Restricted families of projections

Tuomas Orponen, joint work with Katrin Fässler

School of Mathematics
University of Edinburgh
Bristol, 17/7/2014

Restricted families of projections?

Notation for the talk:

- V stands for a k-dimensional subspace of \mathbb{R}^{d}.
- The collection of such V 's is denoted by $\mathcal{G}(d, k)$.
- π_{V} is the orthogonal projection $\pi_{V}: \mathbb{R}^{d} \rightarrow V$.

Restricted families of projections?

Notation for the talk:

- V stands for a k-dimensional subspace of \mathbb{R}^{d}.
- The collection of such V 's is denoted by $\mathcal{G}(d, k)$.
- π_{V} is the orthogonal projection $\pi_{V}: \mathbb{R}^{d} \rightarrow V$.

Definition (Restricted families of projections)

Take a strict subset $\mathcal{G} \subsetneq \mathcal{G}(d, k)$. The family of projections $(\pi v)_{v \in \mathcal{G}}$ is a restricted family of projections.

Hopes vs. reality

What one hopes to prove:

- Suitable restricted families of projections admit a Marstrand-type theorem: $\operatorname{dim} \pi_{V}(K)=\min \{\operatorname{dim} K, k\}$ for some - or "almost all" - $V \in \mathcal{G}$.

Hopes vs. reality

What one hopes to prove:

- Suitable restricted families of projections admit a Marstrand-type theorem: $\operatorname{dim} \pi_{V}(K)=\min \{\operatorname{dim} K, k\}$ for some - or "almost all" - $V \in \mathcal{G}$.
What one can prove at the moment (for certain families in \mathbb{R}^{3}):
- The above holds, if dim K is small enough, typically much smaller than k (easy). If dim K is not small enough, there's an ε-improvement over the easy bound.
The easy part follows by classical methods. The ε-improvement is achieved by looking at the structure of (hypothetical) extremizers.

The classical argument

What follows is a low-detail review of the classical argument, which gives the projection theorem for full families of projections. For completeness, here's the result:

[^0]
The classical argument

What follows is a low-detail review of the classical argument, which gives the projection theorem for full families of projections. For completeness, here's the result:

Theorem (Marstrand-Mattila projection theorem, 1954,1975)

 $\operatorname{dim} \pi_{V}(K)=\min \{\operatorname{dim} K, k\}$ for a.e. $V \in \mathcal{G}(d, k)$.- For purposes of illustration, I will focus on a discrete variant:

Theorem

"If K is a set of δ-separated points satisfying a non-concentration condition, then there are many subspaces V such that $\pi_{V}(K)$ contains almost card K points."

The classical argument

What follows is a low-detail review of the classical argument, which gives the projection theorem for full families of projections. For completeness, here's the result:

Theorem (Marstrand-Mattila projection theorem, 1954,1975)

 $\operatorname{dim} \pi_{V}(K)=\min \{\operatorname{dim} K, k\}$ for a.e. $V \in \mathcal{G}(d, k)$.- For purposes of illustration, I will focus on a discrete variant:

Theorem

"If K is a set of δ-separated points satisfying a non-concentration condition, then there are many subspaces V such that $\pi_{V}(K)$ contains almost card K points."

- The required non-concentration is the following:

$$
\sum_{x \neq y}\left(\frac{\delta}{|x-y|}\right)^{\operatorname{dim} K} \ll \delta^{-\operatorname{dim} K}
$$

- If V is s.t. $\left|\pi_{V}(x)-\pi_{V}(y)\right| \geq \delta$ for all $x \neq y$ in K, then $\pi_{V}(K)$ obviously contains (card K) δ-separated points.
- If V is s.t. $\left|\pi_{V}(x)-\pi_{V}(y)\right| \geq \delta$ for all $x \neq y$ in K, then $\pi_{V}(K)$ obviously contains (card K) δ-separated points.
- So, the enemy is the event

$$
E(x, y):=\left\{V \in \mathcal{G}(d, k):\left|\pi_{V}(x)-\pi_{V}(y)\right|<\delta\right\}
$$

- The key of the whole proof is that this is rare event. If $\gamma_{d, k}$ is the natural measure on $\mathcal{G}(d, k)$, then

$$
\gamma_{d, k}(E(x, y)) \lesssim\left(\frac{\delta}{|x-y|}\right)^{k}
$$

The classical argument III

The proof is now completed by double-counting:

