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Chapter 1. Varieties and algebraic groups

We review varieties defined over an algebraically closed field k = k̄. In
particular, we describe basic geometry of algebraic curves, and introduce
algebraic groups and abelian varieties.

1. Affine varieties
Lecture 1

By Affine space An = Ank we understand the set kn with Zariski topology :
V ⊂ An is closed if there are polynomials fi ∈ k[x1, ..., xn] such that

V = {x ∈ kn | all fi(x) = 0}.
Every ideal of k[x1, ..., xn] is finitely generated (it is Noetherian), so it does
not matter whether we allow infinitely many fi or not. Clearly, arbitrary
intersections of closed sets are closed; the same is true for finite unions:
{fi = 0} ∪ {gj = 0} = {figj = 0}. So this is indeed a topology.

A closed nonempty set V ⊂ An is an affine variety if it is irreducible, that
is one cannot write V = V1 ∪ V2 with closed Vi ( V . Equivalently, in the
topology on V induced from An, every non-empty open subset of V is dense
in V (Exc 1.1). Every closed set (=affine algebraic set) is a finite union of
affine varieties.

Example 1.1. A hypersurface V : f(x1, ..., xn) = 0 in An is irreducible
precisely when f is an irreducible polynomial.

Example 1.2. The only proper closed subsets of A1 are finite, so A1 and
points are its affine subvarieties.

Example 1.3. The closed subsets in A2 are ∅, A2 and finite unions of points
and of irreducible curves f(x, y) = 0.

With topology induced from An, a closed set V becomes a topological
space on its own right. In particular, we can talk of its subvarieties (irre-
ducible closed subsets). The Zariski topology is very coarse; for example,
every two irreducible curves in A2 have cofinite topology, so they are homeo-
morphic. So to characterise varieties properly, we put them into a category.
A map of closed sets

φ : An ⊃ V −→ W ⊂ Am

is a morphism (also called a regular map) if it can be given by x 7→ (fi(x))
with f1, ..., fm ∈ k[x1, ..., xn]. Morphisms are continuous, by definition of
Zariski topology. We say that φ is an isomorphism if it has an inverse that
is also a morphism, and we write V ∼= W in this case.

A morphism f : V → A1 is a regular function on V , so it is simply a
function V → k that can be given by a polynomial in n variables. The
regular functions on V ⊂ An form a ring, denoted k[V ], and clearly

k[V ] ∼= k[x1, ..., xn]/I, I = {f s.t. f |V = 0}.
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Composing a morphism φ : V → W with a regular function on W gives a
regular function on V , so f determines a ring homomorphism φ∗ : k[W ] →
k[V ], the pullback of functions. Conversely, it is clear that every k-algebra
homomorphism k[W ] → k[V ] arises from a unique f : V → W . In fact,
V → k[V ] defines an anti-equivalence of categories

Zariski closed sets −→ finitely generated k-algebras with no nilpotents.

In particular, the ring of regular functions determines V uniquely.

Notation 1.4. Write SpecA for the algebraic set V with k[V ] ∼= A.

Now suppose V is a variety. Then k[V ] is an integral domain (Exc 1.3),
and the anti-equivalence becomes

affine varieties over k −→ integral finitely generated k-algebras.

The field of fractions of k[V ] is called the field of rational functions k(V ).
Generally,

φ : An ⊃ V  W ⊂ Am

is a rational map if it can be given by a tuple (f1, ...fm) of rational functions
fi ∈ k(x1, ..., xn) whose denominators do not vanish identically on V . In
other words, the set of points where φ is not defined is a proper closed
subset of V , equivalently φ is defined on a non-empty (hence dense) open.
So rational functions f ∈ k(V ) are the same as rational maps V  P1.

Naturally, V and W are said to be isomorphic (resp. birational) if there
are morphisms (resp. rational maps) V � W whose composition, either
way, is identity.

Example 1.5. The ring of regular functions on An is k[An] = k[x1, ..., xn],
and k(An) = k(x1, ..., xn)

Example 1.6. For V : y2 =x3+1 ⊂ A2
x,y, we have k[V ]=k[x, y]/(y2−x3−1),

and k(V ) = k(x)(
√
x3+1), a quadratic extension of k(x).

The image of a variety under a morphism is not in general a variety: 1

Example 1.7. The first projection p : A2 → A1 takes xy = 1 to A1 \ {0},
which is not closed in A1.

Example 1.8. The map A2 (xy,y)−→ A2 has image A2 \ {x-axis} ∪ {(0, 0)}.

The first example can be given a positive twist, in a sense that it actually
gives U = A1 \ {0} a structure of an affine variety. Generally, for a rational
map φ : V  V ′ and U ⊂ V open, say that φ is regular on U if it is defined
at every point of U . (For U = V it coincides with the notion of a regular
map as before.) If φ has a regular inverse ψ : V ′ → V with ψ(V ′) ⊂ U , we
can think of U as an affine variety isomorphic to V ′. In the example above
take V ′ : xy = 1 with φ(t) = (t, t−1) and ψ(x, y) = t.

1What is true is that the image f(X) ⊂ Y always contains a dense open subset of the

closure f(X) ([H] Exc II.3.19b).
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Example 1.9. If V ⊂ An is a hypersurface f(x1, ...xn) = 0, then the com-
plement U = An \ V has a structure of an affine variety with the ring of
regular functions k[x1, ..., xn, 1/f ].

Many properties of V have a ring-theoretic interpretation. Two very
important ones are:

The dimension d = dimV is the length of a longest chain of subvarieties

∅ ( V0 ( · · · ( Vd ⊂ V.
(For k = C this agrees with the usual dimension of a complex manifold.)
With k[Vi] = k[x1, ..., xn]/Pi, this becomes the length of a longest chain of
prime ideals

k[V ] ) P0 ) · · · ) Pd ⊃ {0},
which is by definition the ring-theoretic dimension of the ring k[V ]. For a
variety V it is, equvalently, the transcendence degree of the field k(V ) over k.

Example 1.10. dimAn = dim k[x1, ..., xn] = n.

Example 1.11. A hypersurface H ⊂ An has dimension n− 1.

A regular function on V may be evaluated at a point x ∈ V , and the
kernel of this evaluation map k[V ] → k is a maximal ideal. (Conversely,
every maximal ideal of k[V ] is of this form.)

Definition 1.12. The local ring Ox = OV,x is the localisation of k[V ] at
this ideal. In other words,

Ox =
{f
g ∈ k(V )

∣∣ f, g ∈ k[V ], g(x) 6= 0
}
.

This is indeed a local ring, of dimension dimV , and its unique maximal
ideal mx consists of those rational functions that vanish at x. However, as
opposed to other contexts (differentiable or analytic functions on manfiolds
defined in the neighbourhood of a point), it captures more of the structure
of the whole variety than of what happens at a point.2 A good notion that
does capture the local behaviour is the completion

Ôx = lim←−
n

Ox/m
n
x.

It can be used to define singular and non-singular points:

Definition 1.13. Let V ⊂ An be a variety3, of dimension d. A point x ∈ V
is non-singular if, equivalently,

(1) dimk
mx
m2
x

= d. (‘≥’ always holds.)

(2) the completion Ôx is isomorphic to k[[t1, ..., td]] over k.

(3) If V : f1 = ... = fm = 0, the matrix ( ∂fi∂xj
(x))i,j has rank n− d.

We say that V is regular (or non-singular) if every point of it is non-singular.

2For example, if OX,x ∼= OY,y as rings, than X and Y are birational to one another.
This is again an example of open sets being ‘too large’ in Zariski topology.

3or, say, an algebraic set all of whose irreducible components have dimension d.
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Example 1.14. The curves C1 : y = x2 and C2 : y2 + x2 = 1 in A2 are
non-singular, and C3 : y2 = x3 and C4 : y2 = x3 + x2 are singular at (0, 0).

It follows from (3) that the set of non-singular points Vns ⊂ V is open
(Exc 1.5), and it turns out it is always non-empty ([H] Thm. I.5.3); in
particular, it is dense in V .

Finally, there are products in the category of varieties, and they corre-
spond to tensor products of k-algebras. In other words, if V ⊂ Am and W ⊂
An are closed sets (resp. varieties) then so is V ×W ⊂ Am × An = Am+n,
and k[V ×W ] ∼= k[V ]⊗k k[W ].4

Exc 1.1. Show that a topological space is irreducible if and only if every non-empty open

subset is dense in it.

Exc 1.2. Explain why the Zariski topology on A2 = A1×A1 is not the product topology.

Exc 1.3. Prove that for an affine variety V , the ring k[V ] is an integral domain.

Exc 1.4. Take the curves C : y2 =x3, D : y2 =x3+x2 and E : y2 = x3 + x in A2
k, and the

point p = (0, 0) on them. Prove that ÔC,p ∼= k[[t2, t3]], ÔD,p ∼= k[[s, t]]/st, ÔE,p ∼= k[[t]]

and that they are pairwise non-isomorphic (when char k 6= 2).

Exc 1.5. Suppose V is given by f1 = ... = fn = 0. Using the minors of the matrix ( ∂fi
∂xj

),

prove that the set of singular points of V is closed in V .

2. Affine algebraic groups

In the same way as topological groups (Lie groups, ...) are topological
spaces (manifolds, ...) that happen to have a group structure, affine algebraic
groups are simply affine closed sets with a group structure.

Definition 2.1. A group G is an affine algebraic group over k if it has a
structure of a Zariski closed set in some Ank , and multiplication G×G→ G
and inverse G→ G are morphisms.

In other words, starting with a closed set G ⊂ An instead, we require

(1) A point e ∈ G (unit element),
(2) A morphism m : G×G→ G (multiplication),
(3) A morphism i : G→ G (inverse),

which satisfy the usual group axioms5.

Example 2.2.

(1) The additive group Ga = A1, group operation (x, y) 7→ x+ y.
(2) The multiplicative group Gm = A1\{0}, group operation (x, y) 7→ xy.

4The hard bit is to show that k[V ×W ] is an integral domain, if k[V ] and k[W ] are.
5So G

(e,id)−→ G×G m−→G and (id, e) are identity maps (unit), m ◦ (m×id) = m ◦ (id×m)

as maps G×G×G→ G (associativity), and G
diag−→G×G (id,i)−→ G×G m−→G is the constant

map G→ {e} (inverse).
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Recall that A1 \{0} is a variety via its identification with {xy = 1} ⊂ A2.
In this notation, multiplication becomes (x1, y1), (x2, y2) 7→ (x1x2, y1y2).
This example naturally generalises to GLn (GL1 being Gm):

Example 2.3. Write Mn = An2 for the set of n × n-matrices over k, and
In ∈Mn for the identity matrix. The classical groups

GLn =
{
A ∈Mn

∣∣ detA 6= 0
}
,

SLn =
{
A ∈Mn

∣∣ detA = 1
}
,

On =
{
A ∈Mn

∣∣ AtA = In
}
,

Sp2n =
{
A ∈M2n

∣∣ AtΩA = Ω
} (

Ω =
(

0
−In

In
0

) )
.

are affine algebraic groups. This is clear for G = SLn,On,Sp2n, because the
defining conditions are polynomial in the variables, so G ⊂ An2 is closed.
As for GLn, it is the complement to the hypersurface det(aij) = 0, hence
affine by Example 1.9 (cf. also Exc 2.1).

A homomorphism of affine algebraic groups is a morphism that is also
a group homomorphism, an isomorphism is a homomorphism that has an
inverse, and subgroups usually refer to the ones that are closed in Zariski
topology. If H ⊂ G is any ‘abstract’ subgroup, its Zariski closure is a
subgroup in the algebraic group sense (Exc 2.2).

It is clear that the product of two algebraic groups is an algebraic group,
and that the kernel of a homomorphism φ : G1 → G2 is an algebraic group.
It is also true that the image φ(G1) is an algebraic group (Exc 2.3).

Example 2.4. The classical groups G = SLn,On,Spn are subgroups of
GLn, and the embeddings G ↪→ GLn and the determinant map G → Gm

are homomorphisms.

For g ∈ G, the left translation-by-g map lg : G → G is an isomorphism.
Because these maps act transitively on G, every point of G ‘looks the same’.
For instance, because the set of non-singular points of Gi is non-empty, Gi
is non-singular.

In particular, the irreducible components G cannot meet, and the con-
nected component of identity G0 ⊂ G is a non-singular variety. It is a
normal subgroup of G, and its left cosets are the connected components
of G (Exc 2.7). So G/G0 is finite and G = G0 o ∆ for some finite group ∆.
Thus it suffices to understand connected groups; the classical matrix groups
are connected (Exc 2.8).

Example 2.5. Every finite group G is an affine algebraic group, via the
regular representation G ⊂ Aut k[G] = GLn.

In particular, every finite affine algebraic group is a closed subgroup of
some GLn. (In fact, any faithful k-representation of G, not just the regular
representation, defines such an embedding.) Somewhat surprisingly, it turns
out that this is true for all affine algebraic groups:
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Theorem 2.6. Every affine algebraic group G is a closed subgroup of GLn
for some n.

We will prove this, to illustrate that questions about affine varieties are
really questions about k-algebras. First, some preliminaries are necessary.

An action of G on a variety V is a group action α : G×V → V which is a
morphism. If V = An and the action is linear (i.e αg : V → V is in GLn(k)
for all g ∈ G), we say that V is a representation of G. Equivalently, it is a
homomorphism G→ GLn of algebraic groups.

To prove the theorem, we need to find Σ : G→ GL(V ) whose correspond-
ing ring map Σ∗ : k[GL(V )]→ k[G] is surjective. (Then Σ is an isomorphism
of G onto Σ(G).) Putting aside the question of surjectivity, where can we
possibly find a non-trivial representation in the first place?

Let us reformulate this on the level of the ring A = k[G]. Write6

m∗ : A −→ A⊗A, i∗ : A −→ A, e∗ : A→ k

for the ring maps corresponding to the multiplication m : G ×G → G, the
inverse i : G → G and the identity e : {pt} → G. To give a representation
Σ : G→ GL(V ) is equivalent to specifying a k-linear map

σ : V −→ V ⊗A

such that (id⊗e∗) ◦ σ = id and (id⊗m∗) ◦ σ = (σ ⊗ id) ◦ σ. We say that σ
makes V into an A-comodule.

