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1 Riemann (-function

Definition. Recall that we define Riemann’s zeta function via
1 Cev—
(=3 L Tla-»
n>1 P
Riemann proved that  can be extended meromorphically to C.

Theorem 1.1. We have that ((s) has meromorphic continuation to C with a simple pole at s = 1
of residue 1. The completed function has the form

&) = T (5) <),

and it satisfies the functional equation

~

¢(s) =¢(1 —s).
Proof. This is proved using the Poisson summation formula and is a standard proof. O

Definition (L-function). We define an L-function as a Dirichlet series of the form

o0

L(s) = e

n=1

Qn

where a,, € C, and a,, = O(n") for some r. Then the series ‘makes sense’ since it will converge
on the half plane for Re(s) > r 4 1. It has an Euler product and has degree d if can be written
as a product

1
Mo =1l

with F,(t) € C[t] polynomials of degree < d, and = d for almost all primes. The terms are
called local factors and F,(T) the local polynomials.

Example 1.1. The Riemann zeta function has Euler product and degree 1.



All L-fns we will see will satisfy this, and are conjectured to
(a) have meromorphic continuation to C with finitely many poles (usually none)

(b) Function equation: 3 weight k, a sign w, conductor N and a I'-factor

7(8)_11(34;)\1)“.11(34-2)%)

such that

satisfies R .
L(s) =w-L(k — s).

(c) Riemann hypothesis: all non-trivial zeros lie on the line Re(s) = k/2.
Remarks.

e [f L(s) satisfies (a) and (b) then as in the proof of theorem 1.1 (here this theta function is
not the Jacobi one)

f/(s) = /100($s/2 +w- x(k*S)/Q)@(\/ﬁ ) x)d?l‘

where ©(x) = Y 07 | andn(x) where the ¢ function depends only on ~y(s) and decays
exponentially with n. In fact, (b) is equivalent to

S} (NZ) =w - O(x). (*)

This gives a way to compute L-functions numerically (with ~ /N terms). This gives an
idea of measure of arithmetic complexity of an L-function by looking at how bit the square
root of the conductor is (larger means harder).

o There are functions called modular forms f (technically, newforms of weight k, level N
and w-eigenform for the Atkin-Lehner involution)

f:{z€C:Im(z) >0} - C

such that ©(z) = f(ix) satisfies (x) by definition. Thus, their L-functions satisfy (a) and
(b), again pretty much by definition.

e 2 categories of L-fns L(s) = > >0 | %

n=1 ns"*
(i) With a direct formula for the a,. Generally, we know how to prove (a) and (b) for
these.

(ii) Only defined by an Euler product, for example L(p, s) Artin, L(E, s) elliptic curves,
other varieties... We never know how to prove (a) and (b) for these except by reducing

to (i).



Function an,
¢(s) 1
L(x;s) x(n)
Cr(s) | #ideals of norm n in O

2 Dedekind (-functions

Definition. Let K be a number field, with [K : Q] = d so K = Q% as a Q-vector space. Then
let © = O be the ring of integers, so O = 7% as abelian group. Take I C Oy a non-zero
ideal. Define the norm

NI = (Og : I).
It is finite, and satisfies nice properties like being multiplicative:
N(IJ)=NI-NJ,

and I can be written as a unique product of prime ideals,

.
I=]]»
=1

where O /p; is a finite integral domain, which implies it is a field F,,- and hence p; C (p;) for
some primes p; € 7.
In particular, if we take an ideal I = (p) where p € 7 and factor it

(p) =[] 5
=1

we call the ideals p; primes above p, and the e;’s are ramification indices (theese are usually
equal to 1 for all but finitely many p, namely p 1 Ay, called unramified primes p). Finally, we say
that

fi =10/p; 1 Fy)
are the residue degrees. Thus O /p; = For.
Then N (p) = (O : pO) = p® since O = 7 and pO = p - 72. This implies that

d= ZT: eifi
i=1

in general, and d = _._, fi for unramified primes.
Note that if the extension K/Q is Galois theney = -+~ = egq, f1 = -+ - = [y since Gal(K/Q)
permutes p; transitively. Hence in this case d = efr.

In practice,



Theorem 2.1 (Kummer-Dedekind). Let K = % where g(X) € Z[X]| monic. Then Ag|A,,

and for all primes p { A,
I
p= H pi
i=1
is unramified, and we have

9(X)=g1...g, modp
with deg g; = f;.

Definition (Dedekind (-function of K). Let

where a,, = {# of ideas of norm n in O }. Alternatively, we can write

Cels) = D N;s

ICOkideal
1#£0

1
= 1 T-Np>

p prime ideal #0

= This follows from KD
11 Fy(p™)

p prime of Z p

Here F,, € Z[x] is of degree d for p t Ak and of degree < d for p|Ak. These are degree d
L-functions.

Example 2.1. Take K = Q(i), O = Z[i] Gaussian integers, and O* = {£1,+i} units.

As for Riemann ¢,

Grels) = D N;s

1cz[i]
1740
1 . q.
= Z ——— Since Z[i] is a PID
(o)
0F#€Zi)
mod Z[i]*

1 1
- 1 Z (m2 +n2)s'

(m,n)€Z2\{0}
The same computation as before (for RZF) gives that

2° O(z) -1
—T'(s)Ck (s) = Mellin transform of O -1
s



and

@(x): Z 677r(m2+n2):c
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m

()

This trick as before gives a functional equation for (g ;)(s). For general number fields, the extra
statement we need is a generalised Poisson summation formula:

Let V = R% f : V — C decaying fast. Take V* the dual vector space, and define the
Fourier transform F f : V* — C by

(FF)(m) = /V &2 mm) £ () di,

Take I' C V arank d lattice. Then
> fn) > (FHm).
e Vol V/ I) et

Use this to compare w75 10 > aco s This will involve
a#0

e the class number, h = #{ideals/principal ideals} and

e units, roots of unity,

If we have K a number field of degree [K : Q] = d = ry + 2r9, then
e 1] = #real embeddings K — R

e 19 = #pairs of non-real embeddings K — C.

Then O C R™ x C™ = R% s a lattice.
After these considerations, we find that Poisson summation gives that

Theorem 2.2. We have that (i (s) is meromorphic on C, it has a simple pole at s = 1, a residue
at s = 1 of value
2" (2m)2hR
#roots of unity in K - \/|Ax|
The above expression for the value of the residue is called the class number formula, where h is
again the class number, and R is the regulator (of units). Further, (i (s) satisfies the functional
equation,

Ck(1—s) = Ck(s).

Exercise 2.1 (Answer on MO 218759). If [K : Q] = d, and K is Galois, then there exists
infinitely many primes that ‘split completely in K’ (i.e. they have the maximal possible number
of primes above them, and e = f = 1), and have density %



3 Dirichlet L-functions

Within this section, we will show that we can relate Dirichlet L-functions and the Dedekind zeta
function over a cyclotomic field. First we begin with some standard definitions.

Definition. Let n > 2. Then a (mod n) Dirichlet character is a group homomorphism
X : (Z/nZ)* — C*,
and they form a group (Z%Z) X, The two main invariants of a character are:

e Order of x: the smallest such d such that x* = 1, so x maps to the d'" roots of unity.
Those characters where d = 2 are called quadratic.

e Modulus of x: the smallest m|n such that Ixo : (Z/mZ)* — C* such that x(a) =
Xo(a) for all a such that (a,n) = 1. We extend x : (Z/nZ)* — C* to

x:Z—C

by
(@) = {Xo(a) (a,m) =1

0 oW.

Then x is almost a homomorphism (it is except on ‘bad’ primes) - but it is totally multi-
plicative.

Example 3.1. Forn = 1, x(a) = 1 for all a € Z, which we call the trivial character. It has
order 1 and modulus 1. We write 1 for the trivial character.

Example 3.2. For n = 3, then x : (Z/3Z)* — C* and (Z/3Z)* = Cj so there are 2
characters. The first is the trivial character 1, and the second is

1 a=1 mod3
x3(n) =< -1 a=2 mod3.
0 a=0 mod3

Then x3 has modulus 3 and order 2.
For n = 4, there are also 2 characters, with the non-trivial being

1 a=1 mod4
x4(a) =< -1 a=3 mod 4

0 a even.

Then x4 has order 2 and modulus 4.

Example 3.3. When n = 5 then the domain is isomorphic to Cy so
x5 : Cy — C*,

50 we could send 2 — i then x2, X5 = X3 and x& = 1 are the possible characters.



