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1 Riemann ζ-function

Definition. Recall that we define Riemann’s zeta function via

ζ(s) =
∑
n≥1

1

ns
=
∏
p

(1− p−s)−1.

Riemann proved that ζ can be extended meromorphically to C.

Theorem 1.1. We have that ζ(s) has meromorphic continuation to C with a simple pole at s = 1
of residue 1. The completed function has the form

ζ̂(s) =
1

πs/2
Γ
(s

2

)
ζ(s),

and it satisfies the functional equation

ζ̂(s) = ζ̂(1− s).

Proof. This is proved using the Poisson summation formula and is a standard proof.

Definition (L-function). We define an L-function as a Dirichlet series of the form

L(s) =

∞∑
n=1

an
ns

where an ∈ C, and an = O(nr) for some r. Then the series ‘makes sense’ since it will converge
on the half plane for Re(s) > r + 1. It has an Euler product and has degree d if can be written
as a product

L(s) =
∏
p

1

Fp(p−s)

with Fp(t) ∈ C[t] polynomials of degree ≤ d, and = d for almost all primes. The terms are
called local factors and Fp(T ) the local polynomials.

Example 1.1. The Riemann zeta function has Euler product and degree 1.
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All L-fns we will see will satisfy this, and are conjectured to

(a) have meromorphic continuation to C with finitely many poles (usually none)

(b) Function equation: ∃ weight k, a sign w, conductor N and a Γ-factor

γ(s) = Γ

(
s+ λ1

2

)
· · ·Γ

(
s+ λd

2

)
such that

L̂(s) =

(
N

πd

)s/2
γ(s)L(s)

satisfies
L̂(s) = w · L̂(k − s).

(c) Riemann hypothesis: all non-trivial zeros lie on the line Re(s) = k/2.

Remarks.

• If L(s) satisfies (a) and (b) then as in the proof of theorem 1.1 (here this theta function is
not the Jacobi one)

L̂(s) =

∫ ∞
1

(xs/2 + w · x(k−s)/2)Θ(
√
N · x)

dx

x

where Θ(x) =
∑∞

n=1 anφn,γ(x) where the φ function depends only on γ(s) and decays
exponentially with n. In fact, (b) is equivalent to

Θ

(
1

Nx

)
= w ·Θ(x). (?)

This gives a way to compute L-functions numerically (with ∼
√
N terms). This gives an

idea of measure of arithmetic complexity of an L-function by looking at how bit the square
root of the conductor is (larger means harder).

• There are functions called modular forms f (technically, newforms of weight k, level N
and w-eigenform for the Atkin-Lehner involution)

f : {z ∈ C : Im(z) > 0} → C

such that Θ(x) = f(ix) satisfies (?) by definition. Thus, their L-functions satisfy (a) and
(b), again pretty much by definition.

• 2 categories of L-fns L(s) =
∑∞

n=1
an
ns :

(i) With a direct formula for the an. Generally, we know how to prove (a) and (b) for
these.

(ii) Only defined by an Euler product, for example L(ρ, s) Artin, L(E, s) elliptic curves,
other varieties... We never know how to prove (a) and (b) for these except by reducing
to (i).
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Function an
ζ(s) 1
L(χ, s) χ(n)
ζK(s) # ideals of norm n in OK

2 Dedekind ζ-functions

Definition. Let K be a number field, with [K : Q] = d so K ∼= Qd as a Q-vector space. Then
let O = OK be the ring of integers, so O ∼= Zd as abelian group. Take I ⊂ OK a non-zero
ideal. Define the norm

NI = (OK : I).

It is finite, and satisfies nice properties like being multiplicative:

N(IJ) = NI ·NJ,

and I can be written as a unique product of prime ideals,

I =
r∏
i=1

pnii

where O/pi is a finite integral domain, which implies it is a field Fpr and hence pi ⊂ (pi) for
some primes pi ∈ Z.

In particular, if we take an ideal I = (p) where p ∈ Z and factor it

(p) =

r∏
i=1

peii ,

we call the ideals pi primes above p, and the ei’s are ramification indices (theese are usually
equal to 1 for all but finitely many p, namely p - ∆k called unramified primes p). Finally, we say
that

fi = [O/pi : Fp]

are the residue degrees. Thus O/pi ∼= Fpf .
Then N(p) = (O : pO) = pd since O ∼= Zd and pO ∼= p · Zd. This implies that

d =
r∑
i=1

eifi

in general, and d =
∑r

i=1 fi for unramified primes.
Note that if the extensionK/Q is Galois then e1 = · · · = ed,f1 = · · · = fd since Gal(K/Q)

permutes pi transitively. Hence in this case d = efr.

In practice,
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Theorem 2.1 (Kummer-Dedekind). Let K = Q[x]
(g(X)) where g(X) ∈ Z[X] monic. Then ∆K |∆g,

and for all primes p - ∆g,

p =

r∏
i=1

pi

is unramified, and we have
g(X) = g1 . . . gr mod p

with deg gi = fi.