There is only one obvious A-comodule, and that is V = A = k[G] itself
with σ = m∗, the co-multiplication map. The only problem is that k[G] is
an infinite-dimensional k-vector space7, so what we need is the following

Lemma 2.7. Every finite-dimensional k-subspace W ⊂ A is contained in a
finite-dimensional subcomodule V ⊂ A (that is, m∗(V ) ⊂ V ⊗A).

Proof. A sum of subcomodules is again one, so we may assume W = 〈w〉
is one-dimensional. Write m∗(w) =

∑n
i=1 vi ⊗ ai with a1, ..., an linearly

independent over k and complete them to a k-basis {ai}i∈I of A. We claim
that V = 〈w, v1, ..., vn〉 is a comodule.

Indeed, suppose m∗(ai) =
∑
cijk aj ⊗ ak. Then∑

m∗(vi)⊗ ai = (m∗ ⊗ id)m∗(w) = (id⊗m∗)m∗(w) =
∑

vi ⊗ cijkaj ⊗ ak

in V ⊗A⊗A. Comparing the coefficients of ak, we get m∗(vk) =
∑
vi⊗cijkaj ,

so m∗(V ) ⊂ V ⊗A. �

Proof of Theorem 2.6. Pick some k-algebra generators of A = k[G], and let
W ⊂ A be their k-span. Take an A-comodule W ⊂ V ⊂ A as in the lemma,

6A k-algebra A with such maps m∗, i∗ and e∗ that satisfy the axioms (e∗⊗ id)◦m∗= id,
(id⊗m∗) ◦m∗=(m∗ ⊗ id) ◦m∗ and (i∗ ⊗ id) ◦m∗= e∗ (dual to the previous footnote) is
called a Hopf algebra, and the maps comultiplication, counit and coinverse respectively.

7unless G is finite, in which case the construction recovers Example 2.5
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and let v1, ..., vn be a k-basis of V . The image of

Σ∗ : k[GL(V )] = k[x11, ..., xnn, 1/ det] −→ A

contains
∑

i e
∗(vi)Σ

∗(xij) = (e∗ ⊗ id)m∗(vj) = vj , so Σ∗ is surjective. �

Note that the proof is completely explicit.

Example 2.8. Take G = Ga. Then A = k[G] = k[t] is generated by t, so
take W = 〈t〉. The comultiplication

m∗ : k[t] −→ k[t]⊗ k[t] (∼= k[t1, t2])

maps t 7→ t⊗ 1 + 1⊗ t (= t1+t2), so m∗(W ) 6⊂ W ⊗ A. In other words, W
is not a comodule. But V = 〈1, t〉 is one (cf. proof of Lemma 2.7), and the
corresponding embedding Ga → GL2 is

t 7−→
(

1
0
t
1

)
.

In view of Theorem 2.6, affine algebraic groups are also called linear
algebraic groups. The statement of the theorem can even be refined so that
a given H <G can be picked out as a stabiliser of some linear subspace:

Theorem 2.9 (Chevalley). Let H <G be a (closed) subgroup of an affine
algebraic group G. There is a linear representation G→ GL(V ) and a linear
subspace W ⊂ V whose stabiliser is H.

Proof. Exc 2.10. �

Extending this further, one proves that if H <G is normal, it is possible
to find V such that H is precisely the kernel of φ : G → AutV (see [Wat]
§16.3). The image φ(G) is then an algebraic group, so factor groups exist for
algebraic groups. (In positive characteristic this factor group is not unique,
because there are injective homomorphisms of algebraic groups that are not
isomorphisms, see Exc 2.12; the question whether the quotient G/H exists
in the sense of category theory is subtle, see [Wat] §15–16.)

Exc 2.1. Write down explicitly the multiplication map and the inverse for GL2 ⊂ A5.

Exc 2.2. Suppose G is an algebraic group and H ⊂ G is a subgroup in the ‘abstact group

sense’. Then its (Zariski) closure H̄ ⊂ G is a subgroup in the algebraic group sense.

Exc 2.3. Show that the image of an algebraic group homomorphism is an algebraic group.

(The image of a variety under a morphism is not always a variety, see Exc 3.6.)

Exc 2.4. (Closed orbit lemma) Suppose G × V → V is an action of G on a variety V ,

and let U = Gv be an orbit. Then the closure Ū ⊂ V is a variety, U ⊂ Ū is open and

non-singular, and Ū \U is a union of orbits (of strictly smaller dimension). In particular,

the orbits of minimal dimension are closed.

Exc 2.5. Let G be an algebraic group and write AutG for the set of isomorphisms G→ G

(as algebraic groups). Determine AutG for G = Ga and G = Gm. Does AutG have a

structure of an algebraic group in these cases, and is it true that its action on G is an

algebraic group action?
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Exc 2.6. If G is a connected algebraic group and H /G is finite, show that H is contained

in the centre of G. In particular, H is abelian.

Exc 2.7. Prove that the connected component of identity G0 ⊂ G is a normal subgroup

and its left cosets are the connected components of G.

Exc 2.8. Show that the classical groups GLn,SLn, SOn = On ∩SLn, Sp2n are connected.

Exc 2.9. Do Example 2.8 for G = Gm.

Exc 2.10. Prove Theorem 2.9 (Modify the proof of Theorem 2.6.)

Exc 2.11. A character of G is a 1-dimensional representation of G, equivalently a ho-

momorphism G → Gm. Prove that characters are in 1-1 correspondence with invertible

elements x ∈ k[G]× such that m∗(x) = x ⊗ x. What does the product of characters

correspond to? Compute the character group for G = Gm and G = Ga.

Exc 2.12. Let G ⊂ An be an affine algebraic group of dimension > 0 over k = F̄p.
Suppose G is given by the equations fi(x1, ..., xn) = 0. For a polynomial f write f (p)

for the polynomial whose coefficients are those of f raised to the pth power. Prove that

G(p) = {x|f (p)
i (x) = 0} is also an algebraic group, and that the Frobenius map F (x) = xp

is a homomorphism from G to G(p). Prove that F is bijective but not an isomorphism of

algebraic groups.

3. General varieties and completeness
Lecture 2

To define a topological (C∞, analytic, ...) manifold one takes a topological
space covered by open sets V =

⋃
i Vi, such that

(1) Each Vi is identified with a standard open ball in Rn (or Cn).
(2) The transition functions between charts Vi ⊃ Vi ∩ Vj → Vj ∩ Vi ⊂ Vj

are continuous (C∞, analytic,...).
(3) V is Hausdorff and second countable.

The Hausdorff condition is necessary to avoid unpleasanties like glueing R
with R along R− {0}:�� ∪ �� = c
The two origins cannot be separated by open sets, so the resulting space is
not Hausdorff although both charts are. We do not want this.

We now copy this definition to glue affine varieties together, and we only
allow finitely many charts (replacing ‘second countable’).

Definition 3.1. An algebraic set V is a topological space covered by finitely
many open sets V = V1 ∪ ... ∪ Vn (affine charts), such that

(1) Each Vi has a structure of an affine variety.
(2) The transition maps Vi ⊃ Vi ∩Vj → Vj ∩Vi ⊂ Vj are isomorphisms8.
(3) V is closed in V × V (V is separated).9

8That is, rational functions φij : Vi → Vj , defined everywhere on Vi ∩ Vj ⊂ Vi and
mapping it to Vj ∩ Vi ⊂ Vj .

9The topology on V × V comes from Zariski topology on affine varieties Vi × Vj that
cover it.
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An (algebraic) variety is an irreducible algebraic set; in particular, varieties
are connected.

The separatedness condition (3) is equivalent to Hausdorffness for topo-
logical spaces, but makes sense for varieties. (Because open sets are usually
dense in Zariski topology, varieties are never Hausdorff.) See Excs 3.2–3.5.

We refer to 1-dimensional varieties as curves and 2-dimensional varieties
as surfaces. A 0-dimensional variety is a point.

Example 3.2. If X is an affine variety and V ⊂ X an open set, then V is
general not an affine variety (unless V is a complement to a hypersurface
f = 0 — the case we discussed before). However, X can always be covered
by finitely many affine subvarieties of X, so it is a variety. Generally, both
open and irreducible closed subsets of a variety are varieties (Exc 3.8).

Example 3.3. Projective space Pn = Pnk is a set of tuples [x0 : · · · : xn] with
xi ∈ k and not all 0, modulo the relation that [ax0 : · · · : axn] defines the
same point for all a ∈ k×.

A subset V ⊂ Pn is closed if there are homogeneous polynomials fi in
x0, ..., xn such that

V = {x ∈ Pn | all fi(x) = 0}.

As fi are homogeneous, the condition fi(x) = 0 is independent of the choice
of a tuple representing x.

To give Pn a structure of a variety, cover it Pn = An(0) ∪ · · · ∪ An(n) with

An(j) = {[x0 : . . . xj−1 : 1 : xj+1 : . . . xn]} ⊂ Pn

The transition maps between charts are indeed morphisms

An(j)−{xk=0} −→ An(k)−{xj =0}, (xi) 7→ (xi
xj
xk

),

so Pn becomes an algebraic variety. Closed irreducible subsets of Pn are
called projective varieties; see Exc 3.9.

Example 3.4. The closure in P2 of an affine curve

C : xy = 1 ⊂ A2

is a projective curve

C̄ : xy = z2 ⊂ P2.

Its pieces on the three standard affine charts of P2 are

So C̄\C = C̄∩P1
z=0 consists of two points P1 = [1 : 0 : 0] and P2 = [0 : 1 : 0].
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A morphism X → Y of algebraic sets is a continuous map which is a
morphism when restricted to affine charts. A rational map X  Y is a
morphism from a dense open set. As before, regular and rational functions
on X as morphisms X → A1 and rational maps X  A1, respectively.
The former form a ring k[X], and the latter a field k(X) if X is a variety.
However, unless X is affine, k(X) is usually much larger than the field of
fractions of k[X] (Exc 3.10).

The nicest manifolds are the compact ones, but Zariski compactness is not
the right notion for varieties — from finite-dimensionality it follows easily
that every affine variety is compact (Exc 3.2).

Definition 3.5. A variety X is complete if it satisfies the following:

Lemma 3.6. The following conditions are equivalent:

(1) (‘Universally closed’) For every variety Y , the projection X×Y p2−→Y
maps closed sets to closed sets10.

(2) (‘Maximality’) If X ⊂ Y is open with Y a variety, then X = Y .
(3) (‘Valuative criterion’) For every curve C and a non-singular point

P ∈ C, any morphism C \{P}→X extends to a morphism11 C→X.

In the same way as separatedness is a reformulation of being Hausdorff,
the first condition defines compactness for usual topological spaces (Exc 3.11).
There other two are perhaps a bit more natural — both say that X is as
large as possible in some sense, and has no missing points.

Example 3.7. A1 is not complete:

(1) fails because under A1×A1 p2−→A1, the set xy = 1 projects to A1\{0}.
(2) fails because A1 may be embedded in P1 as a dense open subset.

(3) fails because A1\{0} x7→x
−1

−→ A1 does not extend to A1 → A1.

The most non-trivial step in the equivalence is the following theorem. Re-
call that any topological space can be compactified, and this is the analogue:

Theorem 3.8 (Nagata). Every variety can be embedded in a complete va-
riety as a dense open subset.

The theorem is easy for affine varieties (embed V ⊂ An ⊂ Pn and take the
closure V̄ of V in Pn; then V ⊂ V̄ is dense open and V̄ is a projective
variety, hence complete, as we will see soon). For arbitrary varieties it
therefore becomes a question of arranging the completions of affine charts
so that they can be glued together. This may be done using ‘blowing-ups’
and ‘blowing-downs’, so there is some non-trivial geometry involved.

Here are some immediate consequences of completeness:

Lemma 3.9. Suppose X is a complete variety.

(a) If Z ⊂ X is closed, then Z is complete.

10We say that π : X → {pt} is ‘universally closed’ (π × idY is a closed map for all Y ).
11necessarily unique as X is a variety and is therefore separated
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(b) For any morphism f : X → Y the image f(X) is complete and
closed in Y .

(c) k[X] = k, in other words X has no non-constant regular functions.
(d) If X is affine, then X is a point.

Proof. (a) Clear from condition (1).
(b) f(X) is the same as p2 of the “graph of f” (x, f(x)) ⊂ X × Y .

(c) The image of X under the composition X
f→ A1 ↪→ P1 is connected,

closed and misses ∞, so it must be a point.
(d) Affine varieties are characterised by k[X]. �

The main example of a complete variety is Pn (Exc 3.14). By (a), all
projective varieties are therefore complete, and these are the only complete
varieties we will ever encounter.12 In fact, every complete variety X is
birational to a projective variety X ′ via a regular (and not just rational)
map X ′ → X (Chow’s Lemma).

Example 3.10. As an application, here is a weak version of Bezout’s the-
orem — every two curves intersect in P2. Indeed, if C : f(x, y, z) = 0 and
D : g(x, y, z) = 0 have empty intersection, then

[f(x, y, z) : xdeg f ] : D → P1

is a regular map that misses [0 : 1], which is impossible unless this is a
constant map, and it is clearly not.

Finally, for complete varieties there is a very close connection between
the usual complex topology and Zariski topology:

Theorem 3.11 (Chow). Let X,Y be complete varieties over C.

(1) Every analytic13 subvariety of X is closed in Zariski topology.
(2) Every holomorphic map f : X → Y is induced by a morphism of

varieties.

Chow proved (1) for X = Pn and the rest of the assertions follow relatively
easily (using Chow’s lemma for (1) and applying (1) to the graph of f in
(2); see Mumford ‘Abelian Varieties’ §1.3).

In particuar, the only meromorphic functions on a complete variety over
C are rational functions (take Y = P1).

Exc 3.1. Prove that every curve has cofinite topology.

Exc 3.2. Every variety X is compact, and X is not Hausdorff unless X is a point.

Exc 3.3. A topological space X is Hausdorff if and only if the diagonal X ⊂ X × X is

closed in the product topology.

