$. Then $E \cap D_F = \emptyset$.

(weak Projection property)

$E \text{ is a UDS} \implies \overline{\dim}_{\mathcal{M}}(E) \geq \underline{\dim}_{\mathcal{M}}(E) \geq \dim_{\mathcal{H}}(E) \geq 1$

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Assume $|P(E \cap D_f)| = 0$, let $G \supseteq P(E \cap D_f)$ be a G_{δ} set of measure 0. Let Pe = 1 and $F := f + 2||e|| \operatorname{Lip}(f)g \circ P$. Then $E \cap D_F = \emptyset$.

(weak Projection property)

E is a UDS $\implies \overline{\dim}_{\mathcal{M}}(E) \geq \underline{\operatorname{dim}}_{\mathcal{M}}(E)$	$\underline{\mathrm{m}}_{\mathcal{M}}(E) \geq \dim_{\mathcal{H}}(E) \geq 1$
---	---

Assume $\dim_{\mathcal{H}}(E) < 1$; let $P \in X^* \setminus \{0\}$.

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Assume $|P(E \cap D_f)| = 0$, let $G \supseteq P(E \cap D_f)$ be a G_{δ} set of measure 0. Let Pe = 1 and $F := f + 2||e|| \operatorname{Lip}(f)g \circ P$. Then $E \cap D_F = \emptyset$.

(weak Projection property)

Ε	is a	UDS	\Longrightarrow	$\overline{\dim}_{\mathcal{M}}($	(E)	$\geq \underline{\dim}_{\mathcal{N}}$	$\mathcal{A}(E)$	\geq	$\dim_{\mathcal{H}}$	(E)	≥ 1	Ĺ
---	------	-----	-------------------	----------------------------------	-----	---------------------------------------	------------------	--------	----------------------	-----	----------	---

Assume $\dim_{\mathcal{H}}(E) < 1$; let $P \in X^* \setminus \{0\}$.

 $\dim_{\mathcal{H}}(P(E)) < 1 \Rightarrow |P(E)| = 0$, contradiction.

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Assume $|P(E \cap D_f)| = 0$, let $G \supseteq P(E \cap D_f)$ be a G_{δ} set of measure 0. Let Pe = 1 and $F := f + 2||e|| \operatorname{Lip}(f)g \circ P$. Then $E \cap D_F = \emptyset$.

(weak Projection property)

E is a UDS $\implies \overline{\dim}_{\mathcal{M}}(E) \ge \underline{\dim}_{\mathcal{M}}(E) \ge \dim$	$h_{\mathcal{H}}(E) \geq 1$
---	-----------------------------

Assume $\dim_{\mathcal{H}}(E) < 1$; let $P \in X^* \setminus \{0\}$.

 $\dim_{\mathcal{H}}(P(E)) < 1 \Rightarrow |P(E)| = 0$, contradiction.

If $\overline{\dim}_{\mathcal{M}}(E) = 1$ and E is a UDS then

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Assume $|P(E \cap D_f)| = 0$, let $G \supseteq P(E \cap D_f)$ be a G_{δ} set of measure 0. Let Pe = 1 and $F := f + 2||e|| \operatorname{Lip}(f)g \circ P$. Then $E \cap D_F = \emptyset$.

(weak Projection property)

E is a UDS $\implies \overline{\dim}_{\mathcal{M}}(E) \geq \underline{\dim}_{\mathcal{M}}(E)$	$\geq \dim_{\mathcal{H}}(E) \geq 1$
---	-------------------------------------

Assume $\dim_{\mathcal{H}}(E) < 1$; let $P \in X^* \setminus \{0\}$.

 $\dim_{\mathcal{H}}(P(E)) < 1 \Rightarrow |P(E)| = 0$, contradiction.

If $\overline{\dim}_{\mathcal{M}}(E) = 1$ and E is a UDS then $\dim_{\mathcal{M}}(E) = \dim_{\mathcal{H}}(E) = 1$.

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Assume $|P(E \cap D_f)| = 0$, let $G \supseteq P(E \cap D_f)$ be a G_{δ} set of measure 0. Let Pe = 1 and $F := f + 2||e|| \operatorname{Lip}(f)g \circ P$. Then $E \cap D_F = \emptyset$.