Definition (Dedekind ζ-function of K). Let

ζK(s) =
∑
n≥1

an
ns

where an = {# of ideas of norm n in OK}. Alternatively, we can write

ζK(s) =
∑

I⊂OK ideal
I 6=0

1

NIs

=
∏

p prime ideal 6=0

1

1−Np−s

=
∏

p prime of Z

1

Fp(p−s)
This follows from KD

Here Fp ∈ Z[x] is of degree d for p - ∆K and of degree < d for p|∆K . These are degree d
L-functions.

Example 2.1. Take K = Q(i), O = Z[i] Gaussian integers, and O× = {±1,±i} units.

As for Riemann ζ,

ζK(s) =
∑
I⊂Z[i]
I 6=0

1

NIs

=
∑

0 6=α∈Z[i]
mod Z[i]×

1

(αα)s
Since Z[i] is a PID

=
1

4

∑
(m,n)∈Z2\{0}

1

(m2 + n2)s
.

The same computation as before (for RZF) gives that

2s

πs
Γ(s)ζK(s) = Mellin transform of

Θ(x)− 1

4
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and

Θ(x) =
∑
m,n∈Z

e−π(m2+n2)x

=
∑
m

e−πm
2x
∑
n

e−πn
2x

=
1√
x

1√
x

Θ

(
1

x

)
.

This trick as before gives a functional equation for ζQ(i)(s). For general number fields, the extra
statement we need is a generalised Poisson summation formula:

Let V = Rd, f : V → C decaying fast. Take V ∗ the dual vector space, and define the
Fourier transform Ff : V ∗ → C by

(Ff)(m) =

∫
V
e−2πi〈m,n〉f(n)dn.

Take Γ ⊂ V a rank d lattice. Then∑
n∈Γ

f(n) =
1

vol(V/Γ)

∑
m∈Γ∗

(F f̂)(m).

Use this to compare
∑

I 6=0
1

NIs to
∑

α∈O
α 6=0

1
Nαs . This will involve

• the class number, h = #{ideals/principal ideals} and

• units, roots of unity,

If we have K a number field of degree [K : Q] = d = r1 + 2r2, then

• r1 = #real embeddings K ↪→ R

• r2 = #pairs of non-real embeddings K ↪→ C.

Then O ⊂ Rr1 × Cr2 ∼= Rd is a lattice.
After these considerations, we find that Poisson summation gives that

Theorem 2.2. We have that ζK(s) is meromorphic on C, it has a simple pole at s = 1, a residue
at s = 1 of value

2r1(2π)r2hR

#roots of unity in K ·
√
|∆K |

.

The above expression for the value of the residue is called the class number formula, where h is
again the class number, and R is the regulator (of units). Further, ζK(s) satisfies the functional
equation,

ζ̂K(1− s) = ζ̂K(s).

Exercise 2.1 (Answer on MO 218759). If [K : Q] = d, and K is Galois, then there exists
infinitely many primes that ‘split completely in K’ (i.e. they have the maximal possible number
of primes above them, and e = f = 1), and have density 1

d .
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3 Dirichlet L-functions

Within this section, we will show that we can relate Dirichlet L-functions and the Dedekind zeta
function over a cyclotomic field. First we begin with some standard definitions.

Definition. Let n ≥ 2. Then a (mod n) Dirichlet character is a group homomorphism

χ : (Z/nZ)× → C×,

and they form a group ̂(Z/nZ)×. The two main invariants of a character are:

• Order of χ: the smallest such d such that χd = 1, so χ maps to the dth roots of unity.
Those characters where d = 2 are called quadratic.

• Modulus of χ: the smallest m|n such that ∃χ0 : (Z/mZ)× → C× such that χ(a) =
χ0(a) for all a such that (a, n) = 1. We extend χ : (Z/nZ)× → C× to

χ : Z→ C

by

χ(a) =

{
χ0(a) (a,m) = 1

0 o.w.

Then χ is almost a homomorphism (it is except on ‘bad’ primes) - but it is totally multi-
plicative.

Example 3.1. For n = 1, χ(a) = 1 for all a ∈ Z, which we call the trivial character. It has
order 1 and modulus 1. We write 1 for the trivial character.

Example 3.2. For n = 3, then χ : (Z/3Z)× → C× and (Z/3Z)× ∼= C2 so there are 2
characters. The first is the trivial character 1, and the second is

χ3(n) =


1 a ≡ 1 mod 3

−1 a ≡ 2 mod 3

0 a ≡ 0 mod 3

.

Then χ3 has modulus 3 and order 2.
For n = 4, there are also 2 characters, with the non-trivial being

χ4(a) =


1 a ≡ 1 mod 4

−1 a ≡ 3 mod 4

0 a even.

Then χ4 has order 2 and modulus 4.

Example 3.3. When n = 5 then the domain is isomorphic to C4 so

χ5 : C4 → C×,

so we could send 2 7→ i then χ2
5, χ̄5 = χ3

5 and χ4
5 = 1 are the possible characters.
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1 5 7 11
1 1 1 1 1
χ3 1 -1 1 -1
χ4 1 1 -1 -1
χ3χ4 1 -1 -1 1

Example 3.4. n = 12 then there are 4 characters (isom to C2 × C2), and
Note that χ3 looks like

(−3
·
)

and has modulus 3, order 2; χ4 is
(−1
·
)

and has modulus 4,
order 2; χ3χ4 is

(
3
·
)

and has modulus 12 order 2.
Recall that in the particular case q = 2, we have

(n
2

)
=


0 n 6≡ 1 mod 4

1 n ≡ 1 mod 8

−1 n ≡ 5 mod 8

=


0 2 ramifies in Q(

√
n)

1 2 splits in Q(
√
n)

−1 2 inert in Q(
√
n).