1 5 7 11

1 1 1 1 1
s |1 -1 1 -1
Ya |1 1 -1 -1
xsxa | 1 -1 -1 1

Example 3.4. n = 12 then there are 4 characters (isom to Co x Cs), and

Note that x3 looks like (;3) and has modulus 3, order 2; x4 is (;1) and has modulus 4,
order 2; x3X4 IS (ﬁ) and has modulus 12 order 2.

Recall that in the particular case ¢ = 2, we have

0 n#1l mod4
(E): 1 n=1 modR&
—1 n=5 mod38

0 2 ramifies in Q(y/n)
=491  2splitsin Q(y/n)
=1 2inertin Q(y/n).

Definition. We define the Dirichlet L-function modulus m to be, for a Dirichlet character x :

(Z/mZ)* — C*,
X)) 1
Hes = ,;1 e 1} L—x(p)p~

These are local polynomials: 1 if plm and 1 — x(p)T if p t m.
Further |x(n)| < 1 thus they are absolutely convergent on Re(s) > 1. In fact, for x # 1,
using some yoga called Abel summation and the fact that

n=A
forall A, B, the L-series converges (not absolutely) on Re(s) > 0.

Theorem 3.1. L(x, s) is entire for x not the trivial character. The completed form is

L(x,s) = (T)SMF (S ; A) L(x, 5),

and it satisfies the functional equation

L(X,l—S) :UJL()Z,S)

where bar is complex conj, with

5= 0 x(—=1)=1, xeven
|1 x(=1)=-1, yodd.”



Note that w = 1 for Riemann zeta but in this case is defined as

—_

1 &

w=——=3" x(a),
maz:ox

271
the G, = em are primitive m* roots of unity. Note that this is the Gauss sum and w € C*
with |w| = 1.

Proof. The outline of the proof uses Poisson summation with

—n(mz+a)?t

e even x

—mx2t

e odd .

We now want to show that the Dedekind zeta satisfies

Co(em)(8) = H L(x, s),

where the x vary all over x : (Z/mZ)* — C*.

Note that a corollary of this is that L(x,1) # 0 for all non-trivial characters: from the
Dedekind zeta product form above, there is a simple pole in LHS at s = 1 and on the right we
have L(1, s) = ((s) (which has the pole) and all the other characters give analytic L-functions
at s = 1. This proves Dirichlet’s theorem on primes in arithmetic progressions:

Take

p = {primesp=a mod m} for(a,m)=1,

1
> L

PEP

then consider

Since we can consider

1
log((s) = Z o + {terms analytic at s = 1},
P

W€ can say

1 1 —
— = x(a)log L(x,s) + {analytic at s = 1}.
3 5 = oy X log L) +{ }

Note that all the functions are analytic except when we are considering Riemann zeta which
contributes a pole.

The LHS diverges for s = 1 because of the contribution from L(1, s) on the right which

then gives a growth independent of the choice of a. Thus p is infinite and has density e

p(m)”



4 Cyclotomic Fields

Fix m > 1 and assume that m is not twice an odd number. Then K = Q(() is the field of
interest, and is called the m*" cyclotomic field, where ¢, = e’m and the degree of K over Q is

p(m):
Clearly K = Q(roots of ™ — 1) = Q(roots of ®,,,) where ®,, is the m'" cyclotomic
polynomial, ®;(z) =z — 1,

2™ —1 =[] ()

dlm

so deg @, = ¢(m) = (Z/mZ)*.
Note that K is Galois over Q.
Further, when m = ¢* then it is easy to verify that

o O (x+1) = 2#(™) ... 4 ¢, and it is Eisenstein and hence irreducible. This in particular
shows that [Q((n) : Q] = ¢(m).

o (¢) =(1— ¢m)®™ so we have equality as ideals in Q. Thus g is totally ramified in
K/Q.

e All other primes are pf A;m_1 = are unramified in K/Q with residue degree

f =orderof pin (Z/mZ)*.

Proof. We have that p = 1 mod m iff m*" roots of unity are all contained in IF. Equivalently,
k
®,, = Zf_ifll splits completely over [F,,. Similarly, if p” = 1 mod m for some r, this is
21

equivalent as above (except with IF;T) and ®,,, has irreducible factors of degree dividing r over
[F,. Thus, since the order of p in (Z/mZ)* is the smallest such r, then f = r by KD. O

Now, in the general case, m = qlfl .. .qu , the field that we consider K = Q((,,) is the

compositum of Q( 511), ..., Q(¢g}), and in particular, if we look at ramification of primes, we
see that these fields have no common overlap so

[Q(¢m) : Q) = [ e(a®) = o(m),

which proves that all ®,,, are irreducible.
Then if p t m then p is unramified in Q((,,) /Q with residue degree f,, = order of p in (Z/mZ)*.
If otherwise p|m so m = pFmg so p ramifies in Q((y,)/Q with ramification degree e, =
[Q(¢r) : Q] = p"=*(p — 1) and has residue degree f, = order p mod my.

4.1 (-function of Q(¢,,)

Recall that



Then
p(m)

Fy(T) = (1 - Th) o

andrecall that 1 — Np=* = 1—p~f»s = 1 —T7» and % is the number of primes above p. The
degree of F}, is usually ¢(m) since most primes are unramified, and in general deg F}, = ¢(my).

We can hence observe,

p(mg)

RM= J] a-¢n» = [ 0-x@D.

a€(Z/ fpZ)* x:(Z/mZ)* —CX*

Combining over all primes, we have shown that

e = JI  Ls.

X:(Z/mZ)* —CX*

Example 4.1. Ler m = 12, K = Q((12) = Q(i,v/—3), a biquadratic extension. It is also the
splitting filed of x'* — 1 = ®19(x). Recall that we can write

Pio(z) = P1 D2 P3 PP D12
=(z-D+D)+z+ D@2+ D@2 -+ D) — 22 +1).

Here are some local factors for (g(¢,,)(s)-

B(T) F(T)  F5(T) ... Fi3(T)

((s)=L(1,s) | 1-T 1-T 1-T ... 1-T

X L(xs, s) 1+T 1 1+7 ... 1-T
X L(xa, s) 1 1+T 1-T ... 1-T
X L(x12, s) 1 1 1+T 1-T
= Co(cra)(8) 1-77 1-7T? (1-7%? ... (1-T)*

The prime decomposition is

(2) = p3 Npy =4 e=2,f=2 ramified

(3) = p3 Np3s=9 e=2f=2 ramified

(5) = psapss e=1,f=2 partially split'
(13) = p134ap13BP13CP13D totally split*.

lefia* =2 +1=(2?+22-1)(2> -2z —1) mod 5
ef 2t -2+ 1= (x—2)(z—6)(x — 7)(x —11) mod 13

10



4.2 Abelian extensions of (Q

I
@

(i,v/—3)

TN

Q¢) =01  QHV3) QW-3)=Q(G&)

7

Figure 1: Extension map

Q

We have the extension map figure 1. Note that we have the following decompositions,

Co(cra) = ¢ - Lx3) L(xa) L(x12)

C@ (C) — G- L(X4)
Caes) = ¢ Lxs)
Cova) =6 Llxi2) = ¢~ L((?))-

Theorem 4.1 (Kronecker-Weber). We say that K/Q is abelian if it is Galois with Gal(K /Q)
abelian. Then

K/Qis abelian <= K C Q((y) for some m

In fact, from representation theory (justified more later),

[K:Q]
— (k(s H Dirichlet L-fns.
=1

Generalisation
Due to Hecke: can we do the same type of procedure over a number field F' in place of Q?
So we would fix a non-zero ideal m C Op called a ‘modulus’. Then we would define

. 1
Hoes) = B, x(DNTT = 1;[ L= x(p) ()~

I1COp
ideal#0

with x : I, = {fractional ideals of F' prime to m} — C* of finite order,
X(I) =1 on Py, = {principal ideals (&) such that « =1 mod m}.

Then extend to all other ideals, by mapping them to 0.

11



R* — C* | x + sgn(z)"|z[*Tv € {0,1}
u

C*—=C* | z— (é—‘ ||V Hiw u € Z.

Table 1: Possibilities for .

Example 4.2. L(1,s) = (p(s).

Hecke showed analytic continuation and a functional equation for these L-functions. Thus
these are truly analogues to Dirichlet L-functions, but over F'. There is a further slight generali-
sation, called Hecke characters and/or Grossencharakters. These allow x|p, : a +— C* instead
of 1, to agree with

F* — (R*)™ x (C*)? = C*
via some continuous homomorphism ¢, cally ‘infinity type’.