- If card $\pi_{V}(K) \ll \operatorname{card} K$, then $\left|\pi_{V}(x)-\pi_{V}(y)\right|<\delta$ for many pairs $x \neq y$. In other words,

$$
\sum_{x \neq y} \chi_{E(x, y)}(V) \text { is big. }
$$

The classical argument III

The proof is now completed by double-counting:

- If card $\pi_{V}(K) \ll \operatorname{card} K$, then $\left|\pi_{V}(x)-\pi_{V}(y)\right|<\delta$ for many pairs $x \neq y$. In other words,

$$
\sum_{x \neq y} \chi_{E(x, y)}(V) \text { is big. }
$$

- This cannot happen for too many V's, because
$\mathbb{E}_{V} \sum_{x \neq y} \chi_{E(x, y)}(V)=\sum_{x \neq y} \gamma_{d, k}(E(x, y)) \lesssim \sum_{x \neq y}\left(\frac{\delta}{|x-y|}\right)^{\operatorname{dim} K}$,
using first $\gamma_{d, k}(E(x, y)) \lesssim(\delta /|x-y|)^{k}$ and then $\operatorname{dim} K \leq k$.

An abstraction

- For later use, let's record the following abstract projection theorem, which follows from the previous proof.
- Let (Λ, γ) be probability space, and let $\left(\pi_{\lambda}\right)_{\lambda}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ be a collection of 1-Lipschitz linear mappings satisfying

$$
\gamma\left(\left\{\lambda:\left|\pi_{\lambda}(x)\right|<\delta\right\}\right) \lesssim(\delta /|x|)^{r} .
$$

Theorem (Abstract projection theorem (APT))

 $\operatorname{dim} \pi_{\lambda}(K)=\min \{\operatorname{dim} K, r\}$ for γ-a.e. λ.
The problem with restricted families

- The preceding projection theorems relied on uniform sub-level set estimates $\gamma\left(\left\{\lambda:\left|\pi_{\lambda}(x)\right|<\delta\right\}\right) \lesssim(\delta /|x|)^{r}$.
- In the restricted situation one also has sub-level set estimates, but the constants and the sharp rates of decay depend on the position of the point x :

$$
\gamma\left(\left\{\lambda:\left|\pi_{\lambda}(x)\right|<\delta\right\}\right) \leq C(x) \cdot(\delta /|x|)^{r(x)} .
$$

The problem with restricted families

- The preceding projection theorems relied on uniform sub-level set estimates $\gamma\left(\left\{\lambda:\left|\pi_{\lambda}(x)\right|<\delta\right\}\right) \lesssim(\delta /|x|)^{r}$.
- In the restricted situation one also has sub-level set estimates, but the constants and the sharp rates of decay depend on the position of the point x :

$$
\gamma\left(\left\{\lambda:\left|\pi_{\lambda}(x)\right|<\delta\right\}\right) \leq C(x) \cdot(\delta /|x|)^{r(x)}
$$

- Of course, one can always set $C:=\sup C(x)$ and $r:=\inf r(x)$, and then apply the APT with varying success; sometimes the result is sharp, sometimes not. Examples follow.

The problem with restricted families

- The preceding projection theorems relied on uniform sub-level set estimates $\gamma\left(\left\{\lambda:\left|\pi_{\lambda}(x)\right|<\delta\right\}\right) \lesssim(\delta /|x|)^{r}$.
- In the restricted situation one also has sub-level set estimates, but the constants and the sharp rates of decay depend on the position of the point x :

$$
\gamma\left(\left\{\lambda:\left|\pi_{\lambda}(x)\right|<\delta\right\}\right) \leq C(x) \cdot(\delta /|x|)^{r(x)}
$$

- Of course, one can always set $C:=\sup C(x)$ and $r:=\inf r(x)$, and then apply the APT with varying success; sometimes the result is sharp, sometimes not. Examples follow.
- First, consider the subfamily $\mathcal{G} \subset G(3,1)$ of all lines contained in the $x y$-plane. What is the best possible (uniform) sub-level set estimate?

Restricted families with sharp APT

- First, consider the subfamily $\mathcal{G} \subset G(3,1)$ of all lines contained in the $x y$-plane. What is the best possible (uniform) sub-level set estimate?
- If $x \in\{z$-axis $\}$, one has

$$
\left\{L \in \mathcal{G}: \pi_{L}(x)=0\right\}=\mathcal{G}
$$

- So, there's no possibility of uniform decay like

$$
\gamma\left(\left\{L \in \mathcal{G}:\left|\pi_{L}(x)\right| \leq \delta\right\}\right) \lesssim(\delta /|x|)^{r}, \quad r>0, x \in \mathbb{R}^{3}
$$

and the APT gives nothing useful. There's also nothing to be had: the 1-dimensional set $K=\{z$-axis $\} \pi_{L}$-projects to $\{0\}$ for all $L \in \mathcal{G}$.

