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@ The collection of such V’s is denoted by G(d, k).
@ 7y is the orthogonal projection my: RY — V.



Restricted families of projections?

Notation for the talk:
@ V stands for a k-dimensional subspace of R.
@ The collection of such V’s is denoted by G(d, k).
@ 7y is the orthogonal projection 7y : R — V.

Definition (Restricted families of projections)

Take a strict subset G C G(d, k). The family of projections
(mv)veg is a restricted family of projections.




Hopes vs. reality

What one hopes to prove:
@ Suitable restricted families of projections admit a
Marstrand-type theorem: dim =y (K) = min{dim K, k} for
some —or "almost all"— V € G.



Hopes vs. reality

What one hopes to prove:

@ Suitable restricted families of projections admit a
Marstrand-type theorem: dim =y (K) = min{dim K, k} for
some —or "almost all"— V € G.

What one can prove at the moment (for certain families in R3):

@ The above holds, if dim K is small enough, typically much
smaller than k (easy). If dim K is not small enough, there’s
an e-improvement over the easy bound.

The easy part follows by classical methods. The e-improvement
is achieved by looking at the structure of (hypothetical)
extremizers.



The classical argument

What follows is a low-detail review of the classical argument,
which gives the projection theorem for full families of
projections. For completeness, here’s the result:

Theorem (Marstrand-Mattila projection theorem, 1954,1975)
dim7y(K) = min{dim K, k} for a.e. V € G(d, k).
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The classical argument

What follows is a low-detail review of the classical argument,
which gives the projection theorem for full families of
projections. For completeness, here’s the result:

Theorem (Marstrand-Mattila projection theorem, 1954,1975)
dimmy(K) = min{dim K, k} fora.e. V € G(d, k).

@ For purposes of illustration, | will focus on a discrete
variant:

"If K is a set of §-separated points satisfying a
non-concentration condition, then there are many subspaces V
such that my(K) contains almost card K points.”

@ The required non-concentration is the following:

Z < > < 5—d|mK
X =Yl

XAy



The classical argument |

e If Viss.t. |my(x) —my(y)| > é forall x # yin K, then
mv(K) obviously contains (card K) 4-separated points.



The classical argument |

e If Viss.t. |my(x) —my(y)| > é forall x # yin K, then
mv(K) obviously contains (card K) 4-separated points.

@ So, the enemy is the event
E(x,y) :={V € G(d,k) : |mv(x) — mv(y)| < d}.

@ The key of the whole proof is that this is rare event. If v4 «
is the natural measure on G(d, k), then

1ak(E(X,¥)) S (yxi}/\>k'



The classical argument Il

The proof is now completed by double-counting:

@ If cardmy(K) < card K, then |y (x) — 7y (y)| < 6 for many
pairs x # y. In other words,

Z XE(x,y)( V) s big.
XF#y



The classical argument Il

The proof is now completed by double-counting:

@ If cardmy(K) < card K, then |y (x) — 7y (y)| < 6 for many
pairs x # y. In other words,

> Xepy)(V) s big.
X#£y

@ This cannot happen for too many V’s, because

5 dimK
By S xeon(V) = s Een) S (5 25)

X#y X#y X#y

using first vg «(E(x,y)) < (6/|x — y|)¥ and then dim K < k.



An abstraction

@ For later use, let’s record the following abstract projection
theorem, which follows from the previous proof.

@ Let (A,~) be probability space, and let (m),: R? — R™ be
a collection of 1-Lipschitz linear mappings satisfying

Y{A =m0 < 63) S (8/1x])"-

Theorem (Abstract projection theorem (APT))

dim7y(K) = min{dim K, r} for y-a.e. \.




The problem with restricted families

@ The preceding projection theorems relied on uniform
sub-level set estimates y({\ : |mA(x)| < 0}) < (6/]x])".