At real places, possibilities for ¢ (see Table 1) are just shifts.

Example 4.3.

1
(o= =1 s = L),

with x(p) = p the cyclotomic character.

This is a Hecke character with infinite typy R* — C*, z + |z|. That is, takes generator +n
of an ideal (n) and maps it to n. The modern formulation is:
Hecke characters on F' = continuous group homomorphisms,

A% — C*  with F* in the kernel.

Tate’s thesis gives an alternative proof of meromorphic continuation and functional equation for
Hecke characters using Fourier analysis on adeles.

5 Decomposition, inertia, Frobenius

Let K be a number field, p C Ok a prime (e.g. Q, (p)). Then assume F'/K is a finite Galois
extension, G = Gal(F/K), |G| = [F : K] = d.

Let py,...,p, be the primes above p in F'. Recall that if e is the ramification degree, f the
residue degree, then here e fr = d.

Remark (Fact 1). G permutes the p; transitively.

Definition. We define the decomposition group of the primes p; as the stabiliser of p; in G. We
write it as Dy, so

Dy, = {0 € Gal(F/K) : o(p:) = pi},

and has index r in G.

12



Then Dy, acts on the residue fields O [p; = F 1 so we get

Dy, LN Gal(F s /Fy) = Cy  cyclic, gen. by x +— x4

o0

with the map being the reduction map on automorphisms.
Remark (Fact 2). This map is onto.
Definition. The kernel of o — G is the inertia group of p;. Then
I,, = {0 € Dy,|6 = id}
that is they are the elements of G that map p; — p; that are invisible on O /p;. Then Iy, zl Dy,
and |1,,| = e.
Definition. A Frobenius element at p;,

Froby,, = any element of Dy, that acts as x — x% on OF /p;.

So G has a subgroup of index r, D,,. Inside D), there is a normal subgroup of index f, I,.
Inside Iy, there is the trivial normal subgroup of index e:

¢ip, L, &)
By Galois theory, this corresponds to

K p split K, p; totally inert Koy p; totally ramified F
r

Remark. Fort € G,

Dr ) = {0 € Glo(r(p:)) = 7(pi)}
= {ror o (pi) = pi}
= TDpinl.
Thus Dy, ..., Dy, are conjugate in G. It is then convenient to descend to K:

Definition. Let F'/K be Galois, p prime of K. Then

e D, := decomposition group of some prime p;|p. Therefore, this is defined up to conju-
gacy.

o [, := intertia group of some p;|p, also defined up to conjugacy.

e I'roby = Frob. element of Dy,. This is defined up to conjugacy and modulo inertia.

13



Figure 2: Extension map

Example 5.1. Take F' = (@(\/§7 i), the biquadratic extension, structure given in Figure 2, and
K = Q. Then the Galois group is isomorphic to Co x Co generated by

o(i)=—i o(V3)=V3
(i) =i  7(V3)=—V3.
We look at (2) in F/K. Then (2) is inert in Q(v/=3) so its inertia degree is 2 so 2|f.

Similarly it ramifies in Q(i) so 2|e. (This is expanded in HW3). Thus e = f = 2andr = 1
(since F/K = 4 and (2) = p3 whose norm is 4. Hence, we have that

K p split K, pi totajfy inert Ky pi totally ramified F
r e

Q no s@m’ng Q 2 inert Q(\/j?)) 2 ramiﬁes_ F

Then
Dy = Dy, =G, I, =1, = (o1), Froby = 7 or o.

In the last thing we have to choose anything that isn’t in Iy = (o).
Explicitly, write ( = (3 = 71%‘/773’; (2= —1—C(. Then

Or ={a+bi+ cC+diCla,b,c,d € Z}

and
po=(1+14) ={a+bi+c(+difla,b,c,d € Z,a=b,c=d mod 2}.

Note that p3 = (2). Further,
OF/p2 = {ﬁaiaéal +C} gIF‘4-

Consider o7:
o1(p2) = (1 — i) = po, and o fixes 0,1,(,1 + ¢ so it’s trivial on Fy. Hence o1 € I, -
also note here that I = Gal(F : Q(v/—3)).

14



Also, T(p2) = po as 7 fixes 1 + i. Now T fixes 0,1 and sends  — (2 = 1 + ¢ (map is mod
(2) and the congruence is mod (p2)).

That is 7 : Fy — Fy, @ — 2 so it acts on the residue field by squaring everything, and
this is precisely what it means to be the Frobenius element for this prime, so T = Frobs. Thus

DQ = <IQ,FI‘Ob2> =G.

6 Galois Representations

Definition. Take G a finite group. Then a d-dimensional (complex) representation of G is a
group homomorphism,

p:G— GL(d,C) = GLy4(C) = GL(V),
for' V' some complex d-dimensional vector space.

Example 6.1. Suppose G = Cy = (g). Then we could construct p via

o 0 -1
771 o
a rotation by /2. Thus we ‘represent G as a group of matrices’.

Definition. When G = Gal(F/K), where F'/ K is some finite Galois extension, then we call the
representation of this group a Galois representation,

p:Gal(F/K) — GL4(C),

or

p:Gal(K/K) — Gal(F/K) — GL4(C).

When F, K are number fields, then these representations are called Artin representations (over
K).

Definition. 7o each such Artin representation, we can associate an L-function. Take
p:Gal(F/K) — GL(V),

an Artin representation. Then we define the (Artin) L-function,

Lip,s)=L(V,s)= [ F®p).
p prime of K

with
Fy(T) = det (1 — p(Frob, )T |V'’).
Recall that I, = {v € V|o(v) = v Vo € I,}. Also, note that mostly the inertia group is trivial

- so it’s not usually as scary as it looks. Thus for all but finitely many primes, Fy,(T) has degree
d. It will have smaller degree for those which are ramified.

15



Exercise 6.1 (Do it!). This is well-defined.
Example 6.2. Let F' = Q(i), K = Q. Then G = Gal(F/K) = Cy = (1,0). Recall that

primes here fall in to 3 categories,

2 I, =G
p=<1 mod4 I,={1},D,={1},Frob, =1
3 mod4 I,={1},D, =G, Frob, =o0.

As an example, take G — C* = GL(V}), where dim V} = 1. Then
1,0 1d.

So Vll” = V] for all p and has dimension 1. Then we need to examine the characteristic polyno-
mial of Frob,:

p(Frob,) =1d  Vp, Fo(T) =det(1-1d-T) =1-T.

Thus the L-function L(V1,s) = ((s) (unsurprisingly).
Now take a different rep, G — C* = GL(V_1), where dim V_; = 1 with

1+—1d, o— —1d.

0 =
v = ==
Vi p>2

Turning to the characteristic polynomials,

Then

1 p=2
F,(T)=qdet(1-1d-T)=1-T p=1 mod4
det(1+1d-T)=14+T p=3 mod 4.

Therefore L(V_1,s) = L(xu, ), where x4 is the Dirichlet character of conductor 4 (defined
earlier on).

Final example of a rep: G — GL(V') where V has dimension 2. Consider V = Q(i) ®q C
- look at G acting on Q(i) = Q- 1+ Q - i, Q-linearly, and take the same matrices over C. Thus

1 10 . 1 0
0 1 0 -1/
Thus our space V decomposes as V. = Vi @ V_1. We can see that V'r = Vllp @ Vf’i and

whatever determinant we are computing, it is going to be the product of determinants on the two
subspaces. Thus,

L(V,s) = L(V1,s)L(V_1,8) = ((s)L(x4,5) = Co)(s)-

16



In fact, any representation of Gal(Q(7)/Q) = Cs is
Vie---VieV e -V, :Vl‘l@VEP

so we will always get

C<3>GL(X47 S)b'
Question Why do we define Artin L-functions L(V s) like this, with
Fo(T) = det (1 — p(Frob, )T |V '#)?

Write Gx = Gal(K/K) where K is a number field. Then these are a collection of ‘semi-
good’ reasons:

(1) L(Lgy, s) = ((s) where 1, is the trivial representation on Gal(Q/Q). More generally,
L(1gy,s) = Ck($).

(2) Generally, 1-dimensional representations of G'g correspond to Dirichlet L-functions. When
K is a number field, we get Hecke L-functions of finite order.