Restricted families with sharp APT

- First, consider the subfamily $\mathcal{G} \subset G(3,1)$ of all lines contained in the $x y$-plane. What is the best possible (uniform) sub-level set estimate?
- If $x \in\{z$-axis $\}$, one has

$$
\left\{L \in \mathcal{G}: \pi_{L}(x)=0\right\}=\mathcal{G}
$$

- So, there's no possibility of uniform decay like

$$
\gamma\left(\left\{L \in \mathcal{G}:\left|\pi_{L}(x)\right| \leq \delta\right\}\right) \lesssim(\delta /|x|)^{r}, \quad r>0, x \in \mathbb{R}^{3}
$$

and the APT gives nothing useful. There's also nothing to be had: the 1-dimensional set $K=\{z$-axis $\} \pi_{L}$-projects to $\{0\}$ for all $L \in \mathcal{G}$.

- HOWEVER: for $x \notin\{z$ - axis $\}$ one has

$$
\gamma\left(\left\{L \in \mathcal{G}:\left|\pi_{L}(x)\right| \leq \delta\right\}\right) \lesssim x \delta /|x| .
$$

- Next, let $\mathcal{G} \subset G(3,2)$ be the "vertical" planes $V \supset\{z$ - axis $\}$. Best sub-level set estimate?

Restricted families with sharp APT

- Next, let $\mathcal{G} \subset G(3,2)$ be the "vertical" planes $V \supset\{z-$ axis $\}$. Best sub-level set estimate?
- Now \mathcal{G} a 1-dimensional submanifold, and the best possible uniform decay for any probability measure $\gamma_{\mathcal{G}}$ on \mathcal{G} is

$$
\gamma_{\mathcal{G}}\left(\left\{V \in \mathcal{G}:\left|\pi_{V}(x)\right| \leq \delta\right\}\right) \lesssim \delta /|x| .
$$

The uniformly distributed measure achieves that.

- Hence, the APT promises dimension conservation for up to 1-dimensional sets. Again, that's the best you can get, because any subset K of the $x y$-plane projects inside the line $V \cap\{x y$ - plane $\}$ for all $V \in \mathcal{G}$.

Restricted families with sharp APT

- Next, let $\mathcal{G} \subset G(3,2)$ be the "vertical" planes $V \supset\{z-a x i s\}$. Best sub-level set estimate?
- Now \mathcal{G} a 1-dimensional submanifold, and the best possible uniform decay for any probability measure $\gamma_{\mathcal{G}}$ on \mathcal{G} is

$$
\gamma_{\mathcal{G}}\left(\left\{V \in \mathcal{G}:\left|\pi_{V}(x)\right| \leq \delta\right\}\right) \lesssim \delta /|x| .
$$

The uniformly distributed measure achieves that.

- Hence, the APT promises dimension conservation for up to 1-dimensional sets. Again, that's the best you can get, because any subset K of the $x y$-plane projects inside the line $V \cap\{x y$ - plane $\}$ for all $V \in \mathcal{G}$.
- HOWEVER: for $x \notin\{x y-$ plane $\}(\delta)$ one has

$$
\left\{V \in \mathcal{G}:\left|\pi_{V}(x)\right| \leq \delta\right\}=\varnothing!
$$

Restricted families of projections

- The APT is sharp in the preceding examples, because there are certain subspaces (z-axis and $x y$-plane) in \mathbb{R}^{3}, where the sub-level set estimates are uniformly poor.
- We want to get rid of this phenomenon, so we add some curvature. Consider a smooth curve $\eta:(0,1) \rightarrow S^{2}$, satisfying

$$
\operatorname{span}\{\eta(t), \dot{\eta}(t), \ddot{\eta}(t)\}=\mathbb{R}^{3}, \quad t \in(0,1)
$$

- Something like this:

Restricted families of projections

- Then, we get a family of lines and planes by setting

$$
\mathcal{G}_{L}(\eta):=\{\operatorname{span}\{\eta(t)\}: t \in(0,1)\}
$$

and

$$
\mathcal{G} v(\eta):=\left\{\operatorname{span}\{\eta(t)\}^{\perp}: t \in(0,1)\right\} .
$$

- The examples above were $\mathcal{G}_{L}(\eta)$ and $\mathcal{G}_{V}(\eta)$, corresponding to the curve η parametrising the unit circle on the $x y$-plane. But of course

$$
\operatorname{span}\{\eta(t), \dot{\eta}(t), \ddot{\eta}(t)\}=x y-\text { plane }
$$

for $t \in(0,1)$, so the curvature requirement excludes these examples.