Definition. We define the Dirichlet L-function modulus m to be, for a Dirichlet character χ :
(Z/mZ)× → C×,

L(χ, s) =

∞∑
n=1

χ(n)

ns
=
∏
p

1

1− χ(p)p−s
.

These are local polynomials: 1 if p|m and 1− χ(p)T if p - m.
Further |χ(n)| ≤ 1 thus they are absolutely convergent on Re(s) > 1. In fact, for χ 6= 1,

using some yoga called Abel summation and the fact that∣∣∣∣∣
B∑

n=A

χ(n)

∣∣∣∣∣ ≤ m
for all A,B, the L-series converges (not absolutely) on Re(s) > 0.

Theorem 3.1. L(χ, s) is entire for χ not the trivial character. The completed form is

L̂(χ, s) =
(m
π

)s/2
Γ

(
s+ λ

2

)
L(χ, s),

and it satisfies the functional equation

L̂(χ, 1− s) = w · L(χ̄, s)

where bar is complex conj, with

λ =

{
0 χ(−1) = 1, χ even
1 χ(−1) = −1, χ odd.

.
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Note that w = 1 for Riemann zeta but in this case is defined as

w =
1√
m

m−1∑
a=0

χ(a)ζam,

the ζm = e
2πi
m are primitive mth roots of unity. Note that this is the Gauss sum and w ∈ C×

with |w| = 1.

Proof. The outline of the proof uses Poisson summation with

e−π(mx+a)2t even χ

e−πx
2t odd χ.

We now want to show that the Dedekind zeta satisfies

ζQ(ζm)(s) =
∏

L(χ, s),

where the χ vary all over χ : (Z/mZ)× → C×.
Note that a corollary of this is that L(χ, 1) 6= 0 for all non-trivial characters: from the

Dedekind zeta product form above, there is a simple pole in LHS at s = 1 and on the right we
have L(1, s) = ζ(s) (which has the pole) and all the other characters give analytic L-functions
at s = 1. This proves Dirichlet’s theorem on primes in arithmetic progressions:

Take
p = {primes p ≡ a mod m} for (a,m) = 1,

then consider ∑
p∈p

1

ps
.

Since we can consider

log ζ(s) =
∑
p

1

ps
+ {terms analytic at s = 1},

we can say ∑
p∈p

1

ps
=

1

ϕ(m)

∑
χ

χ(a) logL(χ, s) + {analytic at s = 1}.

Note that all the functions are analytic except when we are considering Riemann zeta which
contributes a pole.

The LHS diverges for s = 1 because of the contribution from L(1, s) on the right which
then gives a growth independent of the choice of a. Thus p is infinite and has density 1

ϕ(m) .
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4 Cyclotomic Fields

Fix m ≥ 1 and assume that m is not twice an odd number. Then K = Q(ζm) is the field of
interest, and is called the mth cyclotomic field, where ζm = e

2πi
m and the degree of K over Q is

ϕ(m):
Clearly K = Q(roots of xm − 1) = Q(roots of Φm) where Φm is the mth cyclotomic

polynomial, Φ1(x) = x− 1,
xm − 1 =

∏
d|m

Φ(d)

so deg Φm = ϕ(m) = (Z/mZ)×.
Note that K is Galois over Q.
Further, when m = qk then it is easy to verify that

• Φm(x+1) = xϕ(m) + · · ·+q, and it is Eisenstein and hence irreducible. This in particular
shows that [Q(ζm) : Q] = ϕ(m).

• (q) = (1 − ζm)φ(m) so we have equality as ideals in OK . Thus q is totally ramified in
K/Q.

• All other primes are p - ∆xm−1 =⇒ are unramified in K/Q with residue degree

f = order of p in (Z/mZ)×.

Proof. We have that p ≡ 1 mod m iff mth roots of unity are all contained in F×p . Equivalently,

Φm = xq
k−1

xqk−1−1
splits completely over Fp. Similarly, if pr ≡ 1 mod m for some r, this is

equivalent as above (except with F×pr ) and Φm has irreducible factors of degree dividing r over
Fp. Thus, since the order of p in (Z/mZ)× is the smallest such r, then f = r by KD.

Now, in the general case, m = qk11 . . . q
kj
j , the field that we consider K = Q(ζm) is the

compositum of Q(ζk1q1 ), . . . ,Q(ζ
kj
qj ), and in particular, if we look at ramification of primes, we

see that these fields have no common overlap so

[Q(ζm) : Q] =
∏

ϕ(qkii ) = ϕ(m),

which proves that all Φm are irreducible.
Then if p - m then p is unramified in Q(ζm)/Q with residue degree fp = order of p in (Z/mZ)×.
If otherwise p|m so m = pkm0 so p ramifies in Q(ζm)/Q with ramification degree ep =

[Q(ζpk) : Q] = pk=1(p− 1) and has residue degree fp = order p mod m0.