(3) Suppose [K : Q] = d (not necessarily Galois) then K determines a natural d-dimensional
representation Vi of G, the absolute Galois group of Q. For example, let K’ = Q[X]/ f(x)
with roots a4, ..., ag. Then

Vik =Ca1 @ --- ® Cay,
and the Galois group acts by permuting the basis elements «, . .., «g. Then
~ 1 4G
Vi = IndG% lag,

and (x(s) = L(Vk,s). The decomposition of Vi into irreducible representations leads
to
Ck(s) = H Artin L-functions of irreps.

(4) We have that (1) and (3) combine to give L(1g,,s) = L(Indg?; 1g,,s) and the same is
true for any V' of Gk in place of 1¢,, .

(5) The Brauer induction gives that (1)-(4) recovers all L(V, s) uniquely from Dirichlet/Hecke
L-functions, which shows that our definition of F},(7") is the only possible one, and gives
meromorphic continuation of all L(V, s) and the corresponding functional equation.

(6) Everything works in exactly the same way for non-finite image representations (elliptic
curves etc.).
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7 Special Case: L(x, s)

Theorem 7.1. There is a bijection

{Dirichlet characters x} +— {1 — dim Artin reps p : Gal(Q/Q) — C*}
X B2 Px
such that

e X isofmodulus m <= p, factors through Gal(Q((r,)/Q) and not for smaller djm (%).

o L(x,s) = L(py,$).

Proof. Take x of modulus m. Then
px : Gal(Q(Gm) /Q) T (Z/mZ)* = C

where

o:Cn—Cy a X(a)_l.
Artin map

Note that p~! € (Z/mZ)* corresponds to (,, — (b, which is Frob,, (or in other words p >
Frob,, 1). Then y of modulus 1 implies that it does not come from (Z/dZ)* for d|m, d < m so
this implies (%).

Kronecker-Weber gives that every representation of Gg = Gal(Q/Q) that factors through
an abelian group, in particular every 1-dim one, p, factors through some Gal(Q((y,)/Q). Thus
p = py for some .

Finally we need to compare L-functions - we do this by separately considering ‘good’ and
‘bad’ primes. For p t m, L(x, s) has

Fo(T)=1—x(p)T, forx(p) € C*,pe (Z/mL)*.

Also, L(py, s) has F(T') = 1 — py(Frob, YT (inertia at p is trivial because p is unramified in

Q(Gn)/Q). So pX(Frobgl) = X(p). For p|m, L(x, s) has F,,(T") = 1 (as p|m implies x(p) = 0
since this is how we extend characters).

Q(Gm)

Figure 3: Extension Diagram for Q(¢,,,)/Q.
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Since x has modulus m (it is primitive), p, does not factor through Gal(Q((p,,)/Q). Thus
I,, acts non-trivially on V, (=2 C). Then we also note VP =0 — F,(T)=1. O

Remark. The same result holds for the one-to-one correspondence

Hecke chars of finite order over K &L 1odim reps G — C*.

The proof of this doesn’t use Kronecker-Weber, but instead uses the full force of global CFT.

8 Permutation representations and Dedekind ¢

Let F'/ K be a finite Galois extension, with G = Gal(F'/K). Then there are 1-1 correspondences
(one from basic group theory and the Galois correspondence)

Transtive G-sets <=5 Sbgrps of G LY fdsKcMcCF
up to conj up to isom/K
X <+ Stabiliser (of an elmt) H — FH
(of an elmt)
G/H i H Gal(F/M) <« M.

Here G/H = {left cosets g1 H ... gqH with left mult action}.
If [M : K] = d then we find a transitive G-set X of size d. Or, it can be thought of as a
Gal(K /K)-set which does not depend on F.

F

M ~> X:G/H

K

Explicitly, if M = K («), « the root of some irreducible degree d-polynomial f(x) € K|x].
Then set H = Stabg(«) and
X = Xyx = {roots of f} ©G
Y (K — embeddings M — K} © Gk.

Example 8.1. Let G = S5, K = Q, F = Q((3, &/m).
Take a G-set X of size d. Then we get out a d-dim permutation representation C[X] - for
the basis take elements of X and let G permute them.

19



Acts C

Fields M SubGrps H G-sets X
Q Ss : G acts trivially
Q(¢3) Cs o G acts through S35/C5 = Cs.
Q(/m) Cs Gactsas S5 C {1,2,3}
F {1} . Regular action (left mult).

Table 2: Galois correspondence for Exercise 8.1

Note that any G-set X can be written as a union of transitive GG-sets,

X=X; 1 Xo 1L ...

so C[X] = C[X1) @ C[X2]) @ -+, soit’s enough just to consider transitive ones.

[Aside: Prime decomposition in arbitrary extensions.]
Example 8.2. Let K = Q, F = Q(roots, ov; of 2° — 52* — 3), so G = Gal(F/K) = Ds.

Then
P Ps
F= @(al, M ,a5) ]F72 F72
Caop \\CQE
H = Cs4
= Q(a1) ?

5

K=Q p=7

Let’s consider Dy, € F/K so Dy, = Cay4 say, and I,, € F/K with I,, = {1}. In the

top ‘layer’ F/M:
F/M F/K Con 1=1<« fi/M =2
Dy =Dy, NH = . F/M
1 i=2,3,4,5+ f,/7 =1
., Cag}. Since the f’s are multiplicative in towers

Recall that H = Co 4 and Dy, € {C3a, ..
(see HW3), we have that
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p1 F
f=2 2
q1 M
)
K

In practice of course we go the other way:
25 =522 =3 = (v — 1)(2® + 32— 2)(z* =22 +2) mod 7

therefore (7) = q1qa2qs with f = 1, f = 2, f = 2 respectively in M /K. This implies that the
decomposition group of Tin F/K, Df/K = Cy (and not C1,Cs, D5).

Proposition 8.1. Let K be a number field,

F P1 e Pr
H

M G Galois {qj}

K p

SoD; = DJ/* < G, I, = IF"® 4 D,. So now write I = I,, D = Dy, Frob, € D.

(i) DM = p;nH, 1M =0 H

(ii) In M /K, primes q;|p are in a 1-1 correspondence with ‘double cosets’ Dg;H € D\G/H.
They are also in a 1-1 correspondence with orbits of D on G/H. Each orbit has length
e; f; (e; the ramification and f; the residue degree of q; in M /K) and is a union of f;
I-orbits of length e; cyclically permuted by Froby, .

Proof. (i) is clear. (ii) By considering how H acts on {p;}, we see that the orbits are in a 1-1

correspondence with q; and the stabilisers are D}i/ M Now, how does H act on G /D? Orbits
are now in 1-1 correspondence with the double cosets, and stabilisers are D; N H. By (i) the
stabilisers are equal, so the orbits are the same. The rest of the proposition is bookwork. O
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Definition. The relative (-function is

Cumyi(s) = H

qCOM

1
1= Ny (a7s)

Note that this is equal to (ny when K = Q.
Theorem 8.2. Let M /K be a finite extension. Then

Cuvyi(8) = L(C[ Xk, )
The RHS is the Artin L-function for the representation C[X /] © Gal(K/K).

On the level of local polynomials, for every prime p of K,

H(l — Tla) Thm det(1 — FI‘Ob;1 T\(C[XM/K]IP)'

qlp
pl[, Frobp
(
F p1 pr
H
M G \{qg}/
K p

Proof. Recall that if X is a G-set then we have the representation C[X]¢ = C#°is, For
example if

T my  wx3  wm4
~— \_/
then C¢ = (x1 + 29,23 + x4 + x5). As a D-set,

Xyx =G/H :DJ%;H D/DngHg;".

Recall that [ acts with f; orbits of size I N g;H g, ! and they are cyclically permuted by Frob,.
Therefore C[G/H]|! = @;C% © Frob, cyclically (and therefore the inverse of Frob as well).
Therefore,

det(1 — FI“Obp_l T\(C[G’/H}I") = H(l — T73) = local factor of Cavyic(s) atp.

J
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9 Characters and Induction

There is the topic of character theory that says for G finite, p : G — GL(V), there exists an
object called a ‘character’ that encodes information about p.

Definition. The character of V (or of p) is
Xp=xv:G—C,
where g — tr(p(g)).

Then note that xy-(e) = dim V" and for p a one dimensional representation then ‘x, = p’.
Two conjugate elements have the same trace so characters are class functions.

Definition. We have the following inner product,

v ) = > xvig)xw(g).
|G| 4=

Example 9.1. Let V = C[X] be a permutation rep. Then
Xp = Xv = #{fixed points under V} = #{x € X : g-x = x}.