Exc 3.4. (‘Valuative criterion of separatedness’) Suppose V satisfies (1) and (2) in the

definition of an algebraic set. Then it satisfies (3) if and only if for every curve C and a

12In fact, complete curves and surfaces are always projective, and it is quite non-trivial
to construct a non-projective complete 3-dimensional variety (‘Hironaka’s example’, 1960).

13Locally (in the usual complex topology) a zero set of holomorphic functions
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non-singular point P ∈ C, any morphism C \ {P} → X has at most one extension to a

morphism C → X.

Exc 3.5. If f, g : X → V are morphisms of varieties, the set of points x ∈ X where

f(x) = g(x) is closed in X. In fact, for a fixed V this holds for all X, f, g if and only if V

is separated.

Exc 3.6. Show that the image of A2 under (xy, x) : A2 → A2 is not a variety.

Exc 3.7. Let U ⊂ V be a non-empty open subset of an affine variety. Prove that U can

be covered by affine varieties of the form V \ {f = 0} (cf. Example 1.9), and can be thus

given a structure of an affine variety.
Exc 3.8.

(a) Prove that A2 − {(0, 0)} is not isomorphic to an affine variety.
(b) Suppose X is an affine variety and ∅ 6= V ⊂ X open. Then V can be covered by

finitely many affine subvarieties of X, so it is a variety.
(c) Prove that irreducible closed subsets of a variety are varieties.

Exc 3.9. Prove that An and Pn are varieties, that is satisfy the separatedness condition.

In particular, affine varieties and projective varieties are actually varieties.

Exc 3.10. Show that k[P1] = k and k(P1) ∼= k(t).
∗Exc 3.11. A topological space X is compact if and only if X × Y p2−→ Y takes closed sets

to closed sets for every topological space Y .

Exc 3.12. Prove Lemma 3.6.

Exc 3.13. Let C be a curve and P ∈ C a non-singular point. Show that the local ring

OC,P ⊂ k(C) of functions defined at P is a discrete valuation ring.

Exc 3.14. Use Exc 3.13 and the ‘valuative criterion’ to show that Pn is complete.

Exc 3.15. Determine k[Pn] and k(Pn).

Exc 3.16. Show that for complex varieties that are not complete Chow’s theorem may fail.

Exc 3.17. Prove that a compact complex manifold has at most one algebraic structure.

4. Curves

The power of completeness is especially visible for non-singular curves:

Lemma 4.1. Suppose C1 and C2 are complete non-singular curves.

(i) Any morphism C1 \ {P1, ..., Pn} → C2 extends uniquely to C1 → C2.
(ii) Every rational map C1 → C2 extends to a (unique) morphism, and

every birational map to an isomorphism.
(iii) Every non-constant map f : C1 → C2 is surjective.

Proof. (i) Existence is 3.6 (3), and uniqueness follows from separatedness of
C2. (ii) is immediate from (i). (iii) Im f is irreducible and closed, so it is
either a point or the whole of C. �

So for non-singular complete curves there is no distinction between ra-
tional maps and morphisms, and it is not hard to deduce that C 7→ k(C)
defines an (anti-)equivalence of categories

complete non-singular
curves over k

−→ Finitely generated field extensions
K/k of transcendence degree 1.
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In higher dimensions this is not true — for instance P2 and P1 × P1 have
the same field of rational functions, but are not isomorphic (Exc 4.3).

For the rest of this section, curves are non-singular complete curves.14

When k = C, our curves are the same as compact Riemann surfaces. (In
particular, every Riemann surface is algebraizable, that is arises from a
unique such curve.)

A non-constant map of curves φ : C → D gives an embedding of fields
φ∗ : k(D) ↪→ k(C) of finite index (as both have transcendence degree 1),
which is the degree of φ,

deg φ = [k(C) : φ∗k(D)].

In particular, φ is an isomorphism if and only if it has degree 1.

Example 4.2. Here is an example of a morphism of degree 2,

f : C : x2 + y2 = 1 −→ D=P1
x.

(x, y) 7→ x

It corresponds to the field inclusion f∗ : k(x) ↪→ k(x,
√

(1− x2)).
[Note: When we say ‘C : x2+y2 = 1’ we are writing down an affine equation,
but there is a unique non-singular complete curve C̄ in which C ⊂ C̄ is dense
open, and this is the curve we mean. Here C̄ : x2 + y2 = z2 ⊂ P2.]

Another way to see the degree of f : C → D is to relate it, as in topology
(for covers of topological spaces) to the number of pre-images of a point of
D. Using basic facts about extensions of valuations in finite field extensions,
it is not hard to see that every has d pre-images counted with multiplicities,
where d = deg φ in characteristic 0, and the separable degree of k(C)/φ∗k(D)
in general. All but finitely many points have exactly d distinct pre-images.

Every non-constant rational function f ∈ k(C) is a surjective morphism
f : C → P1, and we say that f has a zero at P if f(P ) = 0 and a pole at P
if f(P ) =∞. The above discussion says that f has d zeroes and d poles, if
counted with multiplicities (which is done using divisors, defined below).

The local ring O = OC,P of a curve C at a point P ∈ C is a local domain
of dimension 1. As P is non-singular, dimkm/m

2 = 1, forcing O to be a
discrete valuation ring. In other words, there is a well-behaved ‘order of
vanishing of functions at P ’,

ordP : k(C)× � Z,
which is a discrete valuation.15 In fact, discrete valuations on k(C), trivial
on k, are in 1-1 correspondence with the points of C, via ord.

If ordP (f) = 1, we call f a uniformizer at P . If we pick such a uniformizer,
say t, every rational function f ∈ k(C)× has a unique expression

f = utn, u(P ) 6= 0,∞, n = ordP (f).

14Equivalently, they are non-singular projective curves, as for curves it is not hard to
show that complete implies projective. This is also true in dimension 2 but not 3 or higher.

15ordP (fg) = ordP (f) + ordP (g) and ordP (f + g) ≥ min(ordP (f), ordP (g)).
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Definition 4.3. A divisor on a (non-singular complete) curve C/k is a finite
formal linear combination of points,

D =
r∑
i=1

ni(Pi), ni ∈ Z, Pi ∈ C.

The degree of D is
∑
ni, and D is effective (written D ≥ 0) if all ni ≥ 0. We

write Divn(C) for the set of divisors of degree n, and Div(C) for all divisors.
If f ∈ k(C)× is a non-zero rational function, the divisor of f is defined as

(f) =
∑
P∈C

ordP (f) (P ).

Divisors of this form are called principal.

It is not hard to see that principal divisors have degree 0, and they form a
subgroup of the abelian group of all divisors. In fact, if (f) = D0−D∞ with
D0, D∞ ≥ 0, then degD0 = degD∞ is the degree of the map f : C → P1.

Definition 4.4. The quotient groups

PicC =
divisors on C

principal divisors
, Pic0C =

divisors of degree 0 on C

principal divisors

are called the Picard group of C and the degree 0 Picard group of C. Two
divisors are called linearly equivalent if they have the same class in PicC.

There is an obvious (split) exact sequence

0 −→ Pic0C −→ PicC
deg−→ Z −→ 0. Lecture 3

Exc 4.1. Suppose C is a curve.

(a) Show that there is a non-singular complete curve C̃ birationally isomorphic to C.

In other words, there are rational maps φ : C  C̃ and ψ : C̃  C with φψ = id
and ψφ = id. Show that any two such C̃ are isomorphic.

(b) If C is complete, then ψ is a surjective morphism.
(c) If C is non-singular, then φ is an injective morphism identifying C with an open

set of the form C̃ \ {P1, ..., Pn}.
Exc 4.2. Explain why Lemma 4.1 fails if one of the words ‘complete’, ‘non-singular’ or

‘curves’ is omitted.

Exc 4.3. Show that P2 and P1 × P1 have the same field of rational functions but are not

isomorphic. (You may want to use Bezout’s theorem for P2.)

Exc 4.4. Prove that the complete variety in Nagata’s theorem (3.8) is not necessarily

unique.

5. Differentials and genus

The main invariant of Riemann surfaces is the genus, and we now define
it algebraically, over any k, in terms of differentials.

For any variety X/k, rational k-differentials on X are formal finite sums
ω =

∑
i fidgi with fi, gi ∈ k(X), modulo the relations

d(f + g) = df + dg, d(fg) = fdg + gdf, da = 0 (a ∈ k).
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If k(X) is written as a finite separable extension16 of a purely transcendental
one k(t1, ..., td), every differential has a unique expression g1dt1 + . . .+gddtd
with gi ∈ k(X), and their space is ∼= k(X)d as a k-vector space (Exc 5.1).

Example 5.1. X = An (or Pn) has differentials f1dx1 + . . . + fndxn with
f1, . . . , fn ∈ k(X) = k(x1, ...xn).

Example 5.2. On the curve C : y2 = x3+1 (char k 6= 2, 3) every differential
can be written uniquely as f(x, y)dx, and also as h(x, y)dy with f, h ∈ k(C).
(Use that 0 = d(y2−x3−1) = 2ydy − 3x2dx to transform between the two.)

A differential ω is regular at P ∈ X if it has a representation ω =
∑

i fidgi
with fi, gi regular at P .17 If ω is regular everywhere, we call it a regular
differential, and we write ΩX for the k-vector space of those. For complete
varieties dimk ΩX is finite; if, moreover, X is projective and k = C, regular
differentials are the same as holomorphic differentials18.

If ω is a rational differential on a curve, we can test whether it is regular
at P ∈ C as follows. Pick a uniformizer t at P , and write ω = f dt with
f ∈ k(C). Then ω is regular at P if and only if f is, that is ordP f ≥ 0.
Generally, we can define the order of vanishing of a (non-zero) differential:

Definition 5.3. If t is a uniformizer at P , we let ordP (f dt) = ordP f .

This means that we can define a divisor (ω) of a differential form ω. It
is easy to see that all such divisors are linearly equivalent.

Definition 5.4. The genus g of a complete non-singular curve C is dimk ΩC .
If C is any curve, its geometric genus is the genus of the (unique) complete
non-singular curve birational to C.

Example 5.5. P1 has no non-zero regular differentials, so it has genus 0.
To see this, cover P1 = A1

x ∪ A1
y with xy = 1. Then x − a are uniformizers

at a ∈ A1
x, so dx = d(x − a) has no zeros or poles on A1

x, and similarly dy
on A1

y. Now, a rational differential ω = f(x)dx 6= 0 on the x-chart looks as
follows on the y-chart:

0 = d(xy − 1) = xdy + ydx =⇒ f(x)dx = −ydeg f−2f(1/y)dy.

For ω to be regular everywhere, f(x) must be a polynomial in x (⇔ regular
on A1

x), and ydeg f−2f(1/y) a polynomial in y as well, and that is impossible.
In fact, the computation shows that deg(ω) = −2 for every ω, so (ω) always
has poles.

16So, if char k=0, any algebraically independent t1, ..., td∈k(X) will do (d=dimX).
17If P ∈ X is a non-singular point, there is an easy test: pick algebraically independent

functions g1, ..., gd ∈ k(X) so that gi − gi(P ) generate mP /m
2
P , and write ω =

∑
i fidgi.

Then ω is regular at P if and only if all the fi are (Exc 5.2)
18These are special cases of finite-dimensionality of the space of global sections of a

coherent sheaf on a complete variety, and of Serre’s ‘Géométrie Algébrique Géométrie
Analytique’ (GAGA) principle for complex projective varieties.
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Example 5.6. The differential dx
y on y2 = x3 + 1 ⊂ P2 (char k 6= 2, 3) is

regular everywhere (check this directly).

Generally, say C : f(x, y) = 0 is a non-singular affine curve. How do
we find the genus of the corresponding complete curve, and the regular
differentials? Take a point P = (a, b) on C. The maximal ideal of O=OC,P
is m= (x−a, y−b) and (at least) one of these generators is a uniformizer.
Explicitly, expand f(x, y) at P ,

f(x, y) = 0 + f ′x(P )(x− a) + f ′y(P )(y − b) + terms in m2.

We see that either

f ′x(P ) 6= 0, x−a ∈ (y−b)O +m2 or f ′y(P ) 6= 0, y−b ∈ (x−a)O +m2.
⇓ ⇓

y−b uniformizer, ordP
dx
f ′y

= 0 x−a uniformizer, ordP
dy
f ′x

= 0.

But

0 = df = f ′x dx+ f ′y dy =⇒ dx

f ′y
= −dy

f ′x
,

so this differential has no zeroes or poles on C. Therefore xiyj dxf ′y
have no

poles on C either, and form a basis of such differentials. If we embed A2 as
an open set of some complete variety19, say X, the closure C̄ of C in X is
a complete curve. To check whether C̄ is non-singular and to find its genus
we just have to see what happens at the finitely many points C̄ \ C.

There is one general result that addresses the case when X is a toric
variety20. It gives a formula for the so-called arithmetic genus of C̄ in X,
and that agrees with the genus of C̄ if C̄ happens to be non-singular (and
gives an upper bound on it in general):

Theorem 5.7 (Baker). Let C :
∑

i,j cijx
iyj = 0 be a curve in A2, and C̄ the

unique non-singular complete curve birational to C. Write ∆ ⊂ R2 for the
convex hull of points (i, j) ∈ Z2 for which cij 6= 0, and I = (∆− ∂∆) ∩ Z2,
the set of interior lattice points of ∆.

(1) ΩC̄ is contained in the k-vector space spanned by xi−1yj−1 dx
f ′y

with

(i, j) ∈ I. In particular, the genus of C̄ is at most |I|.
(2) The equality genus(C̄)= |I| holds if and only if C⊂A2 is non-singular

and certain conditions on the monomials in ∂∆ are satisfied.21

Proof. Over C this is a theorem of Baker [Bak] from 1893. See [KWZ] Prop.
3.3 and [BP] Thm 4.2 for the modern formulations and proofs. �

19Could be P2, P1 × P1, weighted projective space, ...
20...and toric varieties cover all the examples from the previous footnote
21E.g. if for all segments of the boundary σ ⊂ ∂∆, the polynomial fσ =

∑
(i,j)∈σ cijx

iyj

is squarefree
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Example 5.8. If char k 6= 2, 5, the curves x4 + y4 = 1 and y2 = x5 + 1 are
non-singular, of genus 3 and 2, respectively.

