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Average rank?

Q: What is the rank of elliptic curves on average?

In order to ask this question more precisely, we need a natural way
to measure the size of elliptic curves, so that we can order them by
size.

We use the simplest such measure, called the naive height, which
is basically a measure of the size of the coefficients of the defining
equation of the elliptic curve.
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A canonical representation of rational elliptic curves

To define the naive height, we use the following

Fact: Any elliptic curve E over Q is isomorphic to a cubic curve
in the plane of the form

EA,B : y2 = x3 + Ax + B.

In fact, any E/Q is isomorphic to a unique EA,B such that

for all primes p, p4 | A ⇒ p6 - B.

The reason is: if p4 | A and p6 | B, then EA,B
∼= EA/p4,B/p6 via

x 7→ p2x ′ and y 7→ p3y ′.
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The height of an elliptic curve

Thus we have a canonical representation of any E/Q as

EA,B : y2 = x3 + Ax + B.

We may thus define the height of E by the size of the coefficients
of the defining equation.

If E = EA,B , then H(EA,B) := max{4|A|3, 27B2}. This is called the
(naive) height of E .

The naive height is essentially the exponential of what is called the
“Faltings height”.

Another related measure of the size of EA,B is called the discriminant
∆(EA,B) := −4A3 − 27B2.

Finally, there is a measure of size called the conductor N(E ) of E .

These various measures are conjectured to be about the same order
of magnitude for all but a negligible proportion of elliptic curves!
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Average rank

Q: If all elliptic curves over Q are ordered by their heights (or dis-
criminants, etc.), what is the average size of the rank?

Conjecture (Goldfeld, Katz-Sarnak): 1/2. (More precisely, one
expects 50% of curves to have rank 0, and 50% to have rank 1.)

However, previously this average has not even been known to be
finite (let alone 1/2)! (at least not unconditionally!)

Computations do not currently give much support to the conjecture
either.

It was observed by Brumer and McGuinness in their 1990 computa-
tions that rank 2 curves seem to occur surprisingly often, and with
increasing frequency! These computations were extended recently
by Bektemirov, Stein, and Watkins:
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All Curves Ordered By Conductor

The average rank of all curves of conductor ≤ 108 is 0.8664 . . ..

A graph of the average rank as a function:
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We created this graph by computing the average rank of curves

of conductor up to n · 105 for 1 ≤ n ≤ 1000.
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GRH + BSD

The first theoretical result towards the boundedness of average rank
are due to Brumer.

In 1992, Brumer showed that the Generalized Riemann Hypothesis
(GRH) and the Birch and Swinnerton-Dyer Conjecture (BSD) to-
gether imply that the average rank is bounded. (in fact, bounded
by 2.3.)

In 2004, Heath-Brown (still assuming GRH + BSD) improved this
to average rank ≤ 2.0.

In 2009, Young further improved this (again assuming GRH + BSD)
to ≤ 25

14 ≈ 1.79.
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The main theorem

Theorem. When elliptic curves E/Q are ordered by height, the
average rank is bounded; in fact, it is bounded by 1.5.

We prove something stronger, namely:

Theorem. The same is true for the 2-Selmer rank, i.e., the average
2-Selmer rank is bounded by 1.5.

Recall that the 2-Selmer group S (2)(E ) of an elliptic curve E/Q fits
into an exact sequence

0→ E (Q)/2E (Q)→ S (2)(E )→XE [2]→ 0.

So r2(S (2)(E )) = r2(E (Q)[2])+r2(XE [2])+r(E ) ≤ 1.5 on average.

We actually prove something even stronger, namely:

Theorem. When elliptic curves E/Q are ordered by height, the
average size of the 2-Selmer group S (2)(E ) is exactly 3.
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Proof of theorem

To get a hold of 2-Selmer groups of elliptic curves, we use a cor-
respondence between 2-Selmer elements and integral binary quartic
forms, which was first introduced and used in the original computa-
tions of Birch and Swinnerton-Dyer.

To state the result, recall that the action of GL2(Z) on binary quar-
tic forms, by linear substitution of variable, has two independent
polynomial invariants, traditionally denoted I and J, respectively.
The invariant I has degree 2 and the invariant J has degree 3 in the
coefficients of the binary quartic form.

Theorem. (Birch & Swinnerton-Dyer) There is an injective map
from S (2)(EA,B) to the set of GL2(Z)-equivalence classes of integral
binary quartic forms having invariants I =−24·3·A and J = −24·3·B.

BSD’s theorem yields an efficient method for rank computations of
elliptic curves. This method has been further refined by Cremona,
and implemented in his well-known mwrank program.
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Counting binary forms

Disquisitiones Arithmeticae (1801)

Binary quadratic form:

Q(x , y) = ax2 + bxy + cy2 (a, b, c ∈ Z)

SL2(Z) acts on the set of binary quadratic forms (by linear substi-
tution).