Example 9.2. If G = S5 which acts naturally on X = {1,2,3}. Then if V= C[X], we have
that the conjugacy classes, C = {[e], [(1,2)],[(1,2, 3)]}. Thus

xv =(3,1,0):C - C.

To examine the inner product:

1
<Xv,Xv>=8[3‘3'1+1'1‘3+0] =2

Theorem 9.1. Suppose G is a finite group, C = {conj classes}, and T = {irreps V1, Va,...}
up to isomorphism. Then

o |Z|=|C  YE dim V2 =G|

, dim V; divides |G
o Complete reducibility: every representation can be written
~ Dn1 Dny
vvirte.---aeV,
some n; > 0 unique, V; irreducible.

o IfW =Vo™ @---@Vk@mk, m; > 0, then

k
Oews xv) = (xv, xw) = Y nim; = dime Home (V, W).
=1

So in particular,
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= (voxv) = S
- Viisirreducible <= (xv,xv) = 1.

= (i xy;) = i
® XV T XW = Xvew
® XVXW = XVeWw
® Yy = Xv~ - the character of the dual rep g — (p(g)t)_l.

Example 9.3. G is abelian if and only if |C| = |G| and |Z| = |G|. Further

Z dim? = |G| = all V; € T are I-dimensional.

We also have that R
{irreps of G} = G = Hom(G,C*).

For any group G,
{I-dim reps of G} = G =

G, G)

where ﬁ is the maximal abelian quotient of G, so
#{Il-dimreps} = (G : [G,G]).

Example 9.4. Let G = Sy, soC = {e,[(1,2)],[(1,2,3)],[(1,2,3,4)],[(1,2)(3,4)] } and |Z| = 5.
So every rep of S4 has the form
vl@m DB ‘/::’69715'

We have 5 irreps p; of dimension 1,1 (from G/|G,G] = S4/As = C3) and three others of
currently unknown dimensions. However

5

> dimp! =G| =24 = 1+1+2+3+3.
=1

Then we have characters from the following representations representations,
® Xp.: p1 =1: 84— GL{(C) the trivial rep so x,, = (1,1,1,1,1).
® Xp,: p2 is the sign representation, so xp, = (1,—1,1,—1,1).

® Xpi: pa comes from Sy acting on {1,2,3,4}. Call this representation w then xr =
(4,2,1,0,0) shows number of fixed points. This is reducible and we get that the inner
product: (X, Xr) = 2. Further

Xm>Xp) =1 = 7= 1D ps.

Then x,, = X~ — X1 = (3,1,0,—1,—1).
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® Xp5: We get this by taking the product of X p, Xp, = (3,—1,0,1,—1).

e Finally x,, = (2,0,—1,0,2). We can get this in a number of ways: orthogonality, lifting
from Sy /Vy = Ss, from x| = Zf?:l dim p;xp,, or from x5xs5 and reducing it.

In total, this gives the character table

e [(1,2)] [(1,2,3)] [(1,2,3,4)] [(1,2)(3,4)]
xi|l 1 1 1 1
o |1 -1 1 —1 1
xs|2 0 ~1 0 2
yal3 1 0 —1 —1
s |13 -1 0 1 —1

Alternatively, we could have recovered all the characters using induction:

Theorem 9.2. Let H < G be a subgroup of index d. There are maps

n-dim < n-dim

Res H

T

Reps of H Reps of G

\_/

Ind%

n-dim — dn-dim

such that for all reps p : G — GL(V), 0 : H — GL(W).
e Frobenius Reciprocity holds: (V,IndW)g = (ResV, W) p.

e Resy V = same V with H action, i.e.
XResg V(h) = XV(h)'

e dSW = {f:G — W : f(hg) = o(h)f(g9) YVh € H,g € G}, and g € G acts by
f(@) = [(zg).
These are ‘complicated’ requirements, so instead often we use the following formula for
the character of the induction representation:

1 )
Xiag w(9) = a7 > Xy (g™,

zeG
where
o _Jxw onH
xw = 0 else

e Ind$ 1 = C[G/H].
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10 Artin Formalism

Theorem 10.1 (L-functions are invariant under induction). If we have the following extension,

K

and if p : H — GL4(C) is an Artin representation then
L(pv 5) = L(Indg Ps 5)7

where L(p, s) is a rep of Gy of dimension n, and L(Indg p, 8) is a rep of G of dimension nd
where d = (G : H).

Proof. Same argument as for p = 1,
mdf} p = C[G/H],
but instead of as a D-set
G/H =1 ,cp\a/m D/D N giHg; ",

we use Mackey’s formula,

Resp Ind$ p = @ Indgmgi Ho! p%i.
9:.€D\G/H

O]

Theorem 10.2 (Brauer Induction). Suppose we have a representation p : G — GL,,(C). Then
Xp = Z ny Indgz Xo(i)s
i

for some n; € Z (in particular can be negative), H; < G may be taken to be of the form
cyclicxp-group, o; : H; — C* are 1-dim representation with characters x;.

Remark. This is used to construct character tables of groups.

26



Corollary 10.2.1. Every Artin L-function can be written in terms of L-functions of 1-dimensional
representations,

L(p,s) = HL(UZ‘, s)™ < Hecke L-fns.
i
Recall that p : Gx — GL,(C) then o; : Gy, — C* where M; /K are finite extensions. In
particular, L(p, s) is meromorphic on C and satisfies functional equation under s <> 1 — s.

Conjecture (Artin). If p : Gg — GLy,(C) is an irreducible Artin rep, p # 1, then L(p, s) has
analytic continuation to C.

Remark. The two properties:
L(Vi® Vy,s) = L(Vi,s)L(Va,s), L(IndV,s)= L(V,s),

that define L-functions uniquely from those of I-dimensional representations are called Artin
formalism.

Example 10.1. Let K = Q, M = Q(~/2), where /2 is a root of z* — 2, and F = Q(~+/2,1)
which contains all four roots of x* — 2. Then the Galois groups contains maps, o which permute
the four roots cyclically, and a map T acting as a reflection through complex conjugation:

>

Then G = (o, 7) = Gal(F/K) = Dj.

27



T o2 oT
Cy Cy Co M =Q(V2) Qi v2) Q-2)
C3 Cy C3 QV2) Q(i) Q(-v?2)
X8A X4 X8B
D, K=0Q

Figure 4: Galois correspondence between F'/ K and Dy.

Note3 that /=2 = (g - V/2.

We also have a character table:

2

1 o T o 0T

1 1 1 1 1 1

x4 |1 1 -1 1 -1
xsa |1 1 1 -1 -1
xsp |1 1 -1 -1 1
Y |2 =2 0 0 0

Table 3: Characters of irreps of Dj.

The final character 1) is the standard representation of Dy — GLo(C). The commutator
G' = Z(G) = {e, 0} cuts out the maximal abelian extension of Q in F'. Then

FY = Q(i, V2) = Q(Cs)

and

Gal(Q(¢s)/Q) = (Z/8Z)" = Cy x Cy,

has 1-dim reps 1, x4, X34, XsB Where

Y1 o <—1> X84 & <2) . X8B & <2> ~> Dirichlet L-function.

The only exceptional Dirichlet L-function is the one coming from the 2-dim rep with character
. This yields L(1, s) of degree 2,
1 1 1
L =1 . . e
(¥,5) 1—(37%)2 14+ (5%)2 1—(7%)2

3Also see D4 on groupnames.org

28



The unit factor at the start comes from the case where we consider the prime 2, then Is = Dy
and there are no invariants on C2. Then by examining the third factor more, Frobs is a rotation
by /2 so it has characteristic polynomial (1 + T?), and the fourth gives Froby is a reflection
and has characteristic polynomial (1 — T?). This can be expanded in to a Dirichlet series,

L3, s) = Z %’
n=1

with a, = 1 (Froby,) at least on those p t Ap.
Thus, all (-functions of subfields of F' are products of these, for example

Co43)(#) = LICIG/ ()], 5),
where C[G /(T)] is the G set {1, 2,3, 4} with natural D, action. So,

Xcla/(r) = (4,0,2,0,0)
= (1, 1,1, 1) + (1, 1,1, -1, —1) + (2, —-2,0,0, 0)

=1 + X8A + wa
SO
g@( é/ﬁ) (S) = L(ﬂ7 S)L(X8A7 S)L(wa 8)
= Coym () - L, s).
Similarly,
CQ( (1/_72) (S) = L(:H-’ S)L(XSB7 S)L(¢’ S)
= C@(\/fz)(s) - L(¥, s),
and

Cai,va) () = L(L, 5)L(x4, s)L(x84, s) L(xsB; )
CQ(z‘)(3> : C@(\/i)(s) : C@(\/TQ)(‘S)
((s)? '

Remark. This is in practice how (i (s) are computed - e.g. in Magma.