4.1 ζ-function of Q(ζm)

Recall that
ζK(s) =

∏
p

Fp(p
−s).
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Then
Fp(T ) = (1− T fp)

ϕ(m)
epfp

and recall that 1−Np−s = 1−p−fps = 1−T fp , and ϕ(m)
epfp

is the number of primes above p. The
degree of Fp is usually ϕ(m) since most primes are unramified, and in general degFp = ϕ(m0).

We can hence observe,

Fp(T ) =
∏

a∈(Z/fpZ)×

(1− ζafpT )
ϕ(m0)
fp =

∏
χ:(Z/mZ)×→C×

(1− χ(p)T ).

Combining over all primes, we have shown that

ζQ(ζm)(s) =
∏

χ:(Z/mZ)×→C×
L(χ, s).

Example 4.1. Let m = 12, K = Q(ζ12) = Q(i,
√
−3), a biquadratic extension. It is also the

splitting filed of x12 − 1 = Φ12(x). Recall that we can write

Φ12(x) = Φ1Φ2Φ3Φ4Φ6Φ12

= (x− 1)(x+ 1)(x2 + x+ 1)(x2 + 1)(x2 − x+ 1)(x4 − x2 + 1).

Here are some local factors for ζQ(ζ12)(s):

F2(T ) F3(T ) F5(T ) . . . F13(T )

ζ(s) = L(1, s) 1− T 1− T 1− T . . . 1− T
× L(χ3, s) 1 + T 1 1 + T . . . 1− T
× L(χ4, s) 1 1 + T 1− T . . . 1− T
× L(χ12, s) 1 1 1 + T . . . 1− T
= ζQ(ζ12)(s) 1− T 2 1− T 2 (1− T 2)2 . . . (1− T )4

The prime decomposition is

(2) = p2
2 Np2 = 4 e = 2, f = 2 ramified

(3) = p2
3 Np3 = 9 e = 2, f = 2 ramified

(5) = p5Ap5B e = 1, f = 2 partially split1

(13) = p13Ap13Bp13Cp13D totally split2.

1c.f. x4 − x2 + 1 = (x2 + 2x− 1)(x2 − 2x− 1) mod 5
2c.f. x4 − x2 + 1 = (x− 2)(x− 6)(x− 7)(x− 11) mod 13
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4.2 Abelian extensions of Q

Q(ζ12) = Q(i,
√
−3)

Q(ζ4) = Q(i) Q(
√

3) Q(
√
−3) = Q(ζ3)

Q

Figure 1: Extension map

We have the extension map figure 1. Note that we have the following decompositions,

ζQ(ζ12) = ζ · L(χ3)L(χ4)L(χ12)

ζQ(ζ4) = ζ · L(χ4)

ζQ(ζ3) = ζ · L(χ3)

ζQ(
√

3) = ζ · L(χ12) = ζ · L(

(
3

·

)
).

Theorem 4.1 (Kronecker-Weber). We say that K/Q is abelian if it is Galois with Gal(K/Q)
abelian. Then

K/Q is abelian ⇐⇒ K ⊂ Q(ζm) for some m

In fact, from representation theory (justified more later),

⇐⇒ ζK(s) =

[K:Q]∏
i=1

Dirichlet L-fns.

Generalisation
Due to Hecke: can we do the same type of procedure over a number field F in place of Q?

So we would fix a non-zero ideal m ⊂ OF called a ‘modulus’. Then we would define

L(χ, s) =
∑
I⊂OF
ideal6=0

χ(I)NI−s =
∏
p

1

1− χ(p)(Np)−s
,

with χ : Im = {fractional ideals of F prime to m} → C× of finite order,

χ(I) = 1 on Pm = {principal ideals (α) such that α ≡ 1 mod m}.

Then extend to all other ideals, by mapping them to 0.
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R× → C× x 7→ sgn(x)u|x|v+iw u ∈ {0, 1}
C× → C× x 7→

(
x
|x|
)u|x|v+iw u ∈ Z.

Table 1: Possibilities for ϕ.

Example 4.2. L(1, s) = ζF (s).

Hecke showed analytic continuation and a functional equation for these L-functions. Thus
these are truly analogues to Dirichlet L-functions, but over F . There is a further slight generali-
sation, called Hecke characters and/or Grössencharakters. These allow χ|Pm : α 7→ C× instead
of 1, to agree with

F× ↪→ (R×)r1 × (C×)r2 → C×

via some continuous homomorphism ϕ, cally ‘infinity type’.
At real places, possibilities for ϕ (see Table 1) are just shifts.

Example 4.3.
ζ(s− 1) =

∏
p

1

1− p · p1−s = L(χ, s),

with χ(p) = p the cyclotomic character.

This is a Hecke character with infinite typy R× → C×, z 7→ |z|. That is, takes generator±n
of an ideal (n) and maps it to n. The modern formulation is:

Hecke characters on F = continuous group homomorphisms,

A×F → C× with F× in the kernel.

