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Restricted families of projections?

Notation for the talk:
V stands for a k -dimensional subspace of Rd .
The collection of such V ’s is denoted by G(d , k).
πV is the orthogonal projection πV : Rd → V .

Definition (Restricted families of projections)

Take a strict subset G ( G(d , k). The family of projections
(πV )V∈G is a restricted family of projections.
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Hopes vs. reality

What one hopes to prove:
Suitable restricted families of projections admit a
Marstrand-type theorem: dimπV (K ) = min{dim K , k} for
some – or "almost all" – V ∈ G.

What one can prove at the moment (for certain families in R3):
The above holds, if dim K is small enough, typically much
smaller than k (easy). If dim K is not small enough, there’s
an ε-improvement over the easy bound.

The easy part follows by classical methods. The ε-improvement
is achieved by looking at the structure of (hypothetical)
extremizers.
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The classical argument

What follows is a low-detail review of the classical argument,
which gives the projection theorem for full families of
projections. For completeness, here’s the result:

Theorem (Marstrand-Mattila projection theorem, 1954,1975)

dimπV (K ) = min{dim K , k} for a.e. V ∈ G(d , k).

For purposes of illustration, I will focus on a discrete
variant:

Theorem
"If K is a set of δ-separated points satisfying a
non-concentration condition, then there are many subspaces V
such that πV (K ) contains almost card K points."

The required non-concentration is the following:∑
x 6=y

(
δ

|x − y |

)dim K

� δ− dim K
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The classical argument II

If V is s.t. |πV (x)− πV (y)| ≥ δ for all x 6= y in K , then
πV (K ) obviously contains (card K ) δ-separated points.

So, the enemy is the event

E(x , y) := {V ∈ G(d , k) : |πV (x)− πV (y)| < δ}.

The key of the whole proof is that this is rare event. If γd ,k
is the natural measure on G(d , k), then

γd ,k (E(x , y)) .

(
δ

|x − y |

)k

.
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The classical argument III

The proof is now completed by double-counting:
If cardπV (K )� card K , then |πV (x)− πV (y)| < δ for many
pairs x 6= y . In other words,∑

x 6=y

χE(x ,y)(V ) is big.

This cannot happen for too many V ’s, because

EV
∑
x 6=y

χE(x ,y)(V ) =
∑
x 6=y

γd ,k (E(x , y)) .
∑
x 6=y

(
δ

|x − y |

)dim K

,

using first γd ,k (E(x , y)) . (δ/|x − y |)k and then dim K ≤ k .
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An abstraction

For later use, let’s record the following abstract projection
theorem, which follows from the previous proof.
Let (Λ, γ) be probability space, and let (πλ)λ : Rd → Rm be
a collection of 1-Lipschitz linear mappings satisfying

γ({λ : |πλ(x)| < δ}) . (δ/|x |)r .

Theorem (Abstract projection theorem (APT))

dimπλ(K ) = min{dim K , r} for γ-a.e. λ.



The problem with restricted families

The preceding projection theorems relied on uniform
sub-level set estimates γ({λ : |πλ(x)| < δ}) . (δ/|x |)r .
In the restricted situation one also has sub-level set
estimates, but the constants and the sharp rates of decay
depend on the position of the point x :

γ({λ : |πλ(x)| < δ}) ≤ C(x) · (δ/|x |)r(x).

Of course, one can always set C := sup C(x) and
r := inf r(x), and then apply the APT with varying success;
sometimes the result is sharp, sometimes not. Examples
follow.
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Restricted families with sharp APT

First, consider the subfamily G ⊂ G(3,1) of all lines
contained in the xy -plane. What is the best possible
(uniform) sub-level set estimate?

If x ∈ {z−axis}, one has

{L ∈ G : πL(x) = 0} = G.

So, there’s no possibility of uniform decay like

γ({L ∈ G : |πL(x)| ≤ δ}) . (δ/|x |)r , r > 0, x ∈ R3,

and the APT gives nothing useful. There’s also nothing to
be had: the 1-dimensional set K = {z-axis} πL-projects to
{0} for all L ∈ G.
HOWEVER: for x /∈ {z − axis} one has

γ({L ∈ G : |πL(x)| ≤ δ}) .x δ/|x |.
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Restricted families with sharp APT

Next, let G ⊂ G(3,2) be the "vertical" planes
V ⊃ {z − axis}. Best sub-level set estimate?

Now G a 1-dimensional submanifold, and the best possible
uniform decay for any probability measure γG on G is

γG({V ∈ G : |πV (x)| ≤ δ}) . δ/|x |.