Theorem 10.3. Suppose p, o : Gal(Q/Q) — GL,(C) be two Artin representations. Then
p=o < L(p,s)=L(o,s)

as analytic functions on Re(s) > 0. So the L-function determines the representation uniquely.
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Proof. The forward direction ( = ) is clear. To show the reverse, ( <= ),
Step 1: For any Dirichlet series, f(s) = >~ % for Re(s) > 0, then we can recover the
coefficients:

a; = lim f(x)
T—r 00

as = lim 7]‘.(.%') —a
T—00 27

so the a; are uniquely determined by f(s) as a function. Hence p, o have the same local factors
at all primes. Then dim p = dim o = deg F},(T") for p large.
Step 2: p : Gal(F1/Q) — GL4(C), o : Gal(Fy/Q) — GL4(C). Thus if we take the
compositum F' = F} F5 then
p,0: G — GLy(C),

where G = Gal(F'/Q) is the same group.

Step 3: The Chebotarev density theorem implies that for every conjugacy class C' C G,

there exists infinitely many primes p such that Frob,ﬁT /% € C. Then we have that

Xp(C) = ap = x4 (C),

where a,, is the p'" term of the Dirichlet series. Thus y, = Xp-
Step 4: From representation theorem, equality of characters implies an isomorphism of
representations, so X, = X, = p = 0. O

Remark. [t is not true that (pr, (s) = Car, (s) implies that My = Ms. There exist Gassmann
triples (G, Hy, Hy) such that

G/Hy % G/Hy as G-sets, but C[G/H,] = C[G/H2] as representations.

An example of this is the following: G = GL3(F2), order 168, simple.
G
H, Hs
{1}

Above we have that Hy, Hs are two non-conjugate subgroups of index 7 such that C[G/ H;| &
C[G/H,]. This leads to degree 7 fields M7, M over Q (for every realisation of G as Gal(F'/Q))

with M7 22 M> but CMl(S) = CMQ(S)‘
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This is the smallest possible example, it is easy to check that in degree less than 7, (/(s)
determines M. Such M;, M5 are called arithmetically equivalent fields. Many invariants of
M, M> are the same, for example

1,72 < functions of complex conj acting on C[G/H].
|Ans| < conductor of C[G/H|

R-h
#roots of 1 < Cu(0),

but for example i, R need not be the same (not functions of C[G/H]).

Remark. The above phenomenon has been explored for class groups, non-isomorphic curves
with isomorphic Jacobians, BSD conjecture, and notably Sunada 1985:

“Can you hear the shape of a drum?” : NO.

That is, there exists non-isomorphic manifolds with the same spectrum of the Laplacian (same
construction).

11 [I'-factors, c-factors, and conductors

Suppose that we have an Artin representation p : Gg — GL4(C) with a degree d L-function
L(p, s), meromorphic. Then let us define the completed L-function:

) N s/2
Boo) = (%) 26L(0.0)
and this satisfies the function equation
L(p,s) =w- L(p*,s).
Above we have written
N = N(p), conductor € N
v(s) = 7,(s), I'-factor

w = w,, root number, sign in functional eq., |w| = 1.

Recall that 1-dimensional p correspond exactly to Dirichlet characters x (and for p : Gg —
C* <> Hecke similarly). Then

N = modulus*of x=m
(s) I (3) if x(—1) =1 <= p(complex conj) = +1,
S) =

! I () ifx(—1) = -1 <= p(complex conj) = —1.

m—1

Z x(a)¢n,, Gauss sum.

a=1

£
w= ¢
€]
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For general p, we can define V, e, w = é—‘, 7 (s) from 1-dimenisonals and Brauer induction. In
fact, for e-factors cannot do much better,

dimp =1 Tate’s thesis

e(p) = € < local e-facors
(p) H v(p) {dimp > 1 Langlands-Deligne.

v
places of Q

~-factors: To work out the ~-factors for p : Gg — GLg(C), we look at how complex
conjugation works,
complex conj — matrix of order 2 with d eigenvalues

and d_ eigenvalues —1 with dy +d_ =d.

d_
5\ 4+ s+1
-T(3)"r .
(s) 5 < 5 >
To prove this just check that it is correct for 1-dimensionals and respects Artin formalism.
Example 11.1. Let M /Q be finite. Then (pr(s) = L(C[X], s) where X = {embeddings M — C}

on which Gal(C/Q) acts. Then complex conjugation fixes 1 real embeddings and swaps com-
plex ones in pairs. So the matrix

Then

1

_ O
S =

01
10

so there are 11 + ro number of +1 eigenvalues and ro number of —1 eigenvalues. Therefore

S\ r1+7r2 s+1\"
ey ()
v(s) 5 ( 5 )

as expected for Cpr(s).
Conductors:

Definition (Artin conductor). Let p : Gal(F'/K) — GL(V'), where K is a finite extension of Q,
F/K is Galois with group G, and dim' V' = d. Then we define N (p), the global Artin conductor,
to be an ideal in Ok,

N(p)=]]»"™,
p

where ny, is the local conductor exponent at p (sometimes ny, is written fy).

*If x : (Z/mZ)* — C* primitive then the modulus of x is m
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Theorem 11.1 (Local conductor exponent). Let D = Dy, I = I, C G = Gal(F/K) be the
decomposition and inertia group of some

qlplp

where qisin F, pisin K, andp € Q. Then

Np = Ny tame + Ny, wild
(sometimes ‘wild’ is also called ‘Swan’), and

N same = d — dim V! < ‘Missing degree for F,(T)’
Npwita = 0 p 1 [1].
In general,

G>Dvly=1Iv1; =p-Sylow(I)>Iy>---

inertia wild inertia

where
I, ={oc € Dlo =idon O /q" '},
are higher ramification groups,
= {1} fornlarge.

Then !
N wild = Z M(d — dim VI") c Z,

which measures how ‘badly ramified’ V is.

Example 11.2. p is unramified at p - that is (V! = 0) <=
Npame = 0 == np = 0.

In particular ny, = 0 for all primes unramified in F/ K.

Example 11.3. Let p : Gg — C* (thus they correspond to Dirichlet characters) then
N (p) = modulus of x.

Theorem 11.2 (Conductor-discriminant formula, or Fiihrerdiskriminantformel). Let M /K be a
finite extension and

Cuyr () = L(C[Xn k], 8),
where C[X /] is K-embeddings M — K. Then Nepx k] = |An k| as ideals in Of.

Remark. This gives a way to compute discriminants of number fields using Artin representa-
tions.
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Example 11.4. Let F = Q(¢, V/3), and

F q=(m)
Ca
M = Q(V/3) S3 totally ram.
Q p=(3)

Then m = % which has valuation 1/2 — 1/3. We have that

03211<I:D:G253.

3-Sylow
Then the generator o~ of I :
V3 (V3
1-¢—1-¢,

so o(m) = (. How wild is the valuation o ? We compute

vg(m — o(m)) = vg(m — ()
= vq(m)vg(1 = C)
=1+vg(1 =)
=4.

Thus, o is trivial mod 7. However 0 21 mod 7° since o(w) = mod 7°. This tells us how
deep o lies in our inertia group:

---4{1}[44]3212211 <II:S‘3,
{1} Cs

Take V. = C[Xpy k] = C® C @ C, and Ss acts naturally on this (permuting the basis
elements). Then Ss, C's have 1-dim invariants (#{orbits}), and {1} has 3-dim invariant.
Now

tame /—/3 L /—/3 L /—/3 L
nv’g:d—dimvl—l-npwﬂd:3—1—1—6(3—1)—}—6(3—1)4—6(3—1)—{—0:5.

At all other primes, ny,, = 0, since p unramified in F/Q. So easily |Ay| = Ny = 3° (and
|Ap| = 31).

34



Finally, conductors (and e-factors as well) are inductive in degree 0:

Theorem 11.3. Suppose [K : Q] = n. Then take two Artin representations pi, pa of same
dimension,
P1,P2 : GK — GLd((C)

We consider the inductions
Ind p1,Ind ps : Gg — GLpa(C),

then
N(p1) _ N(Indp)

Norm = ,
K% N(py) ~ N(Ind p)
that is N (p1 © p2) behaves well under induction.

d
——
Corollary 11.3.1. Take p = p1, p2 =1 & --- B 1. Then

N(Ind p1) = Normg g N(p) - |Ag|?.