@ In the restricted situation one also has sub-level set
estimates, but the constants and the sharp rates of decay
depend on the position of the point x:

YN ma(x)] < 8}) < C(x) - (8/]x])"™.
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The problem with restricted families

@ The preceding projection theorems relied on uniform
sub-level set estimates y({\ : |ma(x)] < d}) < (0/]x])".

@ In the restricted situation one also has sub-level set
estimates, but the constants and the sharp rates of decay
depend on the position of the point x:

7({)\ : ‘WA(X)| < (5}) < C(X) . (5/|X|)r(X)‘

@ Of course, one can always set C := sup C(x) and
r .= infr(x), and then apply the APT with varying success;
sometimes the result is sharp, sometimes not. Examples
follow.
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contained in the xy-plane. What is the best possible
(uniform) sub-level set estimate?

@ If x € {z—axis}, one has
{LeG:7m(x)=0}=4G.
@ So, there’s no possibility of uniform decay like
Y{L € G |m(x)| <6}) S (3/Ix])', r>0, x €R®,

and the APT gives nothing useful. There’s also nothing to
be had: the 1-dimensional set K = {z-axis} =, -projects to
{0} forall L€ G.
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@ First, consider the subfamily G ¢ G(3,1) of all lines
contained in the xy-plane. What is the best possible
(uniform) sub-level set estimate?

@ If x € {z—axis}, one has
{LeG:7m(x)=0}=4G.
@ So, there’s no possibility of uniform decay like
Y{L € G |m(x)| <6}) S (3/Ix])', r>0, x €R®,

and the APT gives nothing useful. There’s also nothing to
be had: the 1-dimensional set K = {z-axis} =, -projects to
{0} forall L€ G.

@ HOWEVER: for x ¢ {z — axis} one has

Y{Le G |m(x)| < 6}) <x 0/1x].
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@ Now G a 1-dimensional submanifold, and the best possible
uniform decay for any probability measure vg on G is

w({V e g lmv(x)] <d}) S /x|

The uniformly distributed measure achieves that.

@ Hence, the APT promises dimension conservation for up to
1-dimensional sets. Again, that’s the best you can get,
because any subset K of the xy-plane projects inside the
line VN {xy —plane} for all V € G.



Restricted families with sharp APT

@ Next, let G C G(3,2) be the "vertical" planes
V O {z — axis}. Best sub-level set estimate?

@ Now G a 1-dimensional submanifold, and the best possible
uniform decay for any probability measure vg on G is

w({V e g lmv(x)] <d}) S /x|

The uniformly distributed measure achieves that.

@ Hence, the APT promises dimension conservation for up to
1-dimensional sets. Again, that’s the best you can get,
because any subset K of the xy-plane projects inside the
line VN {xy —plane} for all V € G.

@ HOWEVER: for x ¢ {xy — plane}(d) one has

{(Veg:|ry(x)| <d} =2l



Restricted families of projections

@ The APT is sharp in the preceding examples, because
there are certain subspaces (z-axis and xy-plane) in R3,
where the sub-level set estimates are uniformly poor.

@ We want to get rid of this phenomenon, so we add some
curvature. Consider a smooth curve n: (0,1) — S?,
satisfying

span{n(t),7(1),ii(t)} =R®,  te(0,1).
@ Something like this:

-
NS NN

Soing




Restricted families of projections

@ Then, we get a family of lines and planes by setting

Gu(n) == {span{n(t)} : t € (0,1)}
and
Gv(n) := {span{n(t)}* : t € (0,1)}.

@ The examples above were G, (n) and Gy(n), corresponding
to the curve n parametrising the unit circle on the xy-plane.
But of course

span{n(t),7(t),7i(t)} = xy — plane

for t € (0,1), so the curvature requirement excludes these
examples.