(weak Projection property)

E is a UDS $\implies \overline{\dim}_{\mathcal{M}}(E) \geq \underline{\dim}_{\mathcal{M}}(E) \geq \operatorname{dim}_{\mathcal{M}}(E)$	$\mathrm{m}_{\mathcal{H}}(E) \geq 1$
--	--------------------------------------

Assume $\dim_{\mathcal{H}}(E) < 1$; let $P \in X^* \setminus \{0\}$.

 $\dim_{\mathcal{H}}(P(E)) < 1 \Rightarrow |P(E)| = 0$, contradiction.

If $\overline{\dim}_{\mathcal{M}}(E) = 1$ and E is a UDS then $\dim_{\mathcal{M}}(E) = \dim_{\mathcal{H}}(E) = 1$.

E is a UDS $\implies \mathcal{H}^1(E) = \infty$, even not σ -finite

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Assume $|P(E \cap D_f)| = 0$, let $G \supseteq P(E \cap D_f)$ be a G_{δ} set of measure 0. Let Pe = 1 and $F := f + 2||e|| \operatorname{Lip}(f)g \circ P$. Then $E \cap D_F = \emptyset$.

(weak Projection property)

E is a UDS $\implies \overline{\dim}_{\mathcal{M}}(E) \geq \underline{\dim}_{\mathcal{M}}(E) \geq \dim_{\mathcal{H}}(E) \geq dim_{\mathcal{H}}(E) \geq dim_{\mathcal{H}}(E)$	1
--	---

Assume $\dim_{\mathcal{H}}(E) < 1$; let $P \in X^* \setminus \{0\}$.

 $\dim_{\mathcal{H}}(P(E)) < 1 \Rightarrow |P(E)| = 0$, contradiction.

If $\overline{\dim}_{\mathcal{M}}(E) = 1$ and E is a UDS then $\dim_{\mathcal{M}}(E) = \dim_{\mathcal{H}}(E) = 1$.

E is a UDS $\implies \mathcal{H}^1(E) = \infty$, even not σ -finite

If $\mathcal{H}^1(E)$ is σ -finite \implies Federer's structure theorem implies E =rectifiable \cup proj.0

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Assume $|P(E \cap D_f)| = 0$, let $G \supseteq P(E \cap D_f)$ be a G_{δ} set of measure 0. Let Pe = 1 and $F := f + 2||e|| \operatorname{Lip}(f)g \circ P$. Then $E \cap D_F = \emptyset$.

(weak Projection property)

E is a UDS $\implies \overline{\dim}_{\mathcal{M}}(E) \geq \underline{\dim}_{\mathcal{M}}(E) \geq \dim_{\mathcal{H}}(E) \geq dim_{\mathcal{H}}(E) \geq dim_{\mathcal{H}}(E)$	1
--	---

Assume $\dim_{\mathcal{H}}(E) < 1$; let $P \in X^* \setminus \{0\}$.

 $\dim_{\mathcal{H}}(P(E)) < 1 \Rightarrow |P(E)| = 0$, contradiction.

If $\overline{\dim}_{\mathcal{M}}(E) = 1$ and E is a UDS then $\dim_{\mathcal{M}}(E) = \dim_{\mathcal{H}}(E) = 1$.

E is a UDS $\implies \mathcal{H}^1(E) = \infty$, even not σ -finite

If $\mathcal{H}^1(E)$ is σ -finite \implies Federer's structure theorem implies E =rectifiable \cup proj.0= non-UDS \cup proj.0

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Assume $|P(E \cap D_f)| = 0$, let $G \supseteq P(E \cap D_f)$ be a G_{δ} set of measure 0. Let Pe = 1 and $F := f + 2||e|| \operatorname{Lip}(f)g \circ P$. Then $E \cap D_F = \emptyset$.

(weak Projection property)

E is a UDS $\implies \overline{\dim}_{\mathcal{M}}(E) \geq \underline{\dim}_{\mathcal{M}}(E) \geq \dim_{\mathcal{H}}(E) \geq dim_{\mathcal{H}}(E) \geq dim_{\mathcal{H}}(E)$	1
--	---

Assume $\dim_{\mathcal{H}}(E) < 1$; let $P \in X^* \setminus \{0\}$.