12 Local Fields

Let K = Q, and p a prime then this gives rise to the p-adic absolute value, usually denoted
|- Iy
on Q. ‘Absolute values’ are multiplicative functions that satisfy the triangle inequality. In fact,

the only absolute values on Q (up to a natural equivalence) are the classical absolute value and

the p-adic ones, defined as
na‘ 1
- =—, |0|=0.
Pyl = o 0]

The p-adic absolute value gives rise to a metric

dp(z,y) = |2 = ylp.
Definition (p-adic integers). Define the p-adic integers Z, by

Z,, = the topological completion of Z with respect to | - |,
_ {Cauchy sequences (x,), in 7}

{sequences x,, — 0}
=1imZ/p"Z
“n

= lim{seq. ©, € Z/p"Z s.t. xp, = xp41 mod p"}
«—n

- {Zanpn‘an € {07 Y 2 1}} .
n=0

Then Z,, is a DVR, local ring, which has only one maximal ideal (p), and residue field F),.
Further Z, 2 7.
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Definition (p-adic numbers). The p-adic numbers Q,, satisfy:

Q, = topological completion of Q wrt d,,
= Field of fractions of Z,

:{Z anp”|an€{0,...,p—1}}'

n=ng
This is a field that contains Q, and so has characteristic 0.
Example 12.1. In Qo,

21=1+2%+2% € Zs.
3

5:2‘*1+1§zzg

, 1
—1:1+2+2?+?+~~62ﬂ:1

geo series with x = 2, |x|z < 1.).

Example 12.2. Similarly, for K/Q finite, O,p, with O/p = k finite. Then this gives p-adic
absolute value:
1 vp(z)
RN

Then we say that K, is the topological completion of K with respect to |-|, and is called the local
or p-adic field. We have that K, is a finite extension of Q,, wrt p|p, and every finite extension of

Qy arises this way. So
o0
Kp = { Z anﬂ'"\an S A}

n=ng

where T is any uniformiser, vp(1) = 1 (e.g. T € p\p?), and A is any set of reprsentatives of
O/p.
Proposition 12.1. Take

Galois
K p

Then Fy/K, is Galois with Gal(Fy/Ky) = Dy - this is the same for all q|p. Passing to the
algebraic closure,

prime q above p in Q @p

con}/}zfete G@p = Dq < GQ

o——~O
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We can think of these as the ‘same’ as number fields, but only one prime and much sim-
pler (look at R, C versus Q). Further, iﬁertia, Frobenius, and tame inertia etc. take the same
definition. The structure of G, = Gal(Q,/Qy,) is as follows,

Q

I'wild  <(pro-) p-group
Ttertia | Qf = Upn @o(Cns ¢/P)

I tame <(pro-) cyclic
Q"= Upn @p(Cn) (p) T

Gy +(pro-) cyclic gen. by x — aP,

lift it to Frob, € Gq,
Qp (p ) F p

P

Local fields have only finitely many extensions of a given degree. For example,

Qs(v=3) = Q5(v2) = Q5(&3) = Q5(Cs) = Q5(Caa),

all of which are the unique quadratic unramified extension of Qs.

13 [-adic reprsentations
Example 13.1. Take
G C {roots of unity in Q} = {torsion points in G,,,(Q) = @X}

This action of does not factor through a finite Galois group. We want to associate to it a 1-
dimensional Galois representation as follows.
Take | prime.

\ \

{13 roots of unity}y = Z./I’Z  © Gg
Lo il

{I? roots of unity} = ZJI’Z > Gg
L2t L[

{I"™ roots of unity} 2 Z/1Z Gg.
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We have that in the final line, Gg acts from (Z/I1Z)* = Gal(Q(¢;)/Q). Pictorially:

Q(Ge)
@y
Q(Ge)
(Z)127.)
Q&)
(Z/1Z)*
Q

Taking the inverse limit, we find that
Go C l(i_rgZ/l"Z >~ 7.
In other words, we get a representation
v Gg = 2 = GLi(Z) = lim (Z/1"2)* = Gal(Q(Gi~)/Q).
Then if we embed 7; — Q; — C, we can view x; as mapping
x1: Gg = GL1(C),

which is a 1-dimensional Galois representation (one for every l). This is called the l-adic cyclo-
tomic character.

Definition. Let K be a number field, G = Gal(K/K). An l-adic representation over K of
dimension (or degree) d is a continuous homomorphism

Pl - GK — GLd(Ql).

A compatible system of l-adic representations (or ‘a motive’) is collection p = (p;)i prime Such
that

(1) There is a finite set S of ‘bad’ primes of K such that each p; is unramified outside S; =
S U {primes|l}, i.e.
pg S = plly) =1
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(2) For every prime p of K, then the local polynomial
Fy(T) = det(l — Frob, ! T\plI") c Q[T

is a polynomial in Q[T| and is independent of , for p 1 l.
We then define the L-function of p to be
Lip,s) = [[ Fo(N~).
p

The collection (p;); is really a ‘poor man’s version’ of one global representation p : Gg —

GL4(Q).

We have the standard constructions @, ®,Ind, Res, efc for compatible systems. Further,
L-functions satisfy Artin formalism.

Example 13.2. Tuke p : Gx — GL,(Q), Artin representation (so this has finite image and
factors through some finite Galois group Gal(F/K)). So

pr: Gk — GLy(Q) — GL,(Qy),

is obviously a compatible system taking
S = {primes ramified in F/ K }.

Remark. In principle, we can replace (Q;); prime of @ With (M) X primes of M> Where M is a num-
ber field, to include all Artin representations G g — GL,,(C), for example Dirichlet characters.

Example 13.3. Take x = (x;); a cyclotomic character. Recall that

X G — Gal(Q((=)/Q) = Z;* = GL1(Qy).
Then we have that

I, —1, forallp # 1,
Frob, — p_1 can take S = &, so S; = {l},
Gn = G

Then
Fy(T) = det (1~ Frob, ' T|z/") =1 - pT € Q[T],

and recall that Gg C ZZIP . So F,(T) is independent of l. Thus the x; form a compatible system
with 1
Lix,s) = [[+——==¢(s- D).

—m .S
pl p-p

In modern language, x; are l-adic realisations of the ‘Tate motive Q(1)’ (and the x; denoted
Qi(1)) which has associated L-function ((s — 1).
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13.1 Etale Cohomology (Grothendieck, Deligne, Verdier)

Take V/Q (or over some number field K) a non-signular projective variety of dimension d. Take
0 < ¢ < 2d then this leads to A ‘
H'(V) = Hy (Vg Q)

called the i*" étale cohomology group. It is a Q;-vector space of dimension b;(V (C)) (b; the it"
Betti number) with a continuous action of Gig. This yields an [-adic representation of G for
every [ - we check the conditions:

(1) We do have that it is unramified outside S = {primes of bad reduction for V'} U {{}.

(2) This is known to be compatible at p ¢ S, and often (H°, H', curves, abelian varieties) for
p € S as well.

Example 13.4. Take H° (V) = Q[connected components of V/Q| and G ¢ H°(V'). We can
take a permutation representation on connected components (factors through some finite Gal(F'/Q)).

Example 13.5. Take a variety V with dim'V = 0 so we only have H°. Then
V:f(x)=0cCAl
for f € Qlx]. So the absolute Galois group permutes the roots of f.
H(V) = Q[roots of f].
If f(z) = fi(z)--- fu(2), fi(z) € Q[x] irreducible, then take
Ki = Qlel/ ().

Hence

LH(V),8) = Cky(8) -+ Crn (9).

14 Torsion Points on Elliptic Curves & H!(F)

Suppose we have an elliptic curve E and a number field K, where
2_ .3 .
y"=x>+ar+0b; a,beK,

defines an elliptic curve. Then E(K ) form an abelian group.
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y? =% — 2

oAl
pKL/

P+q

Figure 5: Plot of the elliptic curve y? = 2% — 2z

Definition. Take m > 1 integer. Then

Elm] = {p € E(K)mP = 0}
is the set of m-torsion points, called m-torsion. As an abelian group,

Elm] = (Z/mZ)* Gy, acts linearly,
so (P+ Q)7 =P +Q°.
This gives a representation [ ‘mod m’ representation],
pEm : Gk — GLo(Z/mZ).