Restricted families of projections

@ Assuming the curvature condition, counterexamples
become very evasive: the regions of poor sub-level set
estimates are no longer subspaces. The following
conjecture seems plausible:

The projections ;, L € G;(n), should conserve dimension for
up to 1-dimensional sets, and the projections wy, V € Gy(n)
should conserve dimension for up to 2-dimensional sets.




Kaufman’s method

@ Sanity check: does it follows from the APT?

@ The projection families G, (n) and Gy(n) are parametrised
by (0, 1), so the natural choice for vg on both manifolds is
essentially £ l(0,1)- The bounds below are the worst-case
sub-level set estimates (i.e. they are valid for all and sharp
for certain x € R3):

L{L € Gu(n) : Im(x)] < 6}) S (8/1x)'2,

and
LY{V e Gv(n) : Imv(x)| < 6}) S5/



Kaufman’s method

@ The bounds have the following corollary:

Corollary (to the APT)

The projections 7, L € G;(n), conserve dimension for up to
1/2-dimensional sets, and the projections wy, V € Gy(n),
conserve dimension for up to 1-dimensional sets.

@ It's worth observing that the "1 /2" already improves on the
non-curved case (where no positive result was to be had),
but the "1" doesn’t.



Small improvements

@ Nevertheless, the "1" is not the end of the story here:

Theorem (Fassler, O. (2013))

For every s > 1, there is o(s) > 1 such that the following holds.

Ifdim K = s, thendim 7y(K) > o(s) for almost every
Vegy(n).

@ For G;, we obtained the same result for the packing
dimension of projections, but the Hausdorff dimension
narrowly escaped. Except for this special curve:

n(t) = (cos(t),sin(t),1).

Theorem (O. (2013))

For this special curve 7, the previous theorem holds with Gy
replaced by G, and " " replaced by "1 /2".




The proof in four slides (1)

@ Recall: we're interested in the one-dimensional family of
2-dim subspaces given by

Vi :==span{n(t)}+,  te(0,1).

@ As earlier, let K be a finite §-separated set containing
~ 6% points, s > 1, satisfying an s-dimensional
non-concentration property.

@ The goal is to find many V4’s such that =y, (K) contains
> ¢~ §-separated points.

@ The APT strategy boils down to estimating

Dt v (x = y)l < 5}
Xy
@ As we already know, the best general bound is

b
X —y|

{t: v (x =y <0} <



The proof in four slides (2)

@ The plan is to exploit the fact that this bound can be
improved a lot, unless (x — y) has a rather special
orientation, namely (x — y) € (V;-)(5) for some t.

o If (x —y) ¢ (V;+)(6) for any t, then indeed
{t:|my(x —y)| <6} = 2!

@ This leads us to consider a "counter-assumption": suppose
that the sum

Dot lmv(x = y)l < 8}
X#y

is roughly as large as the "general x — y" estimate allows.
Can we describe the structure of K?



The proof in four slides (3)

@ Quite easily, in fact, and here’s the answer:

@ If the sum is almost as large as it can be (in view of the
"general bound"), then there’s a §*-proportion of the points
X such that a 6-proportion of the set K is contained in a
d-neighbourhood of

x+C=x+ |J V-
te(0,1)
@ Here k \ 0, as the counter-assumption gets stronger.

@ Cis a conical surface of some sort, and C(¢) will stand for
its §-neighbourhood.



The proof in four slides (4)

@ Almost done: since a large part of K is contained in many
(x 4+ C(9))’s...

@ ...alarge part of K is actually contained in
(x + C(0)) N (y + Cj(0)) for some x # y!

@ We can also choose x # y relatively far apart.

@ How does (x + C(d)) N (y + C(9)) look like? Since
(x + C)n (y + C) is the intersection of two conical
surfaces, it's something essentially one-dimensional.

@ This is a bit tedious to prove, but the upshot is that we’ve
managed to cram a large part of an s-dimensional discrete
set K inside an essentially one-dimensional set. That’s not
possible, since s > 1.



Further results

@ The "restricted families of projections" problem in R3 is
closely related to Fourier restriction questions.