 $\dim_{\mathcal{H}}(P(E)) < 1 \Rightarrow |P(E)| = 0$, contradiction.

If $\overline{\dim}_{\mathcal{M}}(E) = 1$ and E is a UDS then $\dim_{\mathcal{M}}(E) = \dim_{\mathcal{H}}(E) = 1$.

E is a UDS $\implies \mathcal{H}^1(E) = \infty$, even not σ -finite

If $\mathcal{H}^1(E)$ is σ -finite \implies Federer's structure theorem implies E =rectifiable \cup proj.0= non-UDS \cup proj.0 \implies E is non-UDS.

If $n \geq 2$ and $(E_{\lambda})_{\lambda \in (0,1)} \subseteq \mathbb{R}^n$ is an increasing sequence of closed sets satisfying the following *approximation property*: for all $0 < \lambda < \lambda' < 1$ and $\eta > 0$ there is a threshold $\delta^* = \delta^*(\lambda, \lambda', \eta)$ such that

伺い イヨン イヨン

If $n \geq 2$ and $(E_{\lambda})_{\lambda \in (0,1)} \subseteq \mathbb{R}^{n}$ is an increasing sequence of closed sets satisfying the following *approximation property*: for all $0 < \lambda < \lambda' < 1$ and $\eta > 0$ there is a threshold $\delta^{*} = \delta^{*}(\lambda, \lambda', \eta)$ such that $x \in E_{\lambda}$, $\|e\| = 1$, $0 < \delta < \delta^{*} \implies$ there exists $[x', x' + \delta e'] \subseteq E_{\lambda'}$ with $\|x - x'\| < \eta \delta$ and $\|e - e'\| < \eta$,

「「」、 ()) ()) ())) う

If $n \ge 2$ and $(E_{\lambda})_{\lambda \in (0,1)} \subseteq \mathbb{R}^n$ is an increasing sequence of closed sets satisfying the following *approximation property*: for all $0 < \lambda < \lambda' < 1$ and $\eta > 0$ there is a threshold $\delta^* = \delta^*(\lambda, \lambda', \eta)$ such that $x \in E_{\lambda}$, $\|e\| = 1$, $0 < \delta < \delta^* \implies$ there exists $[x', x' + \delta e'] \subseteq E_{\lambda'}$ with $\|x - x'\| < \eta \delta$ and $\|e - e'\| < \eta$, then each E_{λ} is a universal differentiability set.

If $n \ge 2$ and $(E_{\lambda})_{\lambda \in (0,1)} \subseteq \mathbb{R}^n$ is an increasing sequence of closed sets satisfying the following approximation property: for all $0 < \lambda < \lambda' < 1$ and $\eta > 0$ there is a threshold $\delta^* = \delta^*(\lambda, \lambda', \eta)$ such that $x \in E_{\lambda}$, $\|e\| = 1$, $0 < \delta < \delta^* \implies$ there exists $\gamma : [0, \delta] \to X$ Lipschitz, $\|\gamma(0) - x\| < \eta \delta$, $\|\gamma'(t) - e\| < \eta$, $|\gamma^{-1}(E_{\lambda'})| \ge \delta(1 - \eta)$

周 と く ヨ と く ヨ と 二 ヨ

If $n \ge 2$ and $(E_{\lambda})_{\lambda \in (0,1)} \subseteq \mathbb{R}^n$ is an increasing sequence of closed sets satisfying the following *approximation property*: for all $0 < \lambda < \lambda' < 1$ and $\eta > 0$ there is a threshold $\delta^* = \delta^*(\lambda, \lambda', \eta)$ such that $x \in E_{\lambda}$, ||e|| = 1, $0 < \delta < \delta^* \implies$ there exists $\gamma : [0, \delta] \to X$ Lipschitz, $||\gamma(0) - x|| < \eta \delta$, $||\gamma'(t) - e|| < \eta$, $|\gamma^{-1}(E_{\lambda'})| \ge \delta(1 - \eta)$ then each E_{λ} is a universal differentiability set.