Both examples generalise:

Example 5.9. (Plane curves) A curve given by a non-singular homogeneous

equation f = 0 ⊂ P2 has genus g = (d−1)(d−2)
2 , d = deg f .22

Example 5.10 (Hyperelliptic curves, char k 6= 2). Let f(x) be a polynomial
of degree 2g + 1 or 2g + 2 with no multiple roots, for some g ≥ 0. The two
affine charts

y2 = f(x) and Y 2 = X2g+2f( 1
X )

glue via Y = y
xg+1 , X = 1

x to a complete, non-singular curve C. It has a

map C → P1 (via (x, y) 7→ x), and such curves are called hyperelliptic. It
has genus g, with regular differentials

ΩC =
〈dx
y
,
xdx

y
, . . . ,

xg−1dx

y

〉
.

Conversely, any hyperelliptic curve has such a model (use [k(C) :k(x)]=2).

Exc 5.1. Suppose X is an n-dimensional variety, t1, ..., tn ∈ k(X) are algebraically in-

dependent and the (finite) extension k(X)/k(t1, ..., tn) is separable (e.g. char k = 0).

Then every rational differential on X can be written uniquely as g1dt1 + . . .+ gndtn with

gi ∈ k(X).

Exc 5.2. Suppose X is a variety, P ∈ X a non-singular point, and g1, ..., gdimX ∈ k(X)

are algebraically independent functions so that gi − gi(P ) generate the k-vector space

mP /m
2
P . (mP ⊂ OX,P is the maximal ideal.) Then ω =

∑
i fidgi is regular at P if and

only if all the fi are.

Exc 5.3. Suppose char k 6= 2. Let C : y2 = f(x) with f(x) ∈ k[x] of degree 2g+1 or 2g+2

with no multiple roots. Prove that ΩC = 〈 dx
y
, xdx
y
, . . . , x

g−1dx
y
〉.

6. Riemann-Roch

The most important result for curves (or compact Riemann surfaces) is
the Riemann-Roch theorem, which we now recall.

22The conditions of Baker’s theorem here are that the affine curve f = 0 is non-singular,
and that the highest (degree d) part of f is square-free, i.e. the curve C̄ meets the line
at infinity P1 = P2 \ A2 in exactly n points. This is sufficient, though not a necessary
condition for the completion of f = 0 in P2 to be non-singular.
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Notation 6.1. For a divisor D ∈ DivC \ {0} on a non-singular complete
curve, write

L(D) = {f ∈ k(C)×|div f ≥ −D} ∪ {0},

the space of functions with ‘poles at worst at D’. Note that this space is 0
when degD < 0, and also that

(L(D) \ {0})/k× 1:1←→ {D′ ≥ 0 |D′ ∼ D},

the set of effective divisors linearly equivalent to D.
We let

KC = [divω] ∈ DivC,

the class in PicC of the divisor of any differential form ω on C, the canonical
divisor. Note that dimL(KC) = genus(C).

Theorem 6.2 (Riemann-Roch). Let C be a complete non-singular curve of
genus g. For every divisor D on C,

dimL(D)− dimL(K −D) = degD − g + 1.

Corollary 6.3.

(1) degKC = 2g − 2.
(2) If degD > 2g − 2, then dimL(D) = degD − g + 1.

Proof. (1) Put D = KC in Riemann-Roch and use that L(0) = k, as every
non-constant function f on C has a pole (as f : C � P1). (2) deg(KC−D) <
0, so L(KC −D) = 0. �

Example 6.4 (Genus 0). If g = 0, andD = (P ) (a point), we get dimL(D) =
2, so L(D) = 〈1, f〉 for some non-constant f ∈ k(C)×. As f has one pole
(at P ) and one zero, it gives a degree 1 map f : C → P1 which must be an
isomorphism. So every genus 0 curve is isomorphic to P1.

Remark 6.5. This also shows that, conversely, on a curve C of positive
genus, (P ) 6∼ (Q) for any P 6= Q and so L((P )) = k for every P ∈ C.

Example 6.6 (Genus 1. Weierstrass form for elliptic curves). A genus one
curve C with a chosen point (‘origin’) O ∈ C is called an elliptic curve.

Suppose (C,O) is such a curve. We have L(0) = L(O) = k (use Remark
6.5), and dimL(n · (O)) = n for n > 1. In particular,

L(2 · (O)) = 〈1, x〉,
L(3 · (O)) = 〈1, x, y〉

for some x, y ∈ k(C)×, and x has exactly a double pole at O and no other
poles, and y a triple pole at O and no other poles. Inspecting

L(6 · (O)) = 〈1, x, y, x2, xy, x3, y2〉,

we see that this 7 functions in a 6-dimensional k-vector space must have
a linear relation that involves x3 and y2, the two functions with a pole of
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order 6 at O. Rescaling them if necessary, we may assume that the relation
is of the form

(6.7) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ k×.

Let C ′ be a curve given by this affine equation. As [k(C) : k(x)] = 2 (x
has one double pole, and hence degree 2) and [k(C) : k(y)] = 2, we must
have [k(C) : k(x, y)] = [k(C) : k(C ′)] = 1, and so C is birational to C ′.
Moreover, C ′ must be non-singular, as otherwise it has geometric genus 0
by Theorem 5.7 and is birational to P1 (so C ∼= P1 cannot have genus 1).
Therefore C ∼= C ′, in other words every elliptic curve has an equation of the
form (6.7), called a Weierstrass equation.

In characteristic 6= 2, 3, we can complete the square on the left and cube
on the right, so the equation becomes in simplified Weierstrass form,

y2 = x3 +Ax+B, RHS squarefree

Remark 6.8. Note also that the Weierstrass equation (6.7) is essentially
unique for a given curve. The only functions with a double pole at O are
ax + b (a 6= 0) and with a triple pole cy + dx + e (c 6= 0). So the only
isomorphisms between elliptic curves in Weierstrass form are23

x 7→ u2x+ r, y 7→ u3y + sx+ t, u ∈ k×, r, s, t ∈ k.

and those between simplified Weierstrass equations

x 7→ u2x, y 7→ u3y + sx+ t, u ∈ k×,

which as isomorphism

y2 = x3 + ax+ b
∼=−→ y2 = x3 + u4ax+ u6b.

It is not hard to deduce from this, that an elliptic curve (E,O) has ≤ 24
automorphisms, and ≤ 6 automorphisms in characteristic 6= 2, 3 (Exc 6.1).

Example 6.9 (Genus 2). A similar argument shows that every genus 2
curve has a model

y2 + f(x)y = g(x), deg f ≤ 3,deg g ≤ 6.

In characteristic 6= 2, we can write this as

y2 = g(x), deg g ∈ {5, 6},

with g a square-free polynomial. See Exc 6.2.
Lecture 4

How to we classify curves of arbitrary genus, and give them explicit mod-
els? It is natural to try and embed curves into some projective spaces, and
this is, in a way, equivalent to understanding the spaces L(D) for divisors
D on C. If D ∈ Div0(C) and f1, . . . , fn is a basis of L(D) 6= 0, then

φ : C  Pn−1, P 7→ [f1(P ) : . . . : fn(P )]

23The coefficients u2, u3 come from our choice that y2 − x3 has a pole of order < 6.
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is a rational map, and a different basis of L(D) only changes the map by
a linear change of variables on Pn, i.e. an automorphism in PGLn(k). It
also clearly depends only on the class of D in Pic0(C). There are conditions
to guarantee that φ is an closed immersion (isomorphism with a closed
subvariety of Pn−1)24 and φ(C) in Pn−1 whose degree (number of points in
an intersection with a generic hyperplane) is the degree of D.

Example 6.10. For an elliptic curve (C,O), take D = L(n · (O)) for n ≥ 1.

L(1 · (O)) = 〈1〉 gives E −→ P0 = {pt}
L(2 · (O)) = 〈1, x〉 gives E

2:1−→ P1

L(3 · (O)) = 〈1, x, y〉 gives E
∼=−→ cubic ⊂ P2

L(4 · (O)) = 〈1, x, y, x2〉 gives E
∼=−→ deg 4 curve ⊂ P3

. . .

We know that this is a closed immersion for n = 3, and the same follows for
n > 3. For example, for n = 4 the image (given by the relations between
1, x, y, x2 in k(C)) is the intersection of two quadrics in P3,

x0x3 = x2
1, x

2
2 = x1x3 +Ax0x1 +Bx2

0 (if C : y2 = x3 +Ax+B).

The geometry of these curves become rather involved for high n.

When degD is large, the dimension of L(D) is given by Riemann-Roch,
and does not depend on the curve, but for small D this is not the case.
Existence of such linear systems can be used naturally to classify curves25,
though a complete classification is certainly not known.

Example 6.11. The canonical map, given by the canonical divisorD = KC ,

φ : C 7→ Pg−1, φ(C) = curve of degree 2g − 2.

For non-hyperelliptic curves this is an embedding26. Otherwise, for g ≥ 3,

C
2:1−→ P1 ↪→ Pg−1.

Conversely, given a curve of degree 2g − 2 in Pg−1, intersecting it with a
generic hyperplane cuts out an effective divisor in the canonical class.

Example 6.12.

• A genus 3 curve is either hyperelliptic (y2 =degree 7 or 8), or a
quartic ⊂ P2 via the canonical embedding (and not both).
• A genus 4 curve is either hyperelliptic (y2 =degree 9 or 10), or

quadric surface ∩ cubic surface ⊂ P3 via the canonical embedding.

24See [H]; in particular if it is a closed immersion for D, it is for any D + (P ) as well.
25And there are known restrictions. For instance, a theorem of Clifford [H, Thm.

5.4] that that an effective special divisor D (i.e. D ≥ 0, dimL(K − D) > 0) on C has
dimL(D) ≤ 1

2
degD, and equality occurs if and only if either D = 0, D ∈ [KC ], or C is

hyperelliptic and D lies in a multiple of the unique effective divisor class of degree 2 on C.
26In particular, non-hyperelliptic curves are projective. For hyperelliptic curves this is

true as well, so for curves ‘complete’ and ‘projective’ are the same thing.
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• A genus 5 curve is either hyperelliptic (y2 =degree 11 or 12), or the
intersection of three quadrics in P4 via the canonical embedding.

Starting from genus 6, canonically embedded curves are not complete
intersections, and working with explicit models for them generally becomes
complicated.

Exc 6.1. An elliptic curve (E,O) has ≤ 24 automorphisms, and ≤ 6 automorphisms in

characteristic 6= 2, 3.

Exc 6.2. Every genus 2 curve has a hexic (or even quintic) model.

Exc 6.3. A singular cubic is birational to P1 — prove directly.

7. Picard groups of curves

Riemann-Roch also gives a way to understand Picard groups of curves.

Example 7.1. On C=P1 any divisor D=
∑
a∈P1

na(a) of degree 0 is principal,

D = (f), f =
∏
a6=∞

(x− a)na .

So Pic0 P1 = {0} and PicP1 = Z.

Example 7.2 (Genus 1). On an elliptic curve (E,O) every divisor of degree
0 is linearly equivalent to (P )− (O) for a unique P ∈ E.

Indeed, if D ∈ Div0(E), then L(D + (O)) is 1-dimensional by Riemann-
Roch, so there is a function f with (f) ≥ −D − (O). Then (f) = −D −
(O) + (P ) for some P ∈ E, and D ∼ (P )− (O). Also, as f is unique up to
scalars, such a point P is unique as well.

This shows that P 7→ (P )− (O) is a bijection E
1:1↔ Pic0E, and this makes

E into an abelian group, with O as the origin! Geometrically, if E is in
Weierstrass form with O = [0 : 1 : 0], the group is determined by

P +Q+R = 0 ⇔ P,Q,R lie on a line.

Indeed, if L is the line through P and Q (and tangent to P if P = Q),

L : αy + βx+ γ = 0,

then the function αy+ βx+ γ has a triple pole at O and no other poles. So
its divisor is

(αy + βx+ γ) = (P ) + (Q) + (R)− 3(O),

for a unique R ∈ C, and

(P )− (O) + (Q)− (O) + (R)− (O) = 0 ∈ Pic0(E).

To add two points P and Q we connect them with a line, find the third
point of intersection R′, and let P +Q = R be the other point that has the
same x-coordinate as R′ (since R = −R′ — check).

It is not difficult to deduce from this, and this is a very important fact,
that the group law on an elliptic curve is given by a morphism E ×E → E.



TOPICS IN ALGEBRAIC GEOMETRY 23

So E is an algebraic group (not affine), and we will get to them in the next
section.

Example 7.3 (Genus 2). Let C be a complete non-singular curve of genus
2. Suppose char k 6= 2 for simplicity, and put C in the form

C : y2 = x5 + a4x
4 + . . .+ a0 squarefree.

This particular model has a unique point∞ at infinity (while y2 = deg 6 has
2). The curve is hyperelliptic, and we write i for the hyperelliptic involution
(x, y) 7→ (x,−y). (This is the map for which i∗ generates Gal(k(C)/k(x)).)

Recall that ΩC = 〈dxy ,
xdx
y 〉, and compute their divisors

(dxy ) = 2(∞), ( (x−a)dx
y ) = (Pa) + (i(Pa)), Pa = (a,

√
f(a)).

So the divisors in the canonical class are the fibers of C → P1. By Riemann-
Roch, every other divisor class of degree 2 has a unique effective divisor.
Therefore, as a set, Pic2C (divisors of degree two modulo ∼) is the set of
unordered pairs {P, P ′} of points in C, except that all elements of the form
{P, i(P )} are identified with each other.

Under the identification of Pic0C with Pic2C by adding K, the group
law on Pic0C is generically as follows. The inverse map is

(P ) + (P ′) 7−→ (i(P )) + (i(P ′)).

To add D1 =(P )+(P ′) with D2 =(Q)+(Q′), find a unique curve

y = a0x
3 + a1x

2 + a2x+ a3

passing through {P, P ′, Q,Q′}. It intersects the curve in two other points
R,R′, and letting D3 = R+R′ we have D1 +D2 +D3 ∼ 0. In other words,
D1 +D2 = i(D3).