The uniformly distributed measure achieves that.
Hence, the APT promises dimension conservation for up to
1-dimensional sets. Again, that’s the best you can get,
because any subset K of the xy -plane projects inside the
line V ∩ {xy − plane} for all V ∈ G.
HOWEVER: for x /∈ {xy − plane}(δ) one has

{V ∈ G : |πV (x)| ≤ δ} = ∅!.
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Restricted families of projections

The APT is sharp in the preceding examples, because
there are certain subspaces (z-axis and xy -plane) in R3,
where the sub-level set estimates are uniformly poor.
We want to get rid of this phenomenon, so we add some
curvature. Consider a smooth curve η : (0,1)→ S2,
satisfying

span{η(t), η̇(t), η̈(t)} = R3, t ∈ (0,1).

Something like this:



Restricted families of projections

Then, we get a family of lines and planes by setting

GL(η) := {span{η(t)} : t ∈ (0,1)}

and
GV (η) := {span{η(t)}⊥ : t ∈ (0,1)}.

The examples above were GL(η) and GV (η), corresponding
to the curve η parametrising the unit circle on the xy -plane.
But of course

span{η(t), η̇(t), η̈(t)} = xy − plane

for t ∈ (0,1), so the curvature requirement excludes these
examples.



Restricted families of projections

Assuming the curvature condition, counterexamples
become very evasive: the regions of poor sub-level set
estimates are no longer subspaces. The following
conjecture seems plausible:

Conjecture

The projections πL, L ∈ GL(η), should conserve dimension for
up to 1-dimensional sets, and the projections πV , V ∈ GV (η)
should conserve dimension for up to 2-dimensional sets.



Kaufman’s method

Sanity check: does it follows from the APT?
The projection families GL(η) and GV (η) are parametrised
by (0,1), so the natural choice for γG on both manifolds is
essentially L1|(0,1). The bounds below are the worst-case
sub-level set estimates (i.e. they are valid for all and sharp
for certain x ∈ R3):

L1({L ∈ GL(η) : |πL(x)| ≤ δ}) . (δ/|x |)1/2,

and
L1({V ∈ GV (η) : |πV (x)| ≤ δ}) . δ/|x |.



Kaufman’s method

The bounds have the following corollary:

Corollary (to the APT)

The projections πL, L ∈ GL(η), conserve dimension for up to
1/2-dimensional sets, and the projections πV , V ∈ GV (η),
conserve dimension for up to 1-dimensional sets.

It’s worth observing that the "1/2" already improves on the
non-curved case (where no positive result was to be had),
but the "1" doesn’t.



Small improvements

Nevertheless, the "1" is not the end of the story here:

Theorem (Fässler, O. (2013))

For every s > 1, there is σ(s) > 1 such that the following holds.
If dim K = s, then dimπV (K ) ≥ σ(s) for almost every
V ∈ GV (η).

For GL, we obtained the same result for the packing
dimension of projections, but the Hausdorff dimension
narrowly escaped. Except for this special curve:

η(t) = (cos(t), sin(t),1).

Theorem (O. (2013))
For this special curve η, the previous theorem holds with GV
replaced by GL and "1" replaced by "1/2".



The proof in four slides (1)

Recall: we’re interested in the one-dimensional family of
2-dim subspaces given by

Vt := span{η(t)}⊥, t ∈ (0,1).

As earlier, let K be a finite δ-separated set containing
∼ δ−s points, s > 1, satisfying an s-dimensional
non-concentration property.
The goal is to find many Vt ’s such that πVt (K ) contains
� δ−1 δ-separated points.
The APT strategy boils down to estimating∑

x 6=y

|{t : |πVt (x − y)| ≤ δ}|

As we already know, the best general bound is

|{t : |πVt (x − y)| ≤ δ}| . δ

|x − y |
.



The proof in four slides (2)

The plan is to exploit the fact that this bound can be
improved a lot, unless (x − y) has a rather special
orientation, namely (x − y) ∈ (V⊥t )(δ) for some t .
If (x − y) /∈ (V⊥t )(δ) for any t , then indeed

{t : |πVt (x − y)| ≤ δ} = ∅!

This leads us to consider a "counter-assumption": suppose
that the sum ∑

x 6=y

|{t : |πVt (x − y)| ≤ δ}|

is roughly as large as the "general x − y" estimate allows.
Can we describe the structure of K ?



The proof in four slides (3)

Quite easily, in fact, and here’s the answer:
If the sum is almost as large as it can be (in view of the
"general bound"), then there’s a δκ-proportion of the points
x such that a δκ-proportion of the set K is contained in a
δ-neighbourhood of

x + C := x +
⋃

t∈(0,1)

V⊥t .

Here κ↘ 0, as the counter-assumption gets stronger.
C is a conical surface of some sort, and C(δ) will stand for
its δ-neighbourhood.