Tate’s thesis gives an alternative proof of meromorphic continuation and functional equation for
Hecke characters using Fourier analysis on adeles.

5 Decomposition, inertia, Frobenius

Let K be a number field, p ⊂ OK a prime (e.g. Q, (p)). Then assume F/K is a finite Galois
extension, G = Gal(F/K), |G| = [F : K] = d.

Let p1, . . . , pr be the primes above p in F . Recall that if e is the ramification degree, f the
residue degree, then here efr = d.

Remark (Fact 1). G permutes the pi transitively.

Definition. We define the decomposition group of the primes pi as the stabiliser of pi in G. We
write it as Dpi , so

Dpi = {σ ∈ Gal(F/K) : σ(pi) = pi},

and has index r in G.
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Then Dpi acts on the residue fields OF /pi ∼= Fqf so we get

Dpi
mod pi−−−−−−→
σ 7→σ̄

Gal(Fqf /Fq) ∼= Cf cyclic, gen. by x 7→ xq

with the map being the reduction map on automorphisms.

Remark (Fact 2). This map is onto.

Definition. The kernel of σ 7→ σ̄ is the inertia group of pi. Then

Ipi = {σ ∈ Dpi |σ̄ = id}

that is they are the elements of G that map pi → pi that are invisible onOF /pi. Then Ipi
f
/ Dpi ,

and |Ipi | = e.

Definition. A Frobenius element at pi,

Frobpi = any element of Dpi that acts as x 7→ xq on OF /pi.

So G has a subgroup of index r, Dpi . Inside Dpi there is a normal subgroup of index f , Ipi .
Inside Ipi there is the trivial normal subgroup of index e:

G
r
> Dpi

f
. Ipi

e
. {1}.

By Galois theory, this corresponds to

K
p split——–
r

K1
p̃i totally inert————

f
K2

p̃i totally ramified—————–
e

F.

Remark. For τ ∈ G,

Dτ(pi) = {σ ∈ G|σ(τ(pi)) = τ(pi)}
= {τστ−1|σ(pi) = pi}
= τDpiτ

−1.

Thus Dp1 , . . . , Dpr are conjugate in G. It is then convenient to descend to K:

Definition. Let F/K be Galois, p prime of K. Then

• Dp := decomposition group of some prime pi|p. Therefore, this is defined up to conju-
gacy.

• Ip := intertia group of some pi|p, also defined up to conjugacy.

• Frobp := Frob. element of Dpi . This is defined up to conjugacy and modulo inertia.
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Q(ζ12) = Q(i,
√
−3)

Q(ζ4) = Q(i) Q(
√

3) Q(
√
−3) = Q(ζ3)

Q

〈τ〉 〈σ〉 〈στ〉

Figure 2: Extension map

Example 5.1. Take F = Q(
√

3, i), the biquadratic extension, structure given in Figure 2, and
K = Q. Then the Galois group is isomorphic to C2 × C2 generated by

σ(i) = −i σ(
√

3) =
√

3

τ(i) = i τ(
√

3) = −
√

3.

We look at (2) in F/K. Then (2) is inert in Q(
√
−3) so its inertia degree is 2 so 2|f .

Similarly it ramifies in Q(i) so 2|e. (This is expanded in HW3). Thus e = f = 2 and r = 1
(since F/K = 4 and (2) = p2

2 whose norm is 4. Hence, we have that

K
p split——-
r

K1
p̃i totally inert————-

f
K2

p̃i totally ramified—————–
e

F

Q no splitting
= Q 2 inert———— Q(

√
−3)

2 ramifies————- F.

Then
D2 = Dp2 = G, I2 = Ip2 = 〈στ〉, Frob2 = τ or σ.

In the last thing we have to choose anything that isn’t in I2 = 〈στ〉.
Explicitly, write ζ = ζ3 = −1+

√
−3

2 ; ζ2 = −1− ζ. Then

OF = {a+ bi+ cζ + diζ|a, b, c, d ∈ Z}

and
p2 = (1 + i) = {a+ bi+ cζ + diζ|a, b, c, d ∈ Z, a ≡ b, c ≡ d mod 2}.

Note that p2
2 = (2). Further,

OF /p2 = {0̄, 1̄, ζ̄, 1 + ζ} ∼= F4.

Consider στ :
στ(p2) = (1 − i) = p2, and στ fixes 0, 1, ζ, 1 + ζ so it’s trivial on F4. Hence στ ∈ Ip2 -

also note here that I2 = Gal(F : Q(
√
−3)).
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Also, τ(p2) = p2 as τ fixes 1 + i. Now τ fixes 0, 1 and sends ζ 7→ ζ2 ≡ 1 + ζ (map is mod
(2) and the congruence is mod (p2)).

That is τ̄ : F4 → F4, x 7→ x2 so it acts on the residue field by squaring everything, and
this is precisely what it means to be the Frobenius element for this prime, so τ = Frob2. Thus
D2 = 〈I2,Frob2〉 = G.

6 Galois Representations

Definition. Take G a finite group. Then a d-dimensional (complex) representation of G is a
group homomorphism,

ρ : G→ GL(d,C) = GLd(C) = GL(V ),

for V some complex d-dimensional vector space.

