Problem 1 (for 29th October).

- (1) Show that $\mathbb{P}^1 \times \mathbb{P}^1 \ncong \mathbb{P}^2$. (You may want to use 'weak Bezout'.)
- (2) If V is any variety, a rational map $f : V \rightsquigarrow \mathbb{P}^n$ is given by n+1 rational functions $f_0, ..., f_n \in k(V)$, not all identically zero on V,

$$V \ni P \longmapsto [f_0(P) : \dots : f_n(P)] \in \mathbb{P}^n,$$

and $gf_0, ..., gf_n$ give the same map, for $g \in k(V)^{\times}$. If, for a point $P \in V$, there is such a g that the gf_i are all defined and not all zero at P, we say that f is regular (or defined) at P, and f(P) is the corresponding value. Use this to show that \mathbb{P}^n is complete, by verifying the valuative criterion.

Please hand in your solution by emailing it to **tccalggeom@gmail.com** by 29th October.