Restricted families of projections

- Assuming the curvature condition, counterexamples become very evasive: the regions of poor sub-level set estimates are no longer subspaces. The following conjecture seems plausible:

Conjecture

The projections $\pi_{L}, L \in \mathcal{G}_{L}(\eta)$, should conserve dimension for up to 1-dimensional sets, and the projections $\pi_{V}, V \in \mathcal{G}_{V}(\eta)$ should conserve dimension for up to 2-dimensional sets.

Kaufman's method

- Sanity check: does it follows from the APT?
- The projection families $\mathcal{G}_{L}(\eta)$ and $\mathcal{G} V(\eta)$ are parametrised by $(0,1)$, so the natural choice for $\gamma_{\mathcal{G}}$ on both manifolds is essentially $\left.\mathcal{L}^{1}\right|_{(0,1)}$. The bounds below are the worst-case sub-level set estimates (i.e. they are valid for all and sharp for certain $x \in \mathbb{R}^{3}$):

$$
\mathcal{L}^{1}\left(\left\{L \in \mathcal{G}_{L}(\eta):\left|\pi_{L}(x)\right| \leq \delta\right\}\right) \lesssim(\delta /|x|)^{1 / 2}
$$

and

$$
\mathcal{L}^{1}\left(\left\{V \in \mathcal{G} V(\eta):\left|\pi_{V}(x)\right| \leq \delta\right\}\right) \lesssim \delta /|x| .
$$

Kaufman's method

- The bounds have the following corollary:

Corollary (to the APT)
 The projections $\pi_{L}, L \in \mathcal{G}_{L}(\eta)$, conserve dimension for up to 1/2-dimensional sets, and the projections $\pi_{V}, V \in \mathcal{G} V(\eta)$, conserve dimension for up to 1-dimensional sets.

- It's worth observing that the "1/2" already improves on the non-curved case (where no positive result was to be had), but the "1" doesn't.

Small improvements

- Nevertheless, the " 1 " is not the end of the story here:

Theorem (Fässler, O. (2013))

For every $s>1$, there is $\sigma(s)>1$ such that the following holds. If $\operatorname{dim} K=s$, then $\operatorname{dim} \pi_{v}(K) \geq \sigma(s)$ for almost every

$$
V \in \mathcal{G} V(\eta)
$$

- For \mathcal{G}_{L}, we obtained the same result for the packing dimension of projections, but the Hausdorff dimension narrowly escaped. Except for this special curve:

$$
\eta(t)=(\cos (t), \sin (t), 1)
$$

Theorem (O. (2013))

For this special curve η, the previous theorem holds with \mathcal{G}_{V} replaced by \mathcal{G}_{L} and " 1 " replaced by " $1 / 2$ ".

The proof in four slides (1)

- Recall: we're interested in the one-dimensional family of 2-dim subspaces given by

$$
V_{t}:=\operatorname{span}\{\eta(t)\}^{\perp}, \quad t \in(0,1)
$$

- As earlier, let K be a finite δ-separated set containing $\sim \delta^{-s}$ points, $s>1$, satisfying an s-dimensional non-concentration property.
- The goal is to find many V_{t} 's such that $\tau_{V_{t}}(K)$ contains $>\delta^{-1} \delta$-separated points.
- The APT strategy boils down to estimating

$$
\sum_{x \neq y}\left|\left\{t:\left|\pi_{v_{t}}(x-y)\right| \leq \delta\right\}\right|
$$

- As we already know, the best general bound is

$$
\left|\left\{t:\left|\pi_{V_{t}}(x-y)\right| \leq \delta\right\}\right| \lesssim \frac{\delta}{|x-y|}
$$

The proof in four slides (2)

- The plan is to exploit the fact that this bound can be improved a lot, unless $(x-y)$ has a rather special orientation, namely $(x-y) \in\left(V_{t}^{\perp}\right)(\delta)$ for some t.
- If $(x-y) \notin\left(V_{t}^{\perp}\right)(\delta)$ for any t, then indeed

$$
\left\{t:\left|\pi v_{t}(x-y)\right| \leq \delta\right\}=\varnothing!
$$

- This leads us to consider a "counter-assumption": suppose that the sum

$$
\sum_{x \neq y}\left|\left\{t:\left|\pi v_{t}(x-y)\right| \leq \delta\right\}\right|
$$

is roughly as large as the "general $x-y$ " estimate allows. Can we describe the structure of K ?