Remark 7.4. Generally, on a curve C of any genus g > 0, every degree g
divisor is equivalent to one of the form P1+. . .+Pg, and this representation is
‘usually’ (in the Zariski open-sense) unique. A nice example (Cantor [Can]),
is that when char k 6= 2, on a hyperelliptic curve

y2 = x2g+1 + a2gx
2g + . . .+ a1x+ a0 =: f(x),

every class in Pic0C is represented by a unique divisor (P1)+. . .+(Pr)−r(∞)
with r ≤ g and Pi affine points with Pj 6= i(Pi) for j 6= i.

For example, in this case, the 2-torsion points D ∈ Pic0(C) (those with
2D = 0, equivalently D ∼ i(D)) are represented by

(α1, 0) + . . .+ (αr, 0)− r(∞), 0 ≤ r ≤ g, αi distinct, f(αi) = 0.

There are
(

2g+1
g

)
+
(

2g+1
g−1

)
+ . . . +

(
2g+1

0

)
= 22g of these in total, and they

form a F2-vector space ∼= F2g
2 .

Remark 7.5. In general, Pic0(C) has a structure of an g-dimensional alge-
braic group, which is an abelian variety. We get to these now.
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8. General algebraic groups

As before, k = k̄ is an algebraically closed base field. We define algebraic
groups from varieties exactly as in the affine case (Def. 2.1).

Definition 8.1. A group G is an algebraic group if it has a structure of
an algebraic set, and multiplication G × G → G and inverse G → G are
morphisms.

As before, homomorphisms refer to morphisms that are group homomor-
phisms, isomorphisms are isomorphisms of both groups and varieties, and
subgroups and normal subgroups always refer to closed ones.

Example 8.2. Affine algebraic groups Gm,Ga,GLn, ... are algebraic groups.

Example 8.3. Elliptic curves and their products are algebraic groups.

Example 8.4. The multiplication-by-m map [m] : G → G is a homomor-
phism for any commutative algebraic group G and m ∈ Z (Exc 8.1).

Basic properties of algebraic groups carry over immediately from the affine
case: an algebraic group G is a semidirect product G = G0 o ∆ of its con-
nected component of identity G0 and a finite discrete group ∆. Again, G0

is a non-singular variety. Kernels and images of algebraic group homomor-
phisms exist, and so do factor groups in the same ‘näıve’ sense as before.

Example 8.5. Algebraic groups often occur naturally as automorphism
groups of varieties (see Exc 8.2 though). For example, suppose C is a com-
plete non-singular curve of genus g.

(g = 0) C ∼= P1, and AutC ∼= PGL2 = GL2 /Gm is a Möbius group (Exc 8.3).
(g = 1) Choosing a point O ∈ C makes C into an elliptic curve, and AutC ∼=

CnAut(C,O) with Aut(C,O) finite of order≤ 24 (usually {id, [−1]}.)
(g ≥ 2) AutC is finite.27

Proposition 8.6. The only one-dimensional connected algebraic groups are
Ga, Gm and elliptic curves.

Proof. Write G = C \ {P1, ..., Pn} with C a non-singular complete curve
(Exc 4.1), and take x ∈ G. The left translation map lx : y 7→ xy on G
extends to an automorphism

lx : C −→ C,

because C is non-singular and complete. So C has infinitely many auto-
morphisms that are (a) fixed point free on G, and (b) preserve the set of
‘missing points’ {P1, ..., Pn}.

Write g for the genus of C, and e ∈ G for the identity element.

27Hurwitz (1893) showed that |Aut(C)| ≤ 84(g−1) over C, and the bound is sharp for
infinitely many g (Macbeath 1961). Schmid (1938) proved finiteness when char k = p > 0
and noted that Hurwitz’ bound fails for small p. It still holds when p > g + 1, except for
yp − y = x2 which has g = p−1

2
and |Aut(C)| = 8g(g + 1)(2g + 1) (Roquette 1970).
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g ≥ 2: AutC is finite, so this is impossible.
g = 1: If n ≥ 1 then |Aut(C,P1)| ≤ 24, so n = 0 and G is complete. For

x ∈ G there is a unique fixed point free map taking the identity element e
to x, which must be lx in every group law on G which has e as the identity
element. So the group law must be the same one as the standard one on an
elliptic one.
g = 0: Now C ∼= P1 and AutC ∼= PGL2(k) is the group of Möbius

transformations. These are uniquely determined by what they do to 3 given
points, in particular AutG 6= {1} implies n ≤ 2.
n = 0: Then lx : P1 → P1 has no fixed points, which is impossible.
n = 1: Change the coordinate on P1 to move P1 to ∞ and e to 0. The

fixed point free automorphisms of P1−{∞} are translations

z 7→ z + a,

again there is a unique one taking 0 to a given a ∈ G, and G = Ga.
n = 2: Similarly, move P1 7→ 0, P2 7→ ∞ and e 7→ 1. The automorphisms

of P1\{0,∞} are z 7→ az and z 7→ a/z. Only the former ones are fixed point
free, and there is a unique one taking e→ x for a given x. So the group law
is unique, G = Gm. �

Lecture 5
Suppose G is an algebraic group over k. Recall that if G is an affine

variety, G is also called a linear algebraic group.

Definition 8.7. An abelian variety is a complete connected algebraic group.

We have seen that 1-dimensional algebraic groups are either linear (Ga,
Gm) or abelian varieties (elliptic curves). Much more generally, these two
extremes build all algebraic groups:

Theorem 8.8 (Barsotti-Chevalley). Every connected algebraic group G fits
into an exact sequence

1 −→ H −→ G −→ A −→ 1

with H / G the unique largest linear connected subgroup of G, and A an
abelian variety.

Remark 8.9. With the theory of linear groups thrown in, the classification
can be extended. There is a unique filtration of G of the form

finite AV semisimple torus

G G0 G1 G2 G3 1
connected linear solvable unipotent

with Gi connected and normal in Gi−1. Here:
A torus is an algebraic group isomorphic to Gm × · · · ×Gm;
A unipotent group is a subgroup of upper-triangular matrices with ones on
the diagonal;
A solvable group is one admitting a filtration 1 = H0 / H1 / · · · / Hk = G
with Hi/Hi−1 commutative;



26 TIM DOKCHITSER

A semisimple group is one whose radical G2 (the unique maximal connected
linear solvable normal subgroup) is trivial; a semisimple group admits a
finite covering G1× · · ·×Gn → G with Gi almost simple (finite centre C and
G/C simple). Every almost simple group is isomorphic to either SLn+1 (type
An), Sp2n (type Cn), E6, E7, E8, F4, G2 (exceptional groups) or isogenous to
an orthogonal group (types Bn, Dn).

See [?] Ch. X for a more extended summary and references.

Example 8.10. G = GLn. Then G = G1, G2 = Z(G) = Gm and G/G2 =
PGLn is simple.

Example 8.11. In characteristic 0, every connected commutative linear
group is U ∼= (Gm)m × (Ga)

n, and every commutative connected algebraic
group G is an extension of an abelian variety A by a U as above, with A
acting trivially on U .

Exc 8.1. Prove that the multiplication-by-m map [m] : G → G is a homomorphism for

any commutative algebraic group G and m ∈ Z.

Exc 8.2. Give an example of a variety V such that AutV has no natural structure of an

algebraic group.

Exc 8.3. Show that every automorphism of P1
k is of the form t 7→ at+b

ct+d
. Deduce that

AutP1 ∼= PGL2(k) (= GL2(k)/k∗).

Exc 8.4. Show that there are no non-constant algebraic group homomorphisms from an

abelian variety to a linear algebraic group.

9. Abelian varieties

Suppose k = k̄ as before. Recall that an abelian variety A/k is an alge-
braic group over k, which is a complete variety. Let us validate ‘abelian’
and prove that abelian varieties are always commutative. This must clearly
rely on completeness, and we follow Mumford’s approach using rigidity:

Lemma 9.1 (Rigidity). Suppose f : V ×W → U is a map of varieties, V is
complete, and

f({v0} ×W ) = f(V × {w0}) = {u0}
for some points v0, w0 and u0. Then f is constant, f(V ×W ) = {u0}.

Proof. 28 Let U0 be an open affine neighbourhood of u0 and Z = f−1(U−U0).
This is a closed set, and so is its image under the projection p2 : V ×W →W ,
as V is complete.

As w0 /∈ p2(Z), the complement W0 = W − p2(Z) is open dense in W .
But for all w ∈W0 the image f(V ×{w}) ⊂ U0 must be a point, as V ×{w}

28Over k = C, this works as follows: if w is close to w0, then f(V × {w}) is close to
u0, by the compactness of V and continuity of f . So f(V × {w}) is contained in some
open ball around u0. But there are no non-constant analytic maps from V to an open ball
(maximum principle), so f(V × {w}) is a point for such w, namely f((v0, w)) = u0. This
proves that the set of such w is open; but it is also closed, so f is constant.
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is complete and U0 is affine. In other words, f(V × {w}) = f((v0, w)) =u0.
So f−1(u0) contains a dense open V ×W0; as f−1(u0) is also closed, it must
be the whole space, so f is constant. �

Corollary 9.2. If U, V,W are varieties, V is complete, U is an algebraic
group, and f1, f2 : V ×W → U are morphisms that agree on {v0} ×W and
on V × {w0}, then they agree everywhere.

Proof. The map x 7→ f1(x)f2(x)−1 is constant by the rigidity lemma. �

Corollary 9.3. Abelian varieties are commutative.

Proof. The maps xy and yx from X ×X to X agree on X ×{e} and e×X,
so they must agree everywhere by the previous corollary. �

Corollary 9.4. Let f : A → B be a morphism of varieties between an
abelian variety A and an algebraic group B.

(1) If f takes e to e, then f is a homomorphism of algebraic groups.
(2) In general, f is a composition of a translation on B and a homo-

morphism A→ B.

Proof. (1) The morphisms f(x) + f(y) and f(x+ y) from A×A to B agree
on {0} ×A and on A× {0}, so they are equal. (2) Clear. �

Rigidity has another curious consequence: in defining an abelian variety
we could have dropped the associativity condition, as it also follows auto-
matically from rigidity! (Exc 9.1) For instance, for elliptic curves this gives
a quick proof of the associativity of the group law, that only relies on E
being complete.

Remark 9.5. It is possible to extend Corollary 9.4 slightly: any rational
map φ : G A from a connected algebraic group to an abelian variety is a
composition of a translation with a homomorphism G → A (in particular,
φ a morphism).

We will write the group operation on abelian varieties as addition, and
denote the identity element by 0.

Exc 9.1. Suppose V is a complete variety, e ∈ V (k) a point, and we have a morphism

∗ : V ×V → V and an isomorphism i : V → V . If x∗e = e∗x = x and x∗i(x) = i(x)∗x = e,

then ∗ is associative, so V is an abelian variety.

Exc 9.2. Prove that for an abelian variety A, every rational map P1  A is a constant

morphism (hint: 9.5). Deduce that every rational map Pn  A is also constant.
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Chapter 2. Families and moduli spaces

Perhaps THE most powerful technique in modern algebraic geometry is
viewing a morphism X → Y as a family of varieties (fibres) parametrised
by Y . For example,

E : y2 = x3 + t3 ⊂ A3

may be viewed either as a surface in A3 or as a family of curves Et ⊂ A2
x,y

parametrised by t ∈ A1. It is (an affine version of) ‘an elliptic curve over
k[t]’, and if we embed k[t] inside an algebraically closed field,

k[t] ⊂ k(t) ⊂ k(t),

it becomes an elliptic curve as we know them. This allows us to pass between
geometry of elliptic curves over one field and the geometry of surfaces (an
‘elliptic surface’ in this example) over another field. Some of the primary
results of 20th century algebraic geometry29 are proved by reducing questions
about arbitrary varieties to those about curves, but over a general base.

Technically, working over general rings is best in the context of schemes,
but the basics can be done without that. We review varieties over non-
algebraically closed fields, then talk about families, and then introduce mod-
uli spaces.

10. Varieties over any field

Suppose K is any field, and write K̄ (=k) for its algebraic closure.

Definition 10.1. If V/K̄ is an affine variety that can be defined by polyno-
mials with coefficients in K, we call it an affine variety V over K, denoted
V/K. For such V, V ′, a K-morphism V → V ′ is a morphism that can be
given by polynomials with coefficients in K. The ring of regular functions
on K[V ] is the set of K-morphisms V → A1

K .

If L ⊃ K is a field, we write V ×K L or VL for the same variety considered
over L, and we call it V base changed to L. Its ring of regular functions
is K[V ] ⊗K L ⊂ K̄[V ], so it is an integral domain for any L. We say V is
regular (complete, of dimension n, etc.) if V ×K K̄ is.30

The old definition of affine varieties, ‘Zariski closed irreducible subset of
Kn’, does not work for non-algebraically closed fields. (E.g., if K is finite,
the only varieties would be points!) The above one does work well, and
V 7→ K[V ] defines an equivalence of categories between affine varieties over
K and finitely generated K-algebras A such that A ⊗k K̄ is an integral
domain. We define a general variety over K similarly, as a variety over
K̄ covered by affine open subvarieties defined over K, and with transition

29e.g. Deligne’s proof of the Weil conjecturs and de Jong’s alterations
30Algebraic geometers say that V is ‘geometrically whatever’ if V ×K K̄ is ‘whatever’.

So our varieties are ‘geometrically integral’, regularity is ‘geometric regularity’ etc.
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maps between them defined over K, and an algebraic set over K by dropping
the irreducibility condition. As before, products V ×W exist in all these
categories, and

K[V ×W ] = K[V ]⊗k K[W ].

Example 10.2. An and Pn are varieties that can be defined over any K.

Example 10.3. The line C :
√

2x+
√

3y = 0 ⊂ A2 is defined over Q(
√

2,
√

3).
It can be even defined over Q(

√
6), because the ideal

(
√

2x+
√

3y)Q̄[x, y] ⊂ Q̄[x, y]

is generated by x+
√

6
2 y. The curve is not defined over Q though (Exc 10.1).

Example 10.4. The equation f : x2+y2 =0 in A2 does not define a variety
over R, as it is reducible over C. In other words, although, A = R[x, y]/(x2+
y2) is an integral domain, A⊗R C ∼= C[x, y]/(x+ iy)(x− iy) is not.