Disc(Q) = b2 − 4ac. (unique SL2-polynomial invariant)

It is known that there are only finitely many SL2(Z)-equivalence
classes of binary quadratic forms with given value of discriminant D.

How many classes hD are there with discriminant D, or with D at
most X ?

Theorem. (Gauss 1801/Mertens 1874/Siegel 1944)∑
−X<D<0

hD ∼
π

18
· X 3/2;

∑
0<D<X

hD log εD ∼
π2

18
· X 3/2.
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Counting binary forms: cubic forms

The next natural case is that of binary cubic forms
f (x , y) = ax3 + bx2y + cxy2 + dy3, a, b, c , d ∈ Z.

GL2(Z) acts naturally on such forms.

There is again just one polynomial invariant for this action, namely
the discriminant Disc(f ) of f , given by

Disc(f ) = b2c2 + 18abcd − 4ac3 − 4b3d − 27a2d2.

As before there exist only finitely many GL2(Z)-equivalence classes
of binary cubic forms with given value of discriminant D.

How many classes h(D) of irreducible binary cubic forms are there
with discriminant D, or with D at most X ?

Theorem. (Davenport 1951)∑
−X<D<0

h(D) ∼ π2

24
· X ;

∑
0<D<X

h(D) ∼ π2

72
· X .
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Counting binary forms: quartic forms

The next natural case is that of binary quartic forms f (x , y) =
ax4 + bx3y + cx2y2 + dxy3 + ey4, a, b, c , d , e ∈ Z.

GL2(Z) again acts on these forms by linear substitution.

There are now two polynomial invariants for this action, traditionally
denoted I and J, where:

I (f ) = 12ae − 3bd + c2,

J(f ) = 72ace + 9bcd − 27ad2 − 27eb2 − 2c3.

Again, if you fix both I and J, then there exist only finitely many
GL2(Z)-equivalence classes of integral binary quartic forms having
this value of (I , J).

On average, how many classes hI ,J of irreducible binary quartic forms
are there having given invariants I and J? Equivalently, how many
equivalence classes of binary quartic forms are there having bounded
I and J?
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Counting binary quartic forms

We define the height H(f ) of a binary quartic form f by:

H(f ) := H(I , J) := max{|I 3|, J2/4}

How many equivalence classes of quartics f have H(f ) < X ?

Works of Julia, Cremona, Stoll, Yukie, Yang each imply that this
number is O(X 5/6+ε). Almost any reduction theory method implies
this immediately.

Theorem.

(a)
∑

H(I ,J)<X
Disc(I ,J)>0

h(I , J) ∼ 12

135
ζ(2) · X 5/6;

(b)
∑

H(I ,J)<X
Disc(I ,J)<0

h(I , J) ∼ 32

135
ζ(2) · X 5/6.

How many classes do we get per (I , J)?
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Eligible (I , J)

We say that a pair (I , J) ∈ Z × Z is eligible if it occurs as the
invariants of some integer binary quartic form. In fact, the set of
eligible (I , J) is defined purely by congruences.

These congruence conditions are:

(a) I ≡ 0 (mod 3) and J ≡ 0 (mod 27),

(b) I ≡ 1 (mod 9) and J ≡ ±2 (mod 27),

(c) I ≡ 4 (mod 9) and J ≡ ±16 (mod 27),

(d) I ≡ 7 (mod 9) and J ≡ ±7 (mod 27).

The number of eligible (I , J) having height less than X is thus a
constant times X 5/6. (In fact, 8

27 · X
5/6.)
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The average number of binary quartic forms per (I , J)

We may thus average the number of GL2(Z)-orbits of binary quartics
over eligible pairs (I , J).

Theorem.

(a) The average number of positive discriminant binary quartic
forms per eligible (I , J) is 3ζ(2)/2.

(b) The average number of negative discriminant binary quartic
forms per eligible (I , J) is ζ(2).

The analogous theorems can be proven for equivalence classes of
binary quartic forms satisfying any desired finite set of congruence
conditions.
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Back to elliptic curves!

To prove the main theorem, about the average size of the 2-Selmer
group being 3:

Given A,B ∈ Z, choose an integral binary quartic form f for
each element of S (2)(EA,B), such that

y2 = f (x) gives the desired 2-covering over Q;

the invariants (I (f ), J(f )) agree with the invariants (A,B) of
the elliptic curve (at least away from 2 and 3);

The construction of such a set of binary quartic forms follows
from the work of Birch and Swinnerton-Dyer.

Count these integral binary quartic forms. These are defined
by infinitely many congruence conditions, so a sieve has to be
performed. A uniformity estimate must be proven to perform
this sieve, and that is by far the most technical part of this
work. It involves counting integral points in much bigger
spaces than binary quartic forms!
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Average Size of 2-Selmer

In particular, we must count points of bounded invariants in a certain
nonreductive coregular space of dimension 12.

Once this count is performed, the uniformity estimate proven, and
then the sieve carried out, we finally obtain:

Theorem. When all elliptic curves E/Q (in any family defined
by finitely many congruence conditions) are ordered by height, the
average size of the 2-Selmer group S (2)(E ) is 3.