@ D. and R. Oberlin wrote a paper about this last year:

Theorem (D. and R. Oberlin, 2013)
Assuming the curvature condition,

3dimK
4

dimmy,(K) >

for almost all t € (0,1). Ifdim K > 2, the lower bound can be
improved to min{dimK — 1/2,2}.




Restricted families in R2?

Question

Is there a "restricted families of projections" phenomenon in
R?? For instance does there exist a collection of lines

L C G(2,1) with the following properties:

(a) dmL < 1,

(b) for any compact K C R? with dim K = 1, there exists L € £
with dim 7 (K) = 1.

Same as above, but replace (a) by
(@) dim.L = 0.




Restricted families in R2?

For this problem, even a purely discrete variant is wide open.
There are many ways to formulate this, for example:

Question

Call a family of lines £ € G(2,1) n-good, if for any n-point set
P c R? there exists L € £ such that card 7, (P) > n®/*. How
small sets £ can be n-good?

| \

Proposition

It follows from Szemerédi-Trotter that any collection L with
card £ > n'/? is n-good. On the other hand, it follows from a
construction of Elekes-Erdés that no collection L of fixed size
C € N js n-good for large n.

A random collection of ~ log n lines is n-good.




Why is no collection of fixed size n-good?

@ The following construction was pointed out to me by
Andras Mathé.

@ Given any finite set K = {ky,...,kc} C R, a construction of
Elekes-Erdds says that there exists an n-point set A C R
(for some large n) containing £ n?> homothetic copies of K.

@ In other words, there are %, n? pairs (x, y) € R? such that
x+yK C A

@ Now, let P be the set of these pairs, and note that
m,(P) C Aforall L; := span{(1,kj)},1 <j<C. In
particular,

cardr,(P) < n=(r?)"/2 < (cardP)'/2, 1<j<C.



Sharpening Kaufman’s bound?

The following is an instance of the well-known exceptional set
estimate due to R. Kaufman (1968):

Let K ¢ R? be a compact set with dim K = 1. Then

dm{L € G(2,1) : dim7m (K) <s} <s, 0<s<1.

By a result of Bourgain (2003, 2010), this is not sharp for
s~ 1/2. Infact,

dim{L:dimm; (K) < s} \,0, ass\, 1/2.

Is Kaufman’s bound sharp for any 1/2 < s < 1? It is sharp for
s = 1 (Kaufman-Mattila 1975).




Sharpening Kaufman’s bound?

In the discrete world, Szemerédi-Trotter gives a tight estimate:

Proposition

Assume P c R? withcard P = n. Then

card{L:cardm (P) < n°} <rm?s7!  1/2<s<1.

In the light of this bound and Bourgain’s result, it is reasonable
to conjecture that

dim{L:dimm (P)<s} <2s—1, 1/2<s<1.




Sharpening Kaufman’s bound?

This is probably hopeless, but even improving on Kaufman’s
bound by an ¢ = ¢(s) would be very interesting. Even this
appears quite hard, however, because it would imply the
following result in continuous sum-product theory:

Let A C R be a 1/2-dimensional compact set, and let B be an
s-dimensional compact set with1/2 < s < 1. Then

dim(A+ BA) > s.

This follows from Bourgain’s work for s ~ 1/2, but not for, say
s = 3/4. More generally,

IfdimA,dim C > 0 anddim B < 1, then

dim(A + BC) > dim B.




Projections and multi-scale analysis?

E rather difficult to construct sets K such that dim K = 1, and
dimgm; (K) < 1formany L € G(2,1).

IfdmK =1, then

dim{L ; diimbL(K) < 1} =0.

@ | only know that the exceptional set above can be
uncountable.

@ More generally, how to exploit "multi-scale information" in
projection problems — i.e. the assumption that 7/ (K) is
small on many (and not too rare) scales simultaneously?
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