The proof in four slides (3)

- Quite easily, in fact, and here's the answer:
- If the sum is almost as large as it can be (in view of the "general bound"), then there's a δ^{κ}-proportion of the points x such that a δ^{κ}-proportion of the set K is contained in a δ-neighbourhood of

$$
x+C:=x+\bigcup_{t \in(0,1)} V_{t}^{\perp}
$$

- Here $\kappa \searrow 0$, as the counter-assumption gets stronger.
- C is a conical surface of some sort, and $C(\delta)$ will stand for its δ-neighbourhood.

The proof in four slides (4)

- Almost done: since a large part of K is contained in many $(x+C(\delta))$'s...
- ...a large part of K is actually contained in $(x+C(\delta)) \cap\left(y+C_{j}(\delta)\right)$ for some $x \neq y$!
- We can also choose $x \neq y$ relatively far apart.
- How does $(x+C(\delta)) \cap(y+C(\delta))$ look like? Since $(x+C) \cap(y+C)$ is the intersection of two conical surfaces, it's something essentially one-dimensional.
- This is a bit tedious to prove, but the upshot is that we've managed to cram a large part of an s-dimensional discrete set K inside an essentially one-dimensional set. That's not possible, since $s>1$.

Further results

- The "restricted families of projections" problem in \mathbb{R}^{3} is closely related to Fourier restriction questions.
- D. and R. Oberlin wrote a paper about this last year:

Theorem (D. and R. Oberlin, 2013)

Assuming the curvature condition,

$$
\operatorname{dim} \pi_{V_{t}}(K) \geq \frac{3 \operatorname{dim} K}{4}
$$

for almost all $t \in(0,1)$. If $\operatorname{dim} K \geq 2$, the lower bound can be improved to $\min \{\operatorname{dim} K-1 / 2,2\}$.

Restricted families in \mathbb{R}^{2} ?

Question

Is there a "restricted families of projections" phenomenon in \mathbb{R}^{2} ? For instance does there exist a collection of lines
$\mathcal{L} \subset \mathcal{G}(2,1)$ with the following properties:
(a) $\operatorname{dim} \mathcal{L}<1$,
(b) for any compact $K \subset \mathbb{R}^{2}$ with $\operatorname{dim} K=1$, there exists $L \in \mathcal{L}$ with $\operatorname{dim} \pi_{L}(K)=1$.

Question

Same as above, but replace (a) by
(a') $\operatorname{dim} \mathcal{L}=0$.

Restricted families in \mathbb{R}^{2} ?

For this problem, even a purely discrete variant is wide open. There are many ways to formulate this, for example:

Question

Call a family of lines $\mathcal{L} \subset \mathcal{G}(2,1) n$-good, if for any n-point set $P \subset \mathbb{R}^{2}$ there exists $L \in \mathcal{L}$ such that card $\pi_{L}(P) \geq n^{3 / 4}$. How small sets \mathcal{L} can be n-good?

Proposition

It follows from Szemerédi-Trotter that any collection \mathcal{L} with card $\mathcal{L} \gg n^{1 / 2}$ is n-good. On the other hand, it follows from a construction of Elekes-Erdős that no collection \mathcal{L} of fixed size $C \in \mathbb{N}$ is n-good for large n.

Conjecture

A random collection of $\sim \log n$ lines is n-good.

Why is no collection of fixed size n-good?

- The following construction was pointed out to me by András Máthé.
- Given any finite set $K=\left\{k_{1}, \ldots, k_{C}\right\} \subset \mathbb{R}$, a construction of Elekes-Erdős says that there exists an n-point set $A \subset \mathbb{R}$ (for some large n) containing $\gtrsim n^{2}$ homothetic copies of K.
- In other words, there are $\gtrsim n^{2}$ pairs $(x, y) \in \mathbb{R}^{2}$ such that $x+y K \subset A$.
- Now, let P be the set of these pairs, and note that $\pi_{L_{j}}(P) \subset A$ for all $L_{j}:=\operatorname{span}\left\{\left(1, k_{j}\right)\right\}, 1 \leq j \leq C$. In particular,

$$
\operatorname{card} \pi_{L_{j}}(P) \leq n=\left(n^{2}\right)^{1 / 2} \lesssim(\operatorname{card} P)^{1 / 2}, \quad 1 \leq j \leq C
$$

Sharpening Kaufman's bound?

