TCC Topics in Algebraic Geometry: Assignment #3.

Problem 3 (for 26th November).

As usual, let k be an algebraically closed field, $\mathbb{P}^1 = \mathbb{P}^1_k$, $\mathbb{A}^1 = \mathbb{A}^1_k$.

(1) Prove the result stated in the course that $\operatorname{Aut} \mathbb{P}^1 \cong \operatorname{PGL}_2(k)$. Thus, every isomorphism of varieties $\mathbb{P}^1 \to \mathbb{P}^1$ is of the form $t \mapsto \frac{at+b}{ct+d}$ for a unique $\binom{a \ b}{c \ d} \in \operatorname{PGL}_2(k) = \operatorname{GL}_2(k)/k^{\times}$.

(2) Determine Aut \mathbb{A}^1 and Aut $(\mathbb{A}^1 \setminus \{0\})$.

(3) Find Aut \mathbb{G}_m , the group of isomorphisms $\mathbb{G}_m \to \mathbb{G}_m$ as an algebraic group.

Please hand in your solution by emailing it to **tccalggeom@gmail.com** by 26th November.