If $n \geq 2$ and $(E_{\lambda})_{\lambda \in (0,1)} \subseteq \mathbb{R}^{n}$ is an increasing sequence of closed sets satisfying the following *approximation property*: for all $0 < \lambda < \lambda' < 1$ and $\eta > 0$ there is a threshold $\delta^{*} = \delta^{*}(\lambda, \lambda', \eta)$ such that $x \in E_{\lambda}$, ||e|| = 1, $0 < \delta < \delta^{*} \implies$ there exists $\gamma : [0, \delta] \to X$ Lipschitz, $||\gamma(0) - x|| < \eta \delta$, $||\gamma'(t) - e|| < \eta$, $|\gamma^{-1}(E_{\lambda'})| \geq \delta(1 - \eta)$ then each E_{λ} is a universal differentiability set.

Moreover, for each $f : \mathbb{R}^n \to \mathbb{R}$ Lipschitz, the set $D = D_f \cap E_\lambda$

• is dense in E_{λ} and

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

-

If $n \geq 2$ and $(E_{\lambda})_{\lambda \in (0,1)} \subseteq \mathbb{R}^{n}$ is an increasing sequence of closed sets satisfying the following *approximation property*: for all $0 < \lambda < \lambda' < 1$ and $\eta > 0$ there is a threshold $\delta^{*} = \delta^{*}(\lambda, \lambda', \eta)$ such that $x \in E_{\lambda}$, ||e|| = 1, $0 < \delta < \delta^{*} \implies$ there exists $\gamma : [0, \delta] \to X$ Lipschitz, $||\gamma(0) - x|| < \eta \delta$, $||\gamma'(t) - e|| < \eta$, $|\gamma^{-1}(E_{\lambda'})| \geq \delta(1 - \eta)$ then each E_{λ} is a universal differentiability set.

Moreover, for each $f : \mathbb{R}^n \to \mathbb{R}$ Lipschitz, the set $D = D_f \cap E_\lambda$

- is dense in E_{λ} and
- for each x ∈ E_{λ'}, the set P(D ∩ B(x, r)) has a full measure on the interval (Px − Δ, Px + Δ) for Δ = min{r, δ*}/2.

- ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ● ● ● ● ● ● ●

If $n \geq 2$ and $(E_{\lambda})_{\lambda \in (0,1)} \subseteq \mathbb{R}^{n}$ is an increasing sequence of closed sets satisfying the following *approximation property*: for all $0 < \lambda < \lambda' < 1$ and $\eta > 0$ there is a threshold $\delta^{*} = \delta^{*}(\lambda, \lambda', \eta)$ such that $x \in E_{\lambda}$, ||e|| = 1, $0 < \delta < \delta^{*} \implies$ there exists $\gamma : [0, \delta] \to X$ Lipschitz, $||\gamma(0) - x|| < \eta \delta$, $||\gamma'(t) - e|| < \eta$, $|\gamma^{-1}(E_{\lambda'})| \geq \delta(1 - \eta)$ then each E_{λ} is a universal differentiability set.

Moreover, for each $f : \mathbb{R}^n \to \mathbb{R}$ Lipschitz, the set $D = D_f \cap E_\lambda$

• is dense in E_{λ} and

for each x ∈ E_{λ'}, the set P(D ∩ B(x, r)) has a full measure on the interval (Px − Δ, Px + Δ) for Δ = min{r,δ*}/2. (strong Projection property)

Theorem (Dymond, 2013)

 $E \text{ is a UDS } \implies$

э

Theorem (Dymond, 2013)

E is a UDS \implies

▶ ker(E) = { $x \in E : B(x, r) \cap E$ is a UDS $\forall r > 0$ } is a UDS

A B A A B A

3

Theorem (Dymond, 2013)

E is a UDS \implies

 ker(E) = {x ∈ E : B(x, r) ∩ E is a UDS ∀r > 0} is a UDS [related to Zelený–Pelant The structure of the σ-ideal of σ-porous sets (2004).]