Example 14.1. Take m = 2, so we are considering the 2-torsion points. Then

E[2] = {0,(a,0),(8,0), (7,0)}
where o, 3,y are the roots of f. Again

E[2] = (Z)27,)?

and the Galois groups acts by permutation on the roots. Then we get

PE2 : GK — GLQ(FQ) = 53.
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Now take m = 1" where | is prime. Then we get a compatible system:
e U ey B W gy
= (Z/I"2)? = (Z)1"'2)° = - = (Z)IT)? .
Definition (The [-adic Tate module). We have
TiE = lim E[") = 7} © Gy

and
VIiE = T\E ©z, Q = Qf © Gy

Then by embedding Q; — C, we get a 2-dimensional l-adic representation for E /K,
H (B, Qi) = VIE"
as a G g representation.

We will see that these form a compatible system so

Definition (The L-function of £/ K).

L(E/K,s) = [[ HWVp™)
p
where
Fy(T) = det (1~ Froby ! Tp/" )
for any | such that p 1 l. This is a degree 2 L-function.

Recall that we let £//Q be an elliptic curve with:

Q q Q,
| I

Dp = G@p @gr G@p = Dq < GQ
| (Froby,)

Q b Qp

We want to understand D), on Eg[l"] = action of Gg, on Eg [I"]. From now onwards let
P
K be a p-adic field (i.e. local),
Ok /(r) = k =F,

where (7) is a maximal ideal. Then I < G}, and Frob € Gk. We write x; for the cyclotomic
character (I — 1, Frob — q).
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15 Good and bad reduction

Let E//K be an elliptic curve. Then this gives rise to a “minimal Weierstrass model”, with
coefficients in O and v(A) minimal. Upon reduction, '/ K is possibly singular. The possible

reduction types are:

E Reduction Example over Q5

Ei:y?=23-1

Good .
(Distinct roots mod 5)
Split Ey:y? = (x—1)(2%-5)
> Slopes Multiplicati
in I, plicative (Double root mod 5)

. Non-split Ey :y? = (x—2)(2%-5)
7z %\;z%%%eéi Multiplicative (Double root mod 5)

ca2 3
Additive By:y” =a" =35
(Triple root)

Note that (0, 0) is the singular point. Then we have the following reductions, and how they
behave near (0, 0):

~ : y =2z
Byt y? = 422 + hot /s =200, ><

y = —2x
- =3
sz:y2:3$2+h.0.t./F5M >< y=Vis

y=—V3z

for /3 € Fso.
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Theorem 15.1. We have that

(a) The set of non-singular points, F,,s(k) form a group, under the same group law (3 points
on a line <= they add up to 0),

‘(b) ViE! ~ V|E, . as Gx-modules,

(c) det ViE = xy, thatis for p; : Gr — Aut ViE = GL2(Q3), and

1 foroel

det py(o) = {

q foro = Frob.

Remark. This is very important since it relats geometry of the reduction to arithmetic of l-
torsion. No analogue for general varieties (only for curves and abelian varieties).

Remark. For the Néron model, (b) holds for E[I"] and T} E as well.

Example 15.1. 2-torsion on E1, Es, Es.

Ei:y?=23-1 By :y? = (x—1)(z? - 5) Ez:y?=23-5
~ [
2 ¢ ¢1 - 5¢1
20, wf e S
J, Reduction i Reduction \L Reduction

El EQ

9. e <

Figure 6: Plots showing how roots behave under different types of reduction. Note that the
inertia group I swaps —/5 <+ /5 for 5 and I permutes the roots for F.

Recall that our theorem says that inertia invariant points are non-singular when reduced.
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Theorem 15.2. The local factor F(T') for the L-function of E is

Reduction E,s(k) ViEns F(T)
Good Ell. curve Q? SGx 1 —aT + qT?
(a=q+1- #E(Fq))
Split mult. % i 1-T
(Q; with Frob acting as q)
Nonsplit mult. I8 Quad. twist of Q; 1+T
(Q; with Frob acting as —q)
Additive (k,+) 0 1

In particular, F(T') € Z[T] and is independent of | (i.e. (Vi E); form a compatible system).

Proof. Good reduction
Let F/k be an elliptic curve. Then

ith Etale coho. group ‘ Frob~! eigenvalues

HY(E) = Q 1
H(E) = Hy(E) Some a, 8
H(E) =" q

( Poincaré duality)

Note that for the Frob™!-eigenvalues, abs. value |¢|*/? on H’. The Lefschetz trace formula
gives

Le fschetz (1 — OéT)(l — ,BT)
T D)

This implies that
1+ #EFE)T +O0(T*) =1+ (¢+1—a—B)T +O(T?).

Hence ~
#E(F,) = q+ 1 — tr(Frob™ |HL(E))

and det (Frob™" |H}(E)) = ¢, det V; = x;. Thus we see that

det(1 — Frob ! T|V;E') = det(1 — Frob™ ! T|V,E)
=1—aT + qT?

where a = g+ 1 — #E(F,).
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Bad reduction

We have that
nom(lalﬁ\lion P/\{Q ptS/k} = A,\{O} = Gm
E,s, = P"\{2 pts swapped by Frob} = quad. twist of G,
PA{1 pt) —A'=G..

The only algebraic groups of dimension 1 are elliptic curves, G, and G,,,.
Additive B B B
Then E,s(k) = Go(k) = (k,+) and k is co-dim [}, vector space, p = char k. Thus there is no

[ torsion for [ # char k and

TiEns =0 2 gl =0,

Hence F(T') = 1.
Split mult.

Now G, (k) =k, ViGp, = x1. So G acts on V,E as

Xl

0 1
where - is non-zero on inertia, and bottom row elements are 0 by I-invariants on V;E = V;G,,
and 1 since det V; = x;. Further, G acts on Hét(E) = V,E* as

X0
1)
Noting that H.(E)?, trivial Frob action gives the second column as (?) . Thus

F(T) = det(1 — Frob ' T|H'(E)!) =1-T.

Multiplicative
Similarly, unr. quad. ® split: I acts as

and Frob as

SoF(T)=1+T. O
In the multiplicative case, E'[I"] is also completely described using the Tate curve: For E//C,

exp(2mi-) 7 o
EC)=C/z+7Z = C*/¢" forq=e".

This isomorphism from £(C) to C* /¢” is analytic.
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Theorem 15.3 (Tate). Let K be a local field, E /K an elliptic curve with split mult. red. Then
lg € K, v(q) > 0 such that
E(K) 5 K" /¢,
as G i-modules. This is the same analytic isomorphism as described above, e.g.
J(E) =q '+ 744 + 196884 + ...; v(j) = —v(q) < 0.
Corollary 15.3.1. As a Gx-module,

E[™ = {I" — torsion pts in K~ /¢"}

= (Qn, V/q)
>~ (Z/I"7,)?.

So G acts on T|FE as

I acts as

where ¢ = v(q) = —v(j), and

7 : 1 — 7Z; l-adic tame char

ln
o (U(l,g)) € liin(l”th roots of 1) = 7.

[Iwild < I) Ilame = [/Iwild = H Zl) U Imme - Zl]
l#char k

Remark. In the additive reduction case, E/K acquires good (v(j) > 0) or multiplicative
(v(j) < 0) reduction over some finite F/K. Thus, in the additive case, I has a finite index
subgroup I (normally Ip,) that acts on T F as

10 or as 10'7‘1
0 1)’ o 1 )

Remark. Good and multiplicative reduction are also called stable (stay the same in all finite
extensions) and additive reduction is called unstable.

Theorem 15.4 (Grothendieck Monodromy Theorem). Let K be a local field, V/K a non-
singular projective variety. Then there exists a finite extension F/K such that Ip acts on
Hét(Vf, Q) as Id +71 N for some nilpotent matrix N. Such a representation of G is called a
Weil representation if N = 0, and a Weil-Deligne representation in general.
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Example 15.2. Let E/K be an elliptic curve. Then we have

potentially good reduction v(j) > 0, N = 0, H}(E) is a Weil rep

0 ¢

potentially mult. v(j) < 0, N = <0 0

> L HY(E) is a W-D rep.

Example 15.3. For varieties other than curves and abelian varieties, we do not have a geo-
metric counterpart of this statement - it is conjectured, but not known, that any V/K acquires
semistable reduction (only ordinary double points as singularities) after some finite extension
F/K - if true this proves independence of | by roughly the same argument.
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