For simplicity, assume for the rest of this section that the ground field K
is perfect, that is every finite extension of it is separable.

Definition 10.5. If V/K is an affine algebraic set, its set of (K-)rational
points is

V (K) = V ∩Kn.

For a general V covered by affine charts Vi/K, we let V (K) = ∪Vi(K).

Definition 10.6. For a curve C/K, we say that a divisor D ∈ Div(C) is
defined over K if it is invariant under all automorphisms σ ∈ Gal(K̄/K).
(E.g. on P1

Q, the divisors (0), 3(∞), and (2 + i) + (2− i) are rational.)

Two complications when working over non-algebraically closed fields is
that non-isomorphic varieties over K may become isomorphic over K̄, and
that varieties may not have any K-rational points, or even K-rational divi-
sors of certain degrees.

Example 10.7 (Selmer). The following plane curve C/Q of genus 1

C : 3x3 + 4y3 = 5z3 ⊂ P2
Q

is isomorphic over Q̄ to the elliptic curve

E : y2 = x3 − 100/3.

However C(Q) = ∅, so it is not an elliptic curve over Q. In fact, all Q-
rational divisors on C have degree multiple of 3, so C/Q does not even
admit a degree 2 map to P1.

Definition 10.8. An elliptic curve over K is a pair (C,O), with C/K a
curve of genus 1 and O is a K-rational point on C.

Fortunately, if a curve C has a K-rational divisor D, then L(D) has a
basis of K-rational functions, so the associated map to Pn is defined over K:
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Lemma 10.9. Let V be a K̄-vector space, and suppose that Gal(K̄/K) acts
continuously on V in a manner compatible with its action on K̄. Then V
has a basis of Gal(K̄/K)-invariant vectors.

Proof. [Sil1] Lemma II.5.8.1. �

For example, if E/K is an elliptic curve, then we can apply the lemma to
L(n · O) for n = 2, 3, ... to prove that E is isomorphic, over K, to an elliptic
curve in Weierstrass form, exactly as before.

Example 10.10 (Genus 0). Suppose C/K has genus 0. The divisorD = (ω)
of any K-rational differential form ω 6= 0 is K-rational, of degree −2. By
Riemann-Roch, L(−D) is 3-dimensional and gives a map

C → P2,

whose image is of degree 2, a conic (possibly singular). It is not hard to
deduce that every genus 0 curve is isomorphic either to P1

K , or to a non-
singular conic in P2,

f(x, y, z) = 0 ⊂ P2
K , deg f = 2.

For instance, over R, every curve of genus 0 is isomorphic to

P1
R or x2 + y2 = −z2 ⊂ P2,

and the latter has (visibly) no real points.

Example 10.11 (Genus 2, charK 6= 2). For a genus 2 curve C/K, the
canonical divisor class has degree 2, and has again K-rational divisors in it.
So as before, C has a model y2 = f(x) with deg f ∈ {5, 6}.

Example 10.12 (Genus 1). The canonical divisor class is 0, so we cannot
infer the existence of a K-rational divisor of any specific degree. In other
words, the degrees of K-rational divisors (clearly) form a non-zero subgroup
nZ of Z, and it is not clear whether there are any restrictions on n. In fact,
over Q, it is expected that all n ≥ 1 can occur.

Lecture 6
These examples also illustrate the other aforementioned problem, hav-

ing non-isomorphic varieties V, V ′ over K that become isomorphic over K̄.
Such varieties are called forms or twists of each other. Same terminology is
used for algebraic groups G,G′ over K that become isomorphic over K̄, as
algebraic groups.

In either setting, if V, V ′ are such twists, pick an isomorphism

i : V/K̄ −→ V ′/K̄.

Any automorphism σ ∈ Gal(K̄/K) defines another such isomorphism iσ, by
acting on the coefficients of i, and the composition

ξ : Gal(K̄/K) −→ Aut(V/K̄)
σ 7−→ (iσ)−1i

satisfies ξ(στ) = ξ(σ)τξ(τ), which makes it into a 1-cocycle.
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Theorem 10.13. If either

• V is an algebraic group, or
• V is a quasi-projective variety (open subset of a projective variety)

and Aut(V/K̄) is an algebraic group,

then the above association gives a bijection

twists of V over K
1:1←→ H1(Gal(K̄/K),Aut(V/K̄)).

Moreover, for a Galois extension L/K, twists of K that become isomorphic
over L are in bijection with elements of H1(Gal(L/K),Aut(V/L)).31

Example 10.14 (Elliptic curves). Suppose charK 6= 2, 3. An elliptic curve
E/K has a Weierstrass equation

y2 = x3 +Ax+B,

and we call

dy2 = x3 +Ax+B (∼= y2 = x3 + d2Ax+ d3B)

the quadratic twist of E by d ∈ K×. If AB 6= 0, then AutK̄(E) = {±1} with
trivial Galois action, so

H1(Gal(K̄/K),Aut(E/K̄)) = Hom(Gal(K̄/K), {±1}).

A non-trivial element κ of this Hom is characterised by its kernel, the Galois
group of some quadratic extension K(

√
d) of K. It correspond exactly to

the quadratic twist Ed of E by d. Indeed, the map i : E → Ed given by
(x, y) 7→ (x,

√
dy) is an isomorphism over K(

√
d), and

(iσ)−1i : P = (x, y) 7→ (x, y/
√
d) 7→ (x, σ(

√
d)√
d
y) =

{
−P, σ(

√
d)=−

√
d

P, σ(
√
d)=
√
d

is the corresponding cocycle in Hom(Gal(K̄/K), {±1}).
Finally, there are two exceptional curves with more automorphisms

E : y2 = x3 + x Aut(E/K̄) ∼= 〈ζ4〉
E : y2 = x3 + 1 Aut(E/K̄) ∼= 〈ζ6〉.

In this case we the corresponding twists are

E : y2 = x3 + dx d ∈ K×/K×4 (quartic twists)
E : y2 = x3 + d d ∈ K×/K×6 (sextic twists).

(In characteristic 2 and 3, there are curves with even more automorphisms,
and they have, correspondingly, other twists.)

Exc 10.1. Show that C :
√

2x+
√

3y = 0 in A2
Q̄ is not defined over Q.

Exc 10.2. Show that the unit quaternions (x1 + x2i + x3j + x4k with
∑
x2
i = 1) give an

algebraic over R, which is a form of SL2(R)

31These H1’s are pointed sets, and they are groups if Aut is abelian
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11. Examples of moduli problems

There are many classification problems in algebraic geometry in which
objects that we wish to classify are naturally in one-to-one correspondence
with points on some variety X, called the moduli space for that problem.
Postponing for the moment what ‘naturally’ means, here are a few examples,
starting with the classification of subvarieties in a fixed ambient space.

As before, let us work over a fixed algebraically closed field k.

Example 11.1. Lines through the origin in A2 are parametrised by points
of P1, which has a structure of an algebraic variety32:

ax+ by = 0 ←→ [a : b] ∈ P1
k.

Similarly, all lines ax+ by+ c = 0 in A2 are parametrised by P2 \{[0 : 0 : 1]}
(and lines in P2 by P2, the missing point being the unique line at infinity).

Example 11.2. Curves of degree 2 in P2 (conics) have equations

a0x
2 + a1xy + a2xz + a3y

2 + a4yz + a5z
2 = 0,

and, again, (ai) and λ(ai) define the same conic. So they are parametrised
by points of P5, except that some points that define reducible conics have
to be thrown away. If

a0x
2+a1xy+a2xz+a3y

2+a4yz+a5z
2 = (b0x+b1y+b2z)(c0x+c1y+c2z),

then (ai) is in the image Z of the map P2 × P2 → P5 obtained by equating
the components33. As Z is closed (image of a complete variety under a
morphism), its completement has a structure of a variety, and

{conics in P2} 1:1←→ P5 \ Z.

(In such situations, we say that ‘being irreducible is an open condition’.)

Another problem, perhaps a more natural one, is classifying varieties up
to isomorphism. There are usually discrete invariants (like the dimension or
the genus) which split the problem into ‘connected components’, and fixing
them leads to a set that may have, again, a structure of a variety.

Example 11.3. Genus 0 curves over k are all isomorphic to P1, so the
variety parametrising them is a point.

Example 11.4. All genus 1 curves C or elliptic curves (E,O)34, say in
characteristic 6= 2, 3, can be given by Weierstrass equations

y2 = x3 +Ax+B ( ∼= y2 = x3+Au4 x+Bu6, u ∈ k×).

32Generally, d-dimensional linear subspaces of An are again parametrised by a variety,
called the Grassmanian Gr(d,An).

33 [b0 : b1 : b2], [c0 : c1, c2] 7→ [b0c0 : b0c1+b1c0 : b0c2+b2c0 : b1c1 : b1c2+b2c1 : b2c2]
34For this example it does not matter, as (E,O1) ∼= (E,O2) via a translation map.
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The j-invariant (the constant 1728 is there for arithmetic reasons)

j(E) = 1728
4A3

4A3 + 27B2
∈ k

is unchanged under isomorphisms of Weierstrass equations, and so is really
an invariant of an isomorphism class of genus 1 curves. Moreover, j(E) =
j(E′) implies E ∼= E′ (Exc 11.1). Conversely, every j ∈ k is the j-invariant
of some curve, e.g.

Ej : y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728
(j 6= 0, 1728),

and two curves not covered by this formula,

E0 : y2 = x3 + 1, E1728 : y2 = x3 + x.

In other words, genus 1 curves over k up to isomorphism are parametrised
by points of k = A1 (the j-line), via the j-invariant map.

Generally, we can consider the set Mg,n of isomorphism classes of curves
C/k of genus g with n distinct marked points P1, ..., Pn ∈ C. The points are
ordered, so an isomorphism (C, (Pi))→ (C ′, (P ′i )) is an isomorphism C → C ′

that takes Pi to P ′i .
If we make the points unordered instead, we get the set M sym

g,n = Mg,n/Sn,
where the symmetric group Sn acts naturally, permuting the marked points.

Example 11.5 (Genus 0). Since every curve of genus 0 is isomorphic to P1,
and Aut(P 1) is the Möbius group that acts triply transitively on points,

M0,0 = M0,1 = M0,2 = M0,3 = {pt}.
For higher n, every (C, (Pi)) ∈M0,n is represented by a unique curve

(P1, (0, 1,∞, P4, ..., Pn)),

and so we have a natural identification

M0,n =
(
P1 \ {0, 1,∞}

)n−3
\ {diagonals xi = xj}.

Example 11.6 (Genus 1). As we have seen before,

M1,0 = M1,1 = A1 (j-line).

Example 11.7 (Hyperelliptic curves, char k 6= 2). Recall that every hyper-
elliptic curve C of genus g ≥ 2 admits a 2-to-1 map to P1, which is unique
up to an automorphism of P1. In other words, C has a model

y2 = f(x), deg f ∈ {2g + 1, 2g + 2}, f squarefree.

The set of 2g + 2 roots of f (counting ∞ if deg f = 2g + 1) is an element
of M sym

0,2g+2, so this is the space that classifies hyperelliptic curves of genus g
up to isomorphism.

Exc 11.1. Prove that over an algebraically closed field, two elliptic curves are isomorphic

if and only if they have the same j-invariant.
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12. Representable functors

This is all well and good, but what does it really mean that X is a moduli
space for a given classification problem? The bijection

{our objects/k}/ ∼= ←→ set of points X(k)

only specifies X as a set, and not as a variety. In the usual real or complex
topology, we could appeal to continuity, and insist that ‘close points’ in
the moduli space correspond to ‘close objects’. In other words, if we have
a continuous family of objects parametrised by some Y , then associating
to every object the corresponding point of X gives a map Y → X that is
continuous. This works perfectly well in the algebraic geometry setting, if
we replace ‘continuous map’ by a ‘morphism’.

Example 12.1. Recall that lines through the origin in A2 correspond to
points of P1, via

ax+ by = 0 ←→ [a : b] ∈ P1
k.

Generally, a family of such lines over a variety Y corresponds to a unique
morphism Y → P1. Why is that? Well, for every point y ∈ Y we have a
line Ly that, together, form a closed subvariety L of Y × A2:

Intersecting L with Y × {(1, t)}, Y × {(t, 1)} and projecting onto the
second factors gives rational functions f and g, with fg = 1 and at least
one of them regular at every point of Y . We get a morphism

Y → P1, y → [f(y) : 1] (= [1 : g(y)]).

And, conversely, it is easy to see that every morphism Y → P1 comes from
such a family. Moreover, the families over different varieties map to one
another under morphisms: a morphism f : X → Y takes

π : L→ Y 7−→ f∗π : L×Y X → X,

where

L×Y X =
{

(l, x) ∈ L×X
∣∣ π(l) = f(x)

}
(fibre product)

is the pullback of the family L/Y under f .35 Under the correspondence
between families and maps to P1, this pullback simply corresponds to the
composition with f ,

f∗ : Hom(Y,P1) −→ Hom(X,P1).

The formal way of putting all this is that the two contravariant functors36Lecture 7

35This is a closed subset of L×X, and so has a structure of an algebraic set.
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Varieties /k −→ Sets

F1 : Y 7−→
{

families of lines in A2 through 0
parametrised by Y

}
/ ∼=

F2 : Y 7−→ Hom(Y,P1)

are isomorphic (called ‘naturally equivalent’).

Definition 12.2. A contravariant functor

F : Varieties /k −→ Sets

is representable, or representable by a variety Y if F ∼= Hom(−, Y ). The
same definition applies to any category, and also for covariant functors, that
are called representable if F ∼= Hom(Y,−).

Does this formalism really help? The short answer is ‘YES’.
For example, take a family of lines in A2 through 0 parametrised by

C \{P}, where C is a curve and P ∈ C. Does it extend uniquely to a family
over C? We showed that the functor ‘families of lines through 0 in A2’
is representable by P1, so this is equivalent to the question whether every
morphism

C \ {P} −→ P1

extends to a unique morphism C → P1. And we know the answer — since P1

is complete, it is yes if P is non-singular (and no in general). Basically, ques-
tions about families become questions about morphisms to a specific moduli
space, and various properties of that moduli space, such as completeness,
connectedness, dimension have a natural interpretation.