- A TE N - A TE N

Theorem (Dymond, 2013)

E is a UDS \implies

- ker(E) = {x ∈ E : B(x, r) ∩ E is a UDS ∀r > 0} is a UDS [related to Zelený–Pelant The structure of the σ-ideal of σ-porous sets (2004).]
- and ker(ker(E)) = ker(E).

Theorem (Dymond, 2013)

 $E \text{ is a UDS } \implies$

- ker(E) = {x ∈ E : B(x, r) ∩ E is a UDS ∀r > 0} is a UDS [related to Zelený–Pelant The structure of the σ-ideal of σ-porous sets (2004).]
- and ker(ker(E)) = ker(E).

Clearly, $D_f \cap \ker(E)$ is dense in $\ker(E)$.

• • = • • = •

Theorem (Dymond, 2013)

 $E \text{ is a UDS } \implies$

- ker(E) = {x ∈ E : B(x, r) ∩ E is a UDS ∀r > 0} is a UDS [related to Zelený–Pelant The structure of the σ-ideal of σ-porous sets (2004).]
- and ker(ker(E)) = ker(E).

Clearly, $D_f \cap \ker(E)$ is dense in $\ker(E)$.

Questions

Should a UDS $E = \ker(E)$ satisfy a curve Approximation Property?

E is a UDS \implies

- ker(E) = {x ∈ E : B(x, r) ∩ E is a UDS ∀r > 0} is a UDS [related to Zelený–Pelant The structure of the σ-ideal of σ-porous sets (2004).]
- and ker(ker(E)) = ker(E).

Clearly, $D_f \cap \ker(E)$ is dense in $\ker(E)$.

Questions

Should a UDS $E = \ker(E)$ satisfy a curve Approximation Property? UDS \implies not u.p.u. (ACP, 2010) (existence of a Lipschitz function not directionally differentiable at any point)

E is a UDS \implies

- ker(E) = {x ∈ E : B(x, r) ∩ E is a UDS ∀r > 0} is a UDS [related to Zelený–Pelant The structure of the σ-ideal of σ-porous sets (2004).]
- and ker(ker(E)) = ker(E).

Clearly, $D_f \cap \ker(E)$ is dense in $\ker(E)$.

Questions

Should a UDS $E = \ker(E)$ satisfy a curve Approximation Property? UDS \implies not u.p.u. (ACP, 2010) (existence of a Lipschitz function not directionally differentiable at any point) \implies not nursely 1 unrectifiable (A Máthá 2014)

 \implies not purely 1-unrectifiable (A. Máthé 2014)

E is a UDS \implies

- ker(E) = {x ∈ E : B(x, r) ∩ E is a UDS ∀r > 0} is a UDS [related to Zelený–Pelant The structure of the σ-ideal of σ-porous sets (2004).]
- and ker(ker(E)) = ker(E).

Clearly, $D_f \cap \ker(E)$ is dense in $\ker(E)$.

Questions

Should a UDS $E = \ker(E)$ satisfy a curve Approximation Property? UDS \implies not u.p.u. (ACP, 2010) (existence of a Lipschitz function not directionally differentiable at any point)

- \implies not purely 1-unrectifiable (A. Máthé 2014)
- \implies positive intersection with curves around any point.

E is a UDS \implies

- ker(E) = {x ∈ E : B(x, r) ∩ E is a UDS ∀r > 0} is a UDS [related to Zelený–Pelant The structure of the σ-ideal of σ-porous sets (2004).]
- and ker(ker(E)) = ker(E).

Clearly, $D_f \cap \ker(E)$ is dense in $\ker(E)$.

Questions

Should a UDS $E = \ker(E)$ satisfy a curve Approximation Property? UDS \implies not u.p.u. (ACP, 2010) (existence of a Lipschitz function not directionally differentiable at any point)

- \implies not purely 1-unrectifiable (A. Máthé 2014)
- \implies positive intersection with curves around any point.

