TCC Topics in Algebraic Geometry: Assignment \#2.

Problem 2 (for 12th November). Suppose char $k \neq 2$.
(1) Let C / k be a complete non-singular curve that admits a map $x: C \rightarrow \mathbb{P}^{1}$ of degree 2 . Such a curve is called hyperelliptic. Show that C is birational to a curve $y^{2}=f(x) \subset \mathbb{A}^{2}$, with $f \in k[x]$ square-free. [Hint: Describe $k(C)$.]
(2) Show that C has genus $g=\left\lfloor\frac{\operatorname{deg} f-1}{2}\right\rfloor$, with regular differentials

$$
\Omega_{C}=\left\langle\frac{d x}{y}, \frac{x d x}{y}, \ldots, \frac{x^{g-1} d x}{y}\right\rangle
$$

[Hint: If you use Baker, note the two cases $f(0) \neq 0$ and $f(0)=0$]
(3) Now let C be any complete non-singular curve of genus 2 . Use $\operatorname{deg} K_{C}=2$ and $\operatorname{dim} \mathcal{L}\left(K_{C}\right)=2$ to prove that C is hyperelliptic.

Please hand in your solution by emailing it to tccalggeom@gmail.com by 12th November.