Example 6.1. Suppose G ∼= C4 = 〈g〉. Then we could construct ρ via

g 7→
(

0 −1
1 0

)
a rotation by π/2. Thus we ‘represent G as a group of matrices’.

Definition. WhenG = Gal(F/K), where F/K is some finite Galois extension, then we call the
representation of this group a Galois representation,

ρ : Gal(F/K)→ GLd(C),

or
ρ : Gal(K̄/K)→ Gal(F/K)→ GLd(C).

When F,K are number fields, then these representations are called Artin representations (over
K).

Definition. To each such Artin representation, we can associate an L-function. Take

ρ : Gal(F/K)→ GL(V ),

an Artin representation. Then we define the (Artin) L-function,

L(ρ, s) = L(V, s) :=
∏

p prime of K

Fp(Np−s).

with
Fp(T ) = det

(
1− ρ(Frob−1

p )T |V Ip
)
.

Recall that Ip = {v ∈ V |σ(v) = v ∀σ ∈ Ip}. Also, note that mostly the inertia group is trivial
- so it’s not usually as scary as it looks. Thus for all but finitely many primes, Fp(T ) has degree
d. It will have smaller degree for those which are ramified.

15



Exercise 6.1 (Do it!). This is well-defined.

Example 6.2. Let F = Q(i), K = Q. Then G = Gal(F/K) ∼= C2 = 〈1, σ〉. Recall that
primes here fall in to 3 categories,

p =


2 I2 = G

1 mod 4 Ip = {1}, Dp = {1},Frobp = 1

3 mod 4 Ip = {1}, Dp = G,Frobp = σ.

As an example, take G→ C× = GL(V1), where dimV1 = 1. Then

1, σ 7→ Id .

So V Ip
1 = V1 for all p and has dimension 1. Then we need to examine the characteristic polyno-

mial of Frobp:

ρ(Frobp) = Id ∀p, Fp(T ) = det(1− Id ·T ) = 1− T.

Thus the L-function L(V1, s) = ζ(s) (unsurprisingly).
Now take a different rep, G→ C× = GL(V−1), where dimV−1 = 1 with

1 7→ Id, σ 7→ − Id .

Then

V
Ip
−1 =

{
0 p = 2

V−1 p > 2
.

Turning to the characteristic polynomials,

Fp(T ) =


1 p = 2

det(1− Id ·T ) = 1− T p ≡ 1 mod 4

det(1 + Id ·T ) = 1 + T p ≡ 3 mod 4.

Therefore L(V−1, s) = L(χ4, s), where χ4 is the Dirichlet character of conductor 4 (defined
earlier on).

Final example of a rep: G→ GL(V ) where V has dimension 2. Consider V = Q(i)⊗Q C
- look at G acting on Q(i) = Q · 1 + Q · i,Q-linearly, and take the same matrices over C. Thus

1 7→
(

1 0
0 1

)
σ 7→

(
1 0
0 −1

)
.

Thus our space V decomposes as V ∼= V1 ⊕ V−1. We can see that V Ip = V
Ip

1 ⊕ V
Ip
−1 and

whatever determinant we are computing, it is going to be the product of determinants on the two
subspaces. Thus,

L(V, s) = L(V1, s)L(V−1, s) = ζ(s)L(χ4, s) = ζQ(i)(s).
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In fact, any representation of Gal(Q(i)/Q) ∼= C2 is

V1 ⊕ · · ·V1 ⊕ V−1 ⊕ · · · ⊕ V−1 = V a
1 ⊕ V b

−1,

so we will always get
ζ(s)aL(χ4, s)

b.

Question Why do we define Artin L-functions L(V, s) like this, with

Fp(T ) = det
(
1− ρ(Frob−1

p )T |V Ip
)
?

Write GK = Gal(K̄/K) where K is a number field. Then these are a collection of ‘semi-
good’ reasons:

(1) L(1GQ , s) = ζ(s) where 1GQ is the trivial representation on Gal(Q̄/Q). More generally,
L(1GK , s) = ζK(s).

(2) Generally, 1-dimensional representations ofGQ correspond to DirichletL-functions. When
K is a number field, we get Hecke L-functions of finite order.

(3) Suppose [K : Q] = d (not necessarily Galois) then K determines a natural d-dimensional
representation VK ofGQ, the absolute Galois group of Q. For example, letK = Q[X]/f(x)
with roots α1, . . . , αd. Then

VK = Cα1 ⊕ · · · ⊕ Cαd,

and the Galois group acts by permuting the basis elements α1, . . . , αd. Then

VK ∼= Ind
GQ
GK

1GK ,

and ζK(s) = L(VK , s). The decomposition of VK into irreducible representations leads
to

ζK(s) =
∏

Artin L-functions of irreps.

(4) We have that (1) and (3) combine to give L(1GK , s) = L(Ind
GQ
GK

1GK , s) and the same is
true for any V of GK in place of 1GK .