Weak Conjecture

$$E \text{ UDS}, \varepsilon > 0, x \in \ker(E) \implies \exists \gamma, \|\gamma' - e\| < \varepsilon \text{ with } |\gamma^{-1}(E)| > 0$$

$$R = R_{k+1} = Q^s$$
, $Q > 1$, $w_{k+1} = w_k/R$

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ● ● ●

Olga Maleva University of Birmingham, UK Lowest fractal dimensions for universal differentiability

$$\begin{aligned} R &= R_{k+1} = Q^s, \ Q > 1, \ w_{k+1} = w_k/R \\ \text{Total number of cubes } w_{k+1} \times w_{k+1}: \\ R + s \times Q^s + sQ \times Q^{s-1} + \cdots + \\ + sQ^{s-1} \times Q \sim s^2Q^s = R(\log R)^2 \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の久()

Olga Maleva University of Birmingham, UK Lowest fractal dimensions for universal differentiability

$$\begin{split} R &= R_{k+1} = Q^s, \ Q > 1, \ w_{k+1} = w_k/R \\ \text{Total number of cubes } w_{k+1} \times w_{k+1}: \\ R + s \times Q^s + sQ \times Q^{s-1} + \cdots + \\ + sQ^{s-1} \times Q \sim s^2Q^s = R(\log R)^2 \\ \text{Repeat for } \forall \text{ new tube } \Longrightarrow R(\log R)^4, \end{split}$$

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ● ● ●

Construction

$$\begin{split} R &= R_{k+1} = Q^s, \ Q > 1, \ w_{k+1} = w_k/R \\ \text{Total number of cubes } w_{k+1} \times w_{k+1}: \\ R + s \times Q^s + sQ \times Q^{s-1} + \cdots + \\ + sQ^{s-1} \times Q \sim s^2Q^s = R(\log R)^2 \\ \text{Repeat for } \forall \text{ new tube } \Longrightarrow R(\log R)^4, \\ \text{Again and again: } R(\log R)^{2m} \text{ cubes.} \end{split}$$

(4) (E. 16) (E. 16)

-
Construction

$$\begin{split} R &= R_{k+1} = Q^s, \ Q > 1, \ w_{k+1} = w_k/R \\ \text{Total number of cubes } w_{k+1} \times w_{k+1}: \\ R + s \times Q^s + sQ \times Q^{s-1} + \dots + \\ + sQ^{s-1} \times Q \sim s^2Q^s = R(\log R)^2 \\ \text{Repeat for } \forall \text{ new tube } \Longrightarrow R(\log R)^4, \\ \text{Again and again: } R(\log R)^{2m} \text{ cubes.} \\ N_{w_{k+1}} \leq N_{w_k} \times mR(\log R)^{2m} \\ \text{As } p > 1, \\ \frac{N_{w_{k+1}}w_{k+1}^p}{N_{w_k}w_k^p} \leq (\log R)^{2m+1}R^{1-p} < 1, \ R \text{ large} \end{split}$$

-

Olga Maleva University of Birmingham, UK Lowest fractal dimensions for universal differentiability

For $\delta \in (w_{k+1}, w_k)$: $N_{\delta} \delta^p \le N_{w_{k+1}} w_k^p = N_{w_{k+1}} w_{k+1}^p R^p$.

-

For
$$\delta \in (w_{k+1}, w_k)$$
: $N_{\delta} \delta^p \le N_{w_{k+1}} w_k^p = N_{w_{k+1}} w_{k+1}^p R^p$.

We show: $N_{w_{k+1}}w_{k+1}^p R_{k+1}^p o 0$

-

Can we get $N_{w_{k+1}} \leq N_{w_k} \times R\Phi(R)$ for any $\Phi(R) \nearrow \infty$ chosen in advance?

э

(*) *) *) *)

- T

Olga Maleva University of Birmingham, UK Lowest fractal dimensions for universal differentiability

Can we get $N_{w_{k+1}} \leq N_{w_k} \times R\Phi(R)$ for any $\Phi(R) \nearrow \infty$ chosen in advance?

Describe the class of gauge functions ffor which $\overline{\mathcal{M}_f}(N) = \overline{\lim}_{\delta>0} N_\delta f(\delta)$ or $\underline{\mathcal{M}_f}(N) = \underline{\lim}_{\delta>0} N_\delta f(\delta)$ is finite.