The following is an instance of the well-known exceptional set estimate due to R. Kaufman (1968):

Theorem

Let $K \subset \mathbb{R}^{2}$ be a compact set with $\operatorname{dim} K=1$. Then $\operatorname{dim}\left\{L \in \mathcal{G}(2,1): \operatorname{dim} \pi_{L}(K) \leq s\right\} \leq s, \quad 0 \leq s \leq 1$.

By a result of Bourgain $(2003,2010)$, this is not sharp for $s \sim 1 / 2$. In fact,

$$
\operatorname{dim}\left\{L: \operatorname{dim} \pi_{L}(K) \leq s\right\} \searrow 0, \quad \text { as } s \searrow 1 / 2
$$

Question

Is Kaufman's bound sharp for any $1 / 2<s<1$? It is sharp for $s=1$ (Kaufman-Mattila 1975).

Sharpening Kaufman's bound?

In the discrete world, Szemerédi-Trotter gives a tight estimate:

Proposition

Assume $P \subset \mathbb{R}^{2}$ with card $P=n$. Then

$$
\operatorname{card}\left\{L: \operatorname{card} \pi_{L}(P) \leq n^{s}\right\} \lesssim n^{2 s-1}, \quad 1 / 2 \leq s<1 .
$$

In the light of this bound and Bourgain's result, it is reasonable to conjecture that

Conjecture

$$
\operatorname{dim}\left\{L: \operatorname{dim} \pi_{L}(P) \leq s\right\} \leq 2 s-1, \quad 1 / 2 \leq s \leq 1 .
$$

Sharpening Kaufman's bound?

This is probably hopeless, but even improving on Kaufman's bound by an $\varepsilon=\varepsilon(s)$ would be very interesting. Even this appears quite hard, however, because it would imply the following result in continuous sum-product theory:

Conjecture

Let $A \subset \mathbb{R}$ be a $1 / 2$-dimensional compact set, and let B be an s-dimensional compact set with $1 / 2<s<1$. Then

$$
\operatorname{dim}(A+B A)>s .
$$

This follows from Bourgain's work for $s \sim 1 / 2$, but not for, say $s=3 / 4$. More generally,

Conjecture

If $\operatorname{dim} A, \operatorname{dim} C>0$ and $\operatorname{dim} B<1$, then

$$
\operatorname{dim}(A+B C)>\operatorname{dim} B .
$$

Projections and multi-scale analysis?

It is rather difficult to construct sets K such that $\operatorname{dim} K=1$, and $\overline{\operatorname{dim}}_{B} \pi_{L}(K)<1$ for many $L \in \mathcal{G}(2,1)$.

Conjecture
If $\operatorname{dim} K=1$, then

$$
\operatorname{dim}\left\{L: \overline{\operatorname{dim}}_{B} \pi_{L}(K)<1\right\}=0
$$

- I only know that the exceptional set above can be uncountable.
- More generally, how to exploit "multi-scale information" in projection problems - i.e. the assumption that $\pi_{L}(K)$ is small on many (and not too rare) scales simultaneously?

目 G．Elekes and P．Erdős：Similar Configurations and Pseudo Grids，Colloq．Math．Soc．János Bolyai 63 （1994）

囯 K．FÄssler and T．O．：On restricted families of projections in \mathbb{R}^{3} ，Proc．LMS（to appear），arXiv：1302．6550

圊 R．Kaufman：On Hausdorff dimension of projections， Mathematika 15 （1968），pp．153－155

䡒 J．M．MARSTRAND：Some fundamental geometrical properties of plane sets of fractional dimensions，Proc． LMS（3） 4 （1954），pp．257－302

國 P．Mattila：Hausdorff dimension，orthogonal projections， and intersections with planes，Ann．Acad．Sci．Fenn．Ser．A I Math 1 （1975），pp．227－244
圊 T．O．：Hausdorff dimension estimates for restricted families of projections in \mathbb{R}^{3} ，arXiv：1304．4955

[^0]: Theorem (Marstrand-Mattila projection theorem, 1954,1975) $\operatorname{dim} \pi_{V}(K)=\min \{\operatorname{dim} K, k\}$ for a.e. $V \in \mathcal{G}(d, k)$.