(5) The Brauer induction gives that (1)-(4) recovers allL(V, s) uniquely from Dirichlet/Hecke
L-functions, which shows that our definition of Fp(T ) is the only possible one, and gives
meromorphic continuation of all L(V, s) and the corresponding functional equation.

(6) Everything works in exactly the same way for non-finite image representations (elliptic
curves etc.).
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7 Special Case: L(χ, s)

Theorem 7.1. There is a bijection

{Dirichlet characters χ} ←→ {1− dim Artin reps ρ : Gal(Q̄/Q)→ C×}
χ 7→ ρχ

such that

• χ is of modulus m ⇐⇒ ρχ factors through Gal(Q(ζm)/Q) and not for smaller d|m (?).

• L(χ, s) = L(ρχ, s).

Proof. Take χ of modulus m. Then

ρχ : Gal(Q(ζm)/Q)
can.→∼= (Z/mZ)×

χ→ C×

where
σ : ζm 7→ ζam 7→

Artin map
a−1 7→ χ(a)−1.

Note that p−1 ∈ (Z/mZ)× corresponds to ζm → ζpm which is Frobp, (or in other words p ↔
Frob−1

p ). Then χ of modulus m implies that it does not come from (Z/dZ)× for d|m, d < m so
this implies (?).

Kronecker-Weber gives that every representation of GQ = Gal(Q̄/Q) that factors through
an abelian group, in particular every 1-dim one, ρ, factors through some Gal(Q(ζm)/Q). Thus
ρ = ρχ for some χ.

Finally we need to compare L-functions - we do this by separately considering ‘good’ and
‘bad’ primes. For p - m, L(χ, s) has

Fp(T ) = 1− χ(p)T, for χ(p) ∈ C×, p ∈ (Z/mZ)×.

Also, L(ρχ, s) has Fp(T ) = 1− ρχ(Frob−1
p )T (inertia at p is trivial because p is unramified in

Q(ζm)/Q). So ρχ(Frob−1
p ) = χ(p). For p|m, L(χ, s) has Fp(T ) = 1 (as p|m implies χ(p) = 0

since this is how we extend characters).

Q(ζm)

Q(ζm0)

Q

Ip

Figure 3: Extension Diagram for Q(ζm)/Q.
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Since χ has modulus m (it is primitive), ρχ does not factor through Gal(Q(ζm0)/Q). Thus
Ip acts non-trivially on Vχ(∼= C). Then we also note V Ip

χ = 0 =⇒ Fp(T ) = 1.

Remark. The same result holds for the one-to-one correspondence

Hecke chars of finite order over K 1:1←→ 1-dim reps GK → C×.

The proof of this doesn’t use Kronecker-Weber, but instead uses the full force of global CFT.

8 Permutation representations and Dedekind ζ

Let F/K be a finite Galois extension, withG = Gal(F/K). Then there are 1-1 correspondences
(one from basic group theory and the Galois correspondence)

Transtive G-sets 1:1←→ Sbgrps of G 1:1←→ flds K ⊂M ⊂ F
up to conj up to isom/K

X ←[ Stabiliser (of an elmt) H 7→ FH

(of an elmt)
G/H ←[ H Gal(F/M) ←[ M .

Here G/H = {left cosets g1H . . . gdH with left mult action}.
If [M : K] = d then we find a transitive G-set X of size d. Or, it can be thought of as a

Gal(K̄/K)-set which does not depend on F .

F

M  X = G/H

K

Explicitly, if M = K(α), α the root of some irreducible degree d-polynomial f(x) ∈ K[x].
Then set H = StabG(α) and

X = XM/K = {roots of f} G

1:1
= {K − embeddings M ↪→ K̄} GK .

Example 8.1. Let G = S3, K = Q, F = Q(ζ3, 3
√
m).

Take a G-set X of size d. Then we get out a d-dim permutation representation C[X] - for
the basis take elements of X and let G permute them.
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Fields M SubGrps H G-sets X Acts
Q S3 · G acts trivially

Q(ζ3) C3
· · G acts through S3/C3

∼= C2.
Q( 3
√
m) C2 G acts as S3 {1, 2, 3}

F {1} Regular action (left mult).

Table 2: Galois correspondence for Exercise 8.1

Note that any G-set X can be written as a union of transitive G-sets,

X = X1 ⊥⊥ X2 ⊥⊥ . . .

so C[X] ∼= C[X1]⊕ C[X2]⊕ · · · , so it’s enough just to consider transitive ones.

[Aside: Prime decomposition in arbitrary extensions.]

Example 8.2. Let K = Q, F = Q(roots, αi of x5 − 5x2 − 3), so G = Gal(F/K) ∼= D5.
Then

F = Q(α1, . . . , α5)

M = Q(α1)

K = Q

H = C2A

5

C2B C2E

p1 · · · p5

F72 F72

?

p = 7

Let’s consider Dp1
∈ F/K so Dp1

= C2A say, and Ip1
∈ F/K with Ip1

= {1}. In the
top ‘layer’ F/M :

D
F/M
pi

= D
F/K
pi

∩H =

{
C2A i = 1← f

F/M
p1

= 2

1 i = 2, 3, 4, 5← f
F/M
pi

= 1.