Corollary. When all elliptic curves E/Q (in any family defined by
finitely many congruence conditions) are ordered by height, the av-
erage rank is at most 1.5.
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What about 3-Selmer?
We may also determine the average size of the 3-Selmer group of
elliptic curves!

The set of 3-Selmer elements of elliptic curves is parametrized by 3-
coverings, which may in turn be parametrized by appropriate GL3(Q)-
orbits of integer ternary cubic forms. (This follows from a result of
Cassels.)

The analogous “minimization” results of BSD over the integers have
been proven by Cremona, Fisher, and Stoll in this case.

Proceeding in an analogous way (though now the dimension of the
basic space is much bigger!), we show:

Theorem. When all elliptic curves E/Q (in any family defined by
finitely many congruence conditions) are ordered by height, the mean
size of S (3)(E ) is 4.

Corollary. When all elliptic curves E/Q (in any family defined by
finitely many congruence conditions) are ordered by height, the av-
erage rank is less than 1.17.
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Some consequences

Consider the family F of elliptic curves E that satisfy the following
mild conditions.

The curve E and its twist by −1 both have additive reduction
at 2.

The j-invariant of the curve E is a 2-adic unit.

The curve E has good ordinary reduction at 3.

The odd part of the discriminant of E is squarefree and
congruent to 1 mod 4.

It is easy to show that curves satisfying these conditions consist of
a positive proportion of all elliptic curves.

Furthermore, our results about 3-Selmer also apply to this family.

Suppose E ∈ F . Then E twisted by −1 is also in F , and fur-
thermore, the analytic root numbers of E and its twist by −1 are
different. Therefore, exactly half the root numbers of curves in F
are +1.
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Parity of p-Selmer rank

A recent result of Tim and Vladimir Dokchitser states that the parity
of the p-Selmer rank of E is even iff the root number of E is +1!

Combining this with the fact that the 3-Selmer average is at most
4 in any family (e.g., F), we are able to prove:

Theorem. When all elliptic curves E/Q are ordered by height, a
positive proportion of them have rank 0.

Indeed, as the average number of 3-Selmer elements of curves in F
is at most 4, it is not possible for all the curves with even 2-Selmer
rank to have rank greater than 0. At least half of them must have
rank 0!

A similar argument gives:

Theorem. Assume X(E ) is finite for all E . When all elliptic
curves E/Q are ordered by height, a positive proportion of them
have rank 1.
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Nonvanishing of elliptic curve L-functions

What about analytic rank?

A recent result of Skinner–Urban states that if the L-function of an
elliptic curve E vanishes at s = 1 and E has good ordinary reduction
at 3, then the 3-Selmer group of E is nontrivial.

Combining this with the fact that the 3-Selmer average is at most
4 in any family (e.g., F), we are able to prove:

Theorem. When all elliptic curves E/Q are ordered by height, a
positive proportion of them have analytic rank 0; that is, a positive
proportion of elliptic curves have nonvanishing L-function at s = 1.

Corollary. A positive proportion of elliptic curves satisfy the BSD
rank conjecture.
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Corollary. A positive proportion of elliptic curves satisfy the BSD
rank conjecture.
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What about 4-Selmer and 5-Selmer?

Elements in 4-Selmer and 5-Selmer groups of elliptic curves can be
mapped to integer points, up to equivalence, having the correspond-
ing invariants in the spaces

Z2 ⊗ Sym2(Z4) and Z5 ⊗ ∧2Z5,

respectively. (This again can be deduced from work of Cassels,
Cremona–Fisher–Stoll, and Fisher.)

Counting points in these spaces should thus similarly lead to the
analogous results for 4-Selmer and 5-Selmer. However, cusps are
extremely complicated. (These spaces are 20- and 50-dimensional,
respectively, with about 1000 cuspidal regions to deal with!)
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What about 4-Selmer and 5-Selmer?

Dealing with these issues, we are finally able to prove:

Theorem. When all elliptic curves E/Q (in any family defined by
finitely many congruence conditions) are ordered by height, the mean
size of S (4)(E ) is 7.

Theorem. When all elliptic curves E/Q (in any family defined by
finitely many congruence conditions) are ordered by height, the mean
size of S (5)(E ) is 6.

Using the last theorem, together with a more careful analysis of
changing of root numbers under twisting, we can now prove:

Corollary. When all elliptic curves E/Q are ordered by height, the
average rank is less than 1.
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Some final remarks

Similar counting techniques applied to various other (coregular) spaces
should eventually lead to densities of other data associated to elliptic
curves and related algebraic and geometric objects.

There are about 50 such spaces that parametrize genus one curves
with extra data (joint work with Wei Ho).

There are several such spaces that parametrize various data corre-
sponding to higher genus curves (Dick Gross, Wei Ho, Sam Stevens,
Jack Thorne, . . . ).
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