Here are a few other examples, all for the category of affine varieties
AVark. A contravariant functor AVark → Sets is the same as a covariant
functor Algk → Sets on the category of finitely generated k-algebras with
no nilpotents, so we construct these examples as functors of rings.

Example 12.3. Start with the ‘forgetful’ covariant functor Algk → Sets
that takes a ring A to itself, considered as a set. For it to be representable
means that there is some magic ring R with the property that

HomAlgk(R,A) = A

as a set, for every k-algebra A. Such a ring exists, namely R = k[x], because
a homomorphism k[x]→ A is uniquely determined by the image of x, which
can be any element of A. Similarly

F(A) = {pairs of elements in A} = HomAlgk(R,A), R = k[x, y]

F(A) = {4th roots of 1 in A} = HomAlgk(R,A), R = k[x]
x4−1

F(A) = {units in A} = HomAlgk(R,A), R = k[x,y]
xy−1 ,

36A covariant functor φ : C → C′ between two categories is a map on objects φ :
Ob(C) → Ob(C′) and on morphisms Hom(A,B) → Hom(φ(A), φ(B)) that preserves the
category structure (identity morphisms and composition). A contravariant functor is the
same except it reverses the arrows, taking Hom(A,B)→ Hom(φ(B), φ(A)).
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so all the functors on the left37 are representable. In other words, and this
is just a tautology, a representable functor F in this setting is one for which
F(A) can be given a structure of a set of solutions in A to a specific system
of polynomial equations.

To give an example of a similar, but a non-representable functor, we can
re-use the example of lines through the origin in A2, reformulated in terms
of k-algebras (rather than affine varieties). Thus,

F(A) =
{
f, g ∈ A

∣∣ fA+ gA = A
}
/A×.

It has two ‘subfunctors’,

F1(A) =
{
f, g ∈ A

∣∣ fA+ gA = A, f unit
}
/A× = {g ∈ A}

F2(A) =
{
f, g ∈ A

∣∣ fA+ gA = A, g unit
}
/A× = {f ∈ A},

both represented by k[t] (and their ‘intersection’ by k[st]/(st− 1)). Passing
from k-algebras to affine varieties, this just reflects the fact that P1 is not an
affine variety, but it is covered with two A1s whose intersection is A1 \ {0}.

Going back to two examples

F1(A) = {units in A} = HomAlgk(R,A), R = k[x,y]
xy−1 ,

F2(A) = {elements in A} = HomAlgk(R,A), R = k[x],

there is, in this, case a ‘natural’ inclusion,

F1(A) = A× ↪→ A = F2(A),

‘natural’ in the sense that it commutes with the maps Fi(A) → Fi(B)
induces by homomorphisms A → B. This inclusion corresponds to a map
of representing rings

k[x] −→ k[x,y]
xy−1

x 7−→ x.

(The map x 7→ y corresponds similarly to the inclusion A× ↪→ A, a 7→ a−1.)

This is true in full generality, in any category. Maps between functors
correspond exactly to morphisms between representing objects, by the fol-
lowing elementary result from category theory:

Theorem 12.4 (Yoneda’s lemma). For any category C,

A 7−→ Hom(A,−)

is a full embedding of C into the category of covariant functors C → Sets.

Proof. Exc 12.1. �

‘Full embedding’ means precisely that every natural transformation of
functors Hom(A, ·)→ Hom(A′, ·) is induced by a unique morphism A′ → A.
In particular, if the two functors are isomorphic then A ∼= A′, so the functor
determines A. In particular, every moduli problem has at most a unique
solution.

37made into covariant functors in the natural way
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Note also that the definition of a representable functor does not rely in any
way on k being algebraically closed, so we can talk about moduli problems
over any base field K. For instance, the functor ‘families of lines through 0
in A2’ is representable on the category of algebraic sets over Q, by P1

Q. In
particular, for any field K ⊃ Q{

lines in A2 through (0,0)
defined over K

}
1:1←→ Hom(SpecK,P1

Q) = P1(K).

This suggests to define the set of S-rational points on any variety X for any
algebraic set S,

X(S) = Hom(S,X).

In this language, the Hom(−, X) functor that X represents is simply

S 7−→ X(S) (called ‘functor of points’).

Yoneda’s lemma says that X is uniquely determined by its functor of points,
and moduli problems become questions whether a given functor is a functor
of points on some variety. If S = SpecA is affine, we write X(A) = X(S),
and for fields this defines K-rational points as we had before.

Example 12.5 (Product of varieties). Naively, the product V × V ′ of two
varieties is a variety whose points are pairs of points (v, v′). This only
describes it as a set, and there are two psychologically different ways to
think of its structure as a variety and to deduce its properties (the existence
of natural projections to V and to V ′, associativity (V × V ′) × V ′′ = V ×
(V ′ × V ′′), etc.)

The ‘constructive’ approach is what we followed before: pass to k̄, and
suppose first V ⊂ An and V ′ ⊂ An′ are affine. Then V ×V ′ ⊂ An+n′ is clearly
an algebraic set. It happens to be irreducible, so V × V ′ becomes an affine
variety; for general V , V ′, we glue the pairwise products of affine charts,
and prove that this works and is independent of any choices. The properties
such as associativity are then deduced from this (somewhat cumbersome)
construction.

The ‘functorial’ approach is simply to demand the naive ‘pairs of points’
description, but for all varieties S; thus, V × V ′ is defined as a variety that
represents the product functor38

S 7−→ V (S)× V ′(S).

If such a variety V × V ′ actually exists, its properties are deduced from
Yoneda’s lemma; e.g. (V × V ′) × V ′′ and V × (V ′ × V ′′) have the same
functor of points, so there is a canonical isomorphism between them; the
first projection map

V (A)× V ′(A)→ V (A)

is a natural transformation from the functor of points of V×V ′ to that of V ,
so by Yoneda’s lemma it comes from a unique variety map V ×V ′ → V ; etc.

38and this is how products can be defined in any category, not just for varieties
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Example 12.6 (Algebraic groups). In any category C, we can define a
‘group object’ as one for which the functor

Hom(−, X) : C −→ Sets

factors through the category of groups. In other words X(S) is a group for
every object S ∈ C, and all X(S)→ X(T ) are group homomorphisms. Using
Yoneda’s lemma, it is not hard to check that in the category of varieties this
defines (connected) algebraic groups, as we defined them.

It is an important unsolved question in algebraic geometry how to char-
acterise representable functors in some sort of intrinsic way. There are cat-
egories where there are such necessary and sufficient criteria for functors to
be representable, but for varieties (or schemes) this seems to be very hard.

Exc 12.1. Prove Yoneda’s lemma.

13. Hilbert scheme and standard moduli spaces

We started with several examples — families of lines and conics in the
plane, and the corresponding functors turn out to be representable. They
are special cases of the fundamental construction, the Hilbert scheme, that
classifies closed subsets of Pn (or of any projective variety) with given dis-
crete invariants specified by the Hilbert polynomial :

A closed subset Z⊂Pn is a zero set of a homogeneous ideal I ⊂ k[x0, ..., xn],
and its homogenous coordinate ring splits into degree d graded pieces,

S = k[x0, ..., xn]/I =
⊕
d≥0

Sd.

Consider the dimension counting function (the Hilbert function)

d 7−→ dimk Sd.

Example 13.1 (Point). If Z = {[1 : 0 : . . . : 0]} ⊂ Pn is a point, then

I = (x1, ..., xd), S = k[x0], dimk Sd = (1, 1, 1, 1, . . .)

Example 13.2 (Linear subspaces). If Z = Pm ⊂ Pn, then S = k[x0, ..., xm],

dimk Sd =
(
d+m
m

)
=

1

m!
d(d− 1) . . . (d−m+ 1).

Example 13.3 (3 points in P2). A bit more interesting example is subsets

{P1, P2, P3} ⊂ P2

of three distinct points. The coordinate ring S = k[x, y, z]/I depends on
whether the points are collinear or not. Fixing a choice of coordinates for
the Pi, it is clear that

k[x, y, z]1 −→ k3, f 7→ (f(P1), f(P2), f(P3))



TOPICS IN ALGEBRAIC GEOMETRY 39

is onto if the Pi are not collinear, and has 2-dimensional image otherwise.
So dim I1 = 0, dimS1 = 3 in the former case, and dim I1 = 1, dimS1 = 2 in
the latter. And for every d ≥ 2 it is easy to check that

k[x, y, z]d −→ k3, f 7→ (f(P1), f(P2), f(P3))

is always onto, and dimSd = 3. In other words, there always exist degree
d homogeneous polynomials f1, f2, f3 such that fi(Pj) = δij , whatever the
three points are. So

dimk Sd = (2, 3, 3, 3, . . .) if the Pi are collinear,
dimk Sd = (3, 3, 3, 3, . . .) if the Pi are not collinear.

The Hilbert-Serre theorem asserts that for every algebraic set Z ⊂ Pn, if
we write I for the ideal of functions vanishing on Z and S = k[x0, ..., xn]/I
for its homogeneous coordinate ring, the sequence dimSd always stabilises
for large enough d to coincide with values of a unique polynomial HZ(d),
whose degree is the dimension of Z.

Definition 13.4. HZ(d) is the Hilbert polynomial of Z, and its leading
coefficient times (dimZ)! is the degree of Z in Pn.

Example 13.5.

Z = {pt} ⇒ HZ(d) = 1 (degZ = 1)

Z = Pm ⇒ HZ(d) = 1
m! d(d−1) . . . (d−m+1) (degZ = 1)

Z = {P1, P2, P3} ⇒ HZ(d) = 3 (degZ = 3).

For a hypersurface H = 0 in Pn the degree is degH, as we had before.

Theorem 13.6. For every polynomial H(d), the functor

HilbPn,H : S 7−→ families Y ⊂ S × Pn of closed subsets of Pn
with Hilbert polynomial H(d) over S

is representable by a projective scheme39 HilbPn,H .

Other closely related functors are:
• HilbPn =

∐
H HilbPn,H ,

the functor that classifies all closed subsets of Pn (or, rather, flat families of
them as we will define shortly). It can be extended from Pn to any projective
variety X as well,
• HilbX = functor of (flat) families of closed subvarieties of X

Next, since we can view a morphism from X to Y , as a closed subvariety of
X × Y , via its graph, for projective varieties X and Y we can consider
• Hom : T 7→ HomT (X × T, Y × T ) (open ⊂ HilbX×Y )
• Isom : T 7→ IsomT (X × T, Y × T ) (open ⊂ Hom)
• Aut : T 7→ AutT (X × T ) (take X = Y )

All these functors are always representable (by a scheme). The proof of
representability is not overly hard. Like for NP-completeness, when you do
the hard work once for one problem and then reduce all the others to it.

39It is not always a variety, and can be highly singular
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First, one proves representability for a slight extension of the Hilbert scheme
functor, called QuotX,M, that parametrises quotients of a coherent sheaf on
X. (Subvariety of a projective space is given by a homogeneous inside its
coordinate ring, and an arbitrary coherent sheaf is a generalisation of this.)
Grothendieck proved that it is representable by reducing it to the classical
Grassmanian, by using embeddings into large projective spaces to reduce
the question to that for linear subspaces. Then representability of all the
other functors is a consequence of that one.

Finally, another important one is the Picard functor, that parametrises
families of divisors on a variety:
• Pic : T 7→ PicT (X × T )/PicT .

In favourable situations, it is representable as well, e.g. for complete varieties
(over any field K) that have a K-rational point.

Example 13.7. If C/K is a complete non-singular curve, with C(K) 6= ∅,
then Pic(C) is representable by a scheme, which is naturally a group. Its
connected component Pic0(C) is represented by a projective commutative
algebraic group, in other words an abelian variety. It has dimension equal
to the genus of C, and is called the Jacobian variety of C, ofted denoted
Jac(C) as well.

Example 13.8 (Albanese). Another type of functors attempts to find a
canonical ‘closest’ object to a given one in a different category. One classical
example (another, much simpler one, is Exc 13.1) is the Albanese functor
that finds an abelian variety closest to a given variety, in the following sense.
Let V/K be a non-singular projective variety with a base point P0 ∈ V (K),
and consider the functor

F : AbVarK −→ Sets
A 7−→ Hom0(V,A),

from abelian varieties over K to sets, where where Hom0 stands for mor-
phisms of varieties that map P0 to 0. It turns out that it is representable,
and the representing variety is called the Albanese variety Alb(V ) of V . In
other words, it is an abelian variety with a morphism (taking P0 to 0)

f : V → Alb(V ),

which is universal, in the sense that any other such morphism from V to
any abelian variety over K factors uniquely through f .

For non-singular projective curves Albanese coincides with the Jacobian
(i.e. Pic0), and the unversal map

f : C → Pic0C

takes P to the divisor (P )− (P0).

Exc 13.1. Suppose G is any finite group, and consider the following functor from the
category of finite abelian groups to sets,

F : Ab −→ Sets
A 7−→ Hom(G,A).
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Prove that F is representable, and describe the representing object.

14. Flat families

Grothendieck’s advice is to always work in the relative setting. A variety
is really a morphism V → {pt}, a special case of a family V over an arbitrary
base S. In particular, the most important properties for algebraic set over
a field have relative analogues: a non-singular V/k generalises to a smooth
morphism V → S, complete V/k to a proper morphism, and finite V to a
finite morphism.

Definition 14.1. A morphism f : X → Y is

• smooth (of relative dimension d) if ÔX,x ∼= ÔY,y[[t1, ..., td]] for every
pair of points f(x) = y. Equivalently, f is flat with regular fibres40.
• proper if f is universally closed, that is fZ : X×Z → Y ×Z is closed

for every variety Z.
• finite if Y has an affine cover

Y =
⋃

SpecBi, f−1(SpecBi) = SpecAi affine,

with Ai finitely generated Bi-modules; equivalently, f is proper with
finite fibres.

The correct (for somewhat mysterious reasons) notion of a nice general
family of varieties turns out to be flatness41.

Definition 14.2. For a ring A, an A-module M is flat if I ⊗AM → IM is
an isomorphism for every ideal I ⊂ A.