• • = • • = •

Can we get $N_{w_{k+1}} \leq N_{w_k} \times R\Phi(R)$ for any $\Phi(R) \nearrow \infty$ chosen in advance?

Describe the class of gauge functions ffor which $\overline{\mathcal{M}_f}(N) = \overline{\lim}_{\delta > 0} N_{\delta} f(\delta)$ or $\underline{\mathcal{M}_f}(N) = \underline{\lim}_{\delta > 0} N_{\delta} f(\delta)$ is finite.

-

We know $\lim_{\delta \to 0} N_{\delta} \delta$ is infinite.

Can we get $N_{w_{k+1}} \leq N_{w_k} \times R\Phi(R)$ for any $\Phi(R) \nearrow \infty$ chosen in advance?

Describe the class of gauge functions ffor which $\overline{\mathcal{M}_f}(N) = \overline{\lim}_{\delta>0} N_{\delta} f(\delta)$ or $\underline{\mathcal{M}_f}(N) = \underline{\lim}_{\delta>0} N_{\delta} f(\delta)$ is finite.

We know $\lim_{\delta \to 0} N_{\delta} \delta$ is infinite.

Conjecture

Let
$$\mathcal{F} = \{f(x) = o(x), x \to 0\}$$
.
If N is a UDS and $\mathcal{F}(N) = \{f \in \mathcal{F} : \mathcal{M}_f(N) < \infty\}$ then
 $\exists f_0 \in \mathcal{F} \text{ s.t. } f = o(f_0) \ \forall f \in \mathcal{F}(N).$

Can we get $N_{w_{k+1}} \leq N_{w_k} \times R\Phi(R)$ for any $\Phi(R) \nearrow \infty$ chosen in advance?

Describe the class of gauge functions ffor which $\overline{\mathcal{M}_f}(N) = \overline{\lim}_{\delta>0} N_{\delta} f(\delta)$ or $\underline{\mathcal{M}_f}(N) = \underline{\lim}_{\delta>0} N_{\delta} f(\delta)$ is finite.

We know $\lim_{\delta \to 0} N_{\delta} \delta$ is infinite.

Conjecture

Let
$$\mathcal{F} = \{f(x) = o(x), x \to 0\}$$
.
If N is a UDS and $\mathcal{F}(N) = \{f \in \mathcal{F} : \mathcal{M}_f(N) < \infty\}$ then
 $\exists f_0 \in \mathcal{F} \text{ s.t. } f = o(f_0) \ \forall f \in \mathcal{F}(N).$

If $f_0 \in \mathcal{F}$ then there exists a UDS N such that $f = o(f_0) \ \forall f \in \mathcal{F}(N)$.

(1日) (日) (日)

1. In \mathbb{R}^d , $d \ge 2$, every set of positive measure contains a (closed) universal differentiability subset of Lebesgue measure zero.

- A TE N - A TE N

1. In \mathbb{R}^d , $d \ge 2$, every set of positive measure contains a (closed) universal differentiability subset of Lebesgue measure zero. $|A| > 0 \implies AP$:

1. In \mathbb{R}^d , $d \ge 2$, every set of positive measure contains a (closed) universal differentiability subset of Lebesgue measure zero. $|A| > 0 \implies AP$: consider A in a small grid and decide which boxes have a good 'chance of survival'

b) a (E) b) a (E) b)

1. In \mathbb{R}^d , $d \ge 2$, every set of positive measure contains a (closed) universal differentiability subset of Lebesgue measure zero.

 $|A| > 0 \implies AP$:

consider A in a small grid and decide which boxes have a good 'chance of survival'

 \implies use density to get the AP with $|\gamma^{-1}(E_{\lambda})| > (1 - \eta)\delta$.

1. In \mathbb{R}^d , $d \ge 2$, every set of positive measure contains a (closed) universal differentiability subset of Lebesgue measure zero.

$$|A| > 0 \implies AP$$
:

consider A in a small grid and decide which boxes have a good 'chance of survival'

 \implies use density to get the AP with $|\gamma^{-1}(E_{\lambda})| > (1-\eta)\delta$.

2. Every UDS contains a closed universal differentiability subset.