The proof in four slides (4)

Almost done: since a large part of K is contained in many
(x + C(δ))’s...
...a large part of K is actually contained in
(x + C(δ)) ∩ (y + Cj(δ)) for some x 6= y !
We can also choose x 6= y relatively far apart.
How does (x + C(δ)) ∩ (y + C(δ)) look like? Since
(x + C) ∩ (y + C) is the intersection of two conical
surfaces, it’s something essentially one-dimensional.
This is a bit tedious to prove, but the upshot is that we’ve
managed to cram a large part of an s-dimensional discrete
set K inside an essentially one-dimensional set. That’s not
possible, since s > 1.



Further results

The "restricted families of projections" problem in R3 is
closely related to Fourier restriction questions.
D. and R. Oberlin wrote a paper about this last year:

Theorem (D. and R. Oberlin, 2013)
Assuming the curvature condition,

dimπVt (K ) ≥ 3 dim K
4

for almost all t ∈ (0,1). If dim K ≥ 2, the lower bound can be
improved to min{dim K − 1/2,2}.



Restricted families in R2?

Question
Is there a "restricted families of projections" phenomenon in
R2? For instance does there exist a collection of lines
L ⊂ G(2,1) with the following properties:
(a) dimL < 1,
(b) for any compact K ⊂ R2 with dim K = 1, there exists L ∈ L

with dimπL(K ) = 1.

Question
Same as above, but replace (a) by
(a’) dimL = 0.



Restricted families in R2?

For this problem, even a purely discrete variant is wide open.
There are many ways to formulate this, for example:

Question
Call a family of lines L ⊂ G(2,1) n-good, if for any n-point set
P ⊂ R2 there exists L ∈ L such that cardπL(P) ≥ n3/4. How
small sets L can be n-good?

Proposition
It follows from Szemerédi-Trotter that any collection L with
cardL � n1/2 is n-good. On the other hand, it follows from a
construction of Elekes-Erdős that no collection L of fixed size
C ∈ N is n-good for large n.

Conjecture
A random collection of ∼ log n lines is n-good.



Why is no collection of fixed size n-good?

The following construction was pointed out to me by
András Máthé.
Given any finite set K = {k1, . . . , kC} ⊂ R, a construction of
Elekes-Erdős says that there exists an n-point set A ⊂ R
(for some large n) containing ' n2 homothetic copies of K .
In other words, there are ' n2 pairs (x , y) ∈ R2 such that
x + yK ⊂ A.
Now, let P be the set of these pairs, and note that
πLj (P) ⊂ A for all Lj := span{(1, kj)}, 1 ≤ j ≤ C. In
particular,

cardπLj (P) ≤ n = (n2)1/2 / (card P)1/2, 1 ≤ j ≤ C.



Sharpening Kaufman’s bound?

The following is an instance of the well-known exceptional set
estimate due to R. Kaufman (1968):

Theorem

Let K ⊂ R2 be a compact set with dim K = 1. Then

dim{L ∈ G(2,1) : dimπL(K ) ≤ s} ≤ s, 0 ≤ s ≤ 1.

By a result of Bourgain (2003, 2010), this is not sharp for
s ∼ 1/2. In fact,

dim{L : dimπL(K ) ≤ s} ↘ 0, as s ↘ 1/2.

Question
Is Kaufman’s bound sharp for any 1/2 < s < 1? It is sharp for
s = 1 (Kaufman-Mattila 1975).



Sharpening Kaufman’s bound?

In the discrete world, Szemerédi-Trotter gives a tight estimate:

Proposition

Assume P ⊂ R2 with card P = n. Then

card{L : cardπL(P) ≤ ns} . n2s−1, 1/2 ≤ s < 1.

In the light of this bound and Bourgain’s result, it is reasonable
to conjecture that

Conjecture

dim{L : dimπL(P) ≤ s} ≤ 2s − 1, 1/2 ≤ s ≤ 1.



Sharpening Kaufman’s bound?

This is probably hopeless, but even improving on Kaufman’s
bound by an ε = ε(s) would be very interesting. Even this
appears quite hard, however, because it would imply the
following result in continuous sum-product theory:

Conjecture

Let A ⊂ R be a 1/2-dimensional compact set, and let B be an
s-dimensional compact set with 1/2 < s < 1. Then

dim(A + BA) > s.

This follows from Bourgain’s work for s ∼ 1/2, but not for, say
s = 3/4. More generally,

Conjecture
If dim A,dim C > 0 and dim B < 1, then

dim(A + BC) > dim B.



Projections and multi-scale analysis?

It is rather difficult to construct sets K such that dim K = 1, and
dimBπL(K ) < 1 for many L ∈ G(2,1).

Conjecture
If dim K = 1, then

dim{L : dimBπL(K ) < 1} = 0.

I only know that the exceptional set above can be
uncountable.
More generally, how to exploit "multi-scale information" in
projection problems – i.e. the assumption that πL(K ) is
small on many (and not too rare) scales simultaneously?
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