Definition 14.3. A morphism f : X → Y is flat [of relative dimension d]
if Y has an affine cover

Y =
⋃

SpecBi, f−1(SpecBi) = SpecAi affine,

with Ai flat Bi-modules. (Flatness implies that all non-empty fibers have
the same dimension d = dimX − dimY .)

All four notions enjoy a host of good properties, such as being preserved
under composition and base change.

Example 14.4. The projections X → {pt} and X × Y → Y are flat; they
are proper ⇔ X is complete, and smooth ⇔ X is non-singular.

Example 14.5.

• Closed immersions Z ↪→ Y are finite (⇒proper).
• Open immersions U ↪→ Y are smooth (⇒flat).

40regular scheme-theoretic fibres, to be precise
41Introduced by Serre but made into a cornerstone of families by Grothendieck



42 TIM DOKCHITSER

Theorem 14.6 (Flatness criteria).
(1) If X ⊂ Y × Pn is closed, then the projection X → Y is closed if and

only all fibers Xy ⊂ Pn have the same Hilbert polynomial.
(2) A finite morphism f : X → Y is flat if and only if it is locally free of

finite rank, in other words the rings Ai, Bi in the definition of finiteness can
be chosen with Ai finitely generated and free over Bi.

(3) A morphism f : X → Y between regular varieties is flat iff

dimX = dimY + dimOx/myOx

for all points f(x) = y (with local rings Ox, Oy and maximal ideals mx,my).

Example 14.7. Of the following four varieties, the first two are finite and
flat over A1

x, the third one is neither, and the last one is flat but not finite.

For the first two, their coordinate rings are k[x]⊕k[x]y as k[x]-modules, that
is free finitely generated of rank 2. The fourth one is an open immersion,
while the third one has fibers of varying dimension.

Example 14.8. Of the two surfaces

S1 : y2 = x3 − t, S2 : ty2 = tx3 − t,
the first one is flat over the t-line A1

t , and the second one is not. For the first
one, the morphism factors S1 −→ A2

t,x −→ A1
t , with the first map finite flat

by 14.6(2) and the second one flat by 14.4. It is not proper (non-complete
fibres) and not smooth (singular fibre at t = 0). As for S2, the t = 0 fibre
is A2, while all the others have dimension 1.

Example 14.9.

• If A is a field, every A-module is flat.
• An A-module M is flat iff the localisation MP is AP -flat for every

prime (equivalently maximal) ideal P ⊂ A.
• Suppose A → B is a flat local homomorphism of Noetherian local

rings, and b ∈ B. Then A→ B/(b) is flat if and only if the image of
b in B/mAB is a non-zero divisor.
• If A is a PID, flat is equivalent to torsion-free.

Example 14.10. B = k[x, y]/xy as a k[x]-module. Use maximal ideal
criterion: for every maximal m = (x−a) ⊂ k[x] with a 6= 0, the localization
Bm is free of rank 1 over Am (and is therefore flat), but for a = 0 the
localization Bm is k[x]m[y]/xy which is not flat, as y is x-torsion.
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Exc 14.1. (projective) version of Example 14.8. And smooth as well.

15. Moduli space of curves

Now that we have a good notion of a family, we can define the moduli
space of curves:

Definition 15.1. Let K be a field, and S an algebraic set over K. A curve
C/S of genus g is a flat morphism π : C → S whose geometric42 fibers are
(non-singular projective) curves of genus g.

An n-pointed curve is (C; P1, . . . ,Pn) where Pi are sections S → C of π,
disjoint over every point of S/K̄.

Definition 15.2. For g, n ≥ 0 define the functors AlgSetsK → Sets,

Mg : S 7−→ {curves of genus g over S}/ ∼= .
Mg,n : S 7−→ {n-pointed curves of genus g over S}/ ∼= .

These are very important functors, and the only trouble with them is
that they are, unfortunately, not representable in general. Here are two
examples:

Example 15.3 (g = 0, n = 2, lines through 0). Every genus 0 curve with
two marked points (C;P1, P2) over any field K is isomorphic to (P1; 0,∞),
though not uniquely. There is a group of non-trivial automorphisms Gm

(x 7→ tx) acting on (P1; 0,∞), and it turns out that these automorphisms
cause problems for representability.

If the functor M0,2 is representable by some variety M0,2, then

M0,2(K) =M0,2(SpecK) = {one point}

for any field K, so M0,2 = {pt}. However, this would imply thatM0,2(S) =
{one point} for any base S, in other words every family C of curves with 2
marked points over any base S must be trivial,

C ∼= S × P1\{0,∞}.

But this is not true — look at the tautological family of lines over P1
R which

is the Möbius band. (Topologically not orientable.)
The problem is clearly glueing via an automorphism x 7→ −x. Generally in

the topological setting have trivial families over disks, but H1(π1(S),Aut)
measures the obstruction, and is H1(Gal,Aut) that we have seen before.
[This is referred to as monodromy.]

Example 15.4 (g = n = 1, elliptic curves). Let g = n = 1, say charK 6= 2,
and suppose that Mg,n

∼= Hom(−,M) for some moduli space M , e.g. the
j-line. Take any elliptic curve

E/K : y2 = f(x)

42that is fibers over the points of S/K̄
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and all of its quadratic twists

Ed/K : dy2 = f(x), d ∈ K×/K×2.

They are all pairwise non-isomorphic over K, so each would give a different
point in M(K). But they are all isomorphic over K̄, so these points should
become the same in M(K̄)! This is impossible. And this is not just a prob-
lem with non-algebraically closed fields — such an example over a function
field breaks always representability. So, even if k = k̄, the two families

E1/A1
t : y2 = f(x) and Et/A1

t : ty2 = f(x)

are non-isomorphic over k[t] but are isomorphic over k[
√
t] (i.e. become iso-

morphic under the pullback k[t]→ k[t], t 7→ t2), and this is again impossible,
because two morphisms

A1 −→M

cannot become the same after the composition with A1 → A1, t 7→ t2. So
the j-invariant is a good invariant over algebraically closed fields, but it does
not work to classify families.

Grothendieck observed (in a 1959 letter to Serre) that, at least morally,
this problem would always occur if we attempt to classify objects that have
non-trivial automorphisms. Topologically, it is easy to see why it happens
by looking at families (of anything, really) over a unit circle S1.

The classical example is a Möbius band: it is a family of 1-dimensional
R-vector spaces (lines) parametrised by S1. Every such family over U =
S1 \ {pt} is trivial, i.e. isomorphic to U × R1. However, there are different
ways to glue the ends and extend such a trivial family to a family over S1

— ‘straight’ or ‘upside down’. In other words, going around in a loop over
S1 is an automorphism of a fibre, and if this automorphism is non-trivial,
the family is not trivial either. If all the fibres are the same, such families
preclude the existence of a moduli space. In fact, we have already seen that
twists of varieties or algebraic groups are classified by Gal(K̄/K,AutK̄ V ),
with Gal(K̄/K) playing the role of the fundamental group of the unit circle
in our setting.

This means that interesting spaces very often do not exist, as the corre-
sponding functors are not representable.

Solution 1 is to weaken the definition of a moduli space. We say that a
variety M/K is a coarse moduli space for a functor

M : AlgSetsK → Sets

if there is a natural transformation of functors φ :M→ Hom(−,M) so that

(1) M(K̄)→M(K̄) is a bijection, and
(2) For any V/K, every natural transformation ψ : M → Hom(−, V )

factors uniquely through φ.

The first property says that at least over K̄ the moduli space classifies what
it is supposed to classify, and the second guarantees its uniqueness (if it
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exists). Of course, ifM is representable, then the representing algebraic set
V (also called a fine moduli space) is also a coarse moduli space.

In the case of Mg,n this works well, and the coarse moduli space Mg,n

exists for all g and n. In particular, M1,0 = M1,1 is the j-line A1/K. In this
case, the natural transformation M1,1 → Hom(−,A1) takes a family E/S
and associates to the j-invariant map on fibers j(E) : S → A1.

The disadvantage of this approach is that coarse moduli space is simply
not good enough to understand families of curves properly. For example, we
constructed a family of curves

Ej : y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728
over A1

j \ {0, 1728}.

Does it extend to a family over the whole j-line? By definition of the coarse
moduli space, we have a morphism

A1
j \ {0, 1728} −→ A1

j ,

the natural inclusion. It extends to the identity map A1
j → A1

j , but this does

not imply existence (or uniqueness) of a family over A1, as

M1,1(A1) −→ Hom(A1,A1)

may neither be injective nor surjective. (In fact, it turns out that such an
extension does not exist in this case.)

Solution 2 is to rigidify the problem to get rid of automorphisms. For
instance, a curve C/k of genus 0 has a large automorphism group (the
Möbius group PGL2(k)), but a curve with a marked point (C,P1) has less
(∼= kok×), with two marked points less still (∼= k×), and with three or more
marked points no non-trivial automorphisms. And, indeed, it turns out that
M0,n is representable for n ≥ 3, by the varieties that we have seen before,

M0,3 = {pt}, M0,4 = P1 \ {0, 1,∞}, etc.

The same works for any genus g, and large enough n depending on g. The
functorsMg,n →Mg (‘drop the points’) give maps of varieties Mg,n →Mg.
This in principle allows us to study families of curves by going back and forth
between the variety Mg that we want and Mg,n that has better functorial
properties.

Adding points is not the only, and possibly not the best solution, as it
increases the dimension of moduli spaces. For example, dimM1,n = n, and
it is a fine moduli space for n ≥ 5, by which time the geometry of it becomes
quite unmanageable, especially if compared to the j-line A1. One standard
way that works very well for elliptic curves (and abelian varieties) and is to
add a level structure. The subgroup E[n] of n-torsion points on an elliptic
curve E/k is

E[n] ∼= (Z/nZ)2 (char k - n),

and choosing an isomorphism with a fixed copy of (Z/nZ)2 provides enough
‘rigidity’ to get rid of all automorphisms. Even fixing one n-torsion point
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is enough, for n ≥ 3, and the corresponding (fine) moduli spaces are called
modular curves X1(n) (fix one n-torsion point) and X(n) (fix the whole of
E[n]).

Solution 3, perhaps the most natural one, is to extend the category
of varieties (or schemes) to a larger one where the functor does become
representable, but still geometrically manageable43. Such extensions exist
— this is the theory of algebraic spaces and stacks. They did prove to
be useful, although the theory is highly technical, the are many different
incarnations of stacks, and the subject seems to be hard to get into.
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Assignments.

Problem 1. Take the following curves in A2
x,y

C : y2 =x3, D : y2 =x3+x2, E : y2 = x3 + x,

Prove that the completed local rings at p = (0, 0) are

ÔC,p ∼= k[[t2, t3]], ÔD,p ∼= k[[s, t]]/st, ÔE,p ∼= k[[t]],

and that they are pairwise non-isomorphic when char k 6= 2.

Problem 2.

(1) Show that P1×P1 6∼= P2. (You may want to use ‘weak Bezout’.)
(2) If V is any variety, a rational map f : V  Pn is given by n + 1

rational functions f0, ..., fn ∈ k(V ) (not all identically zero on V ),

V 3 P 7−→ [f0(P ) : ... : fn(P )] ∈ Pn,
and gf0, ..., gfn give the same map, for g ∈ k(V )×. If, for a point
P ∈ V , there is such a g that the gfi are all defined and not all
zero at P , we say that f is regular (or defined) at P , and f(P ) is
the corresponding value. Use this to show that Pn is complete, by
verifying the valuative criterion.

Problem 3. Suppose C/k is a complete non-singular curve that admits a
map x : C → P1 of degree 2, in other words C is hyperelliptic. For simplicity,
assume char k = 0.

(1) Show that C is birational to a curve y2 = f(x) ⊂ A2, with f ∈ k[x]
square-free. (Hint: Describe k(C).)

(2) Conversely, if f(x) ∈ k[x] is squarefree, of degree 2g + 1 or 2g + 2,
for some g > 0, the two affine charts

y2 = f(x) and Y 2 = X2g+2f( 1
X )

glue via Y = y
xg+1 , X = 1

x to a complete, non-singular curve C. (You
may use this.) Show that C has genus g, with regular differentials

ΩC =
〈dx
y
,
xdx

y
, . . . ,

xg−1dx

y

〉
.

Now let C be any complete non-singular curve of genus 2. Use degKC = 2
and dimL(KC) = 2 to prove that C is hyperelliptic.
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Problem 4. Suppose C/k (char k 6= 2) is a hyperelliptic curve of genus
g ≥ 1, given by an equation

y2 = x2g+1 + a2gx
2g + . . .+ a0.

Write ∞ for the unique point at infinity of C.
(1) Use Cantor’s description of divisors to describe the 2-torsion elements

(elements of order 2) in Pic0(C). Show that they form a group ∼= F2g
2 , and

describe how to add them explicitly.
(2) Suppose P ∈ C ∩ A2 is a ‘torsion point of order 2g + 1’, in the sense

that the divisor D = (P )− (∞) is (2g + 1)-torsion,

(2g + 1)D ∼ 0.

E.g. by considering the function f ∈ L((2g+ 1)(∞)), that defines the latter
equivalence, its image under the hyperelliptic involution, and the natural
basis of L((2g + 1)(∞)), show that C has an equation of the form

y2 = x2g+1 + (bgx
g + . . .+ b1x+ b0)2.

(This illustrates the fact that high-order torsion points on curves are rare.)

Problem 5.

(1) Prove that AutP1 ∼= PGL2(k).
(2) Find AutA1 and Aut(A1 \ {0}).
(3) Find AutGm (isomorphisms Gm → Gm as an algebraic group).

Problem 6.

(1) Prove that over K = R, the unit circle group S1 : x2 + y2 = 1 is the
only non-trivial form of Gm up to isomorphism (as algebraic groups).

(2) Similarly, over K = Fp, prove that Gm has a unique non-trivial
form. Write it down an an algebraic group (equations + structure
morphisms), and determine its number of points over K.

Problem 7. In any category C, we can define a ‘group object’ as one for
which the functor

Hom(−, X) : C −→ Sets

factors through the category of groups. Prove that group objects in the
category of varieties are (connected) algebraic groups, as we defined them.