Recall that H = C2A and Dp1 ∈ {C2A, . . . , C2E}. Since the f ’s are multiplicative in towers
(see HW3), we have that
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p1 p2 p3 p4 p5

q1 q2 q3

(7)

f = 2 f = 1 f = 1

f = 1 f = 2 f = 2

F

M

K

2

5

In practice of course we go the other way:

x5 − 5x2 − 3 = (x− 1)(x2 + 3x− 2)(x2 − 2x+ 2) mod 7

therefore (7) = q1q2q3 with f = 1, f = 2, f = 2 respectively in M/K. This implies that the
decomposition group of 7 in F/K, DF/K

7 = C2 (and not C1, C5, D5).

Proposition 8.1. Let K be a number field,

F

M

K

H

G Galois

p

{qj}

p1 · · · pr

So Di = D
F/K
pi < G, Ii = I

F/K
pi / Di. So now write I = I1, D = D1, F robp ∈ D.

(i) DF/M
pi = Di ∩H, IF/Mpi = Ii ∩H

(ii) InM/K, primes qj |p are in a 1-1 correspondence with ‘double cosets’DgiH ∈ D\G/H .
They are also in a 1-1 correspondence with orbits of D on G/H . Each orbit has length
ejfj (ej the ramification and fj the residue degree of qj in M/K) and is a union of fj
I-orbits of length ej cyclically permuted by Frobp .

Proof. (i) is clear. (ii) By considering how H acts on {pi}, we see that the orbits are in a 1-1
correspondence with qj and the stabilisers are DF/M

pi . Now, how does H act on G/D? Orbits
are now in 1-1 correspondence with the double cosets, and stabilisers are Di ∩ H . By (i) the
stabilisers are equal, so the orbits are the same. The rest of the proposition is bookwork.
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Definition. The relative ζ-function is

ζM/K(s) =
∏

q⊂OM

1

1−NM/K(q−s)
.

Note that this is equal to ζM when K = Q.

Theorem 8.2. Let M/K be a finite extension. Then

ζM/K(s) = L(C[XM/K ], s).

The RHS is the Artin L-function for the representation C[XM/K ] Gal(K̄/K).

On the level of local polynomials, for every prime p of K,∏
q|p

(1− T fq) Thm
= det

(
1− Frob−1

p T |C[XM/K ]Ip
)
.

F

M

K

H

G

p

{qj}

p1 · · · pr

p1I,Frobp

Proof. Recall that if X is a G-set then we have the representation C[X]G ∼= C#orbits. For
example if

x1 x2 x3 x4 x5

then CG = 〈x1 + x2, x3 + x4 + x5〉. As a D-set,

XM/K = G/H = ⊥⊥
DgiH

D/D ∩ gjHg−1
j .

Recall that I acts with fi orbits of size I ∩ giHg−1
i and they are cyclically permuted by Frobp.

Therefore C[G/H]I ∼= ⊕jCfj Frobp cyclically (and therefore the inverse of Frob as well).
Therefore,

det
(
1− Frob−1

p T |C[G/H]Ip
)

=
∏
j

(1− T fj ) = local factor of ζM/K(s) at p.
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9 Characters and Induction

There is the topic of character theory that says for G finite, ρ : G → GL(V ), there exists an
object called a ‘character’ that encodes information about ρ.

Definition. The character of V (or of ρ) is

χρ = χV : G→ C,

where g 7→ tr(ρ(g)).

Then note that χV (e) = dimV and for ρ a one dimensional representation then ‘χρ = ρ’.
Two conjugate elements have the same trace so characters are class functions.

Definition. We have the following inner product,

〈χV , χW 〉 =
1

|G|
∑
g∈G

χV (g)χW (g).

Example 9.1. Let V = C[X] be a permutation rep. Then

χρ = χV = #{fixed points under V } = #{x ∈ X : g · x = x}.

Example 9.2. If G = S3 which acts naturally on X = {1, 2, 3}. Then if V = C[X], we have
that the conjugacy classes, C = {[e], [(1, 2)], [(1, 2, 3)]}. Thus

χV = (3, 1, 0) : C → C.

To examine the inner product:

〈χV , χV 〉 =
1

6
[3 · 3 · 1 + 1 · 1 · 3 + 0] = 2.

Theorem 9.1. Suppose G is a finite group, C = {conj classes}, and I = {irreps V1, V2, . . . }
up to isomorphism. Then

• |I| = |C|, dimVi divides |G|,
∑k

i=1 dimV 2
i = |G|.

• Complete reducibility: every representation can be written

V ∼= V ⊕n1
1 ⊕ · · · ⊕ V ⊕nkk

some ni ≥ 0 unique, Vi irreducible.

• If W = V ⊕m1
1 ⊕ · · · ⊕ V ⊕mkk , mi ≥ 0, then

〈χW , χV 〉 = 〈χV , χW 〉 =
k∑
i=1

nimi = dimC HomG(V,W ).

So in particular,
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– 〈χV , χV 〉 =
∑k

i=1 n
2
i

– V is irreducible ⇐⇒ 〈χV , χV 〉 = 1.

– 〈χVi , χVj 〉 = δij .

• χV + χW = χV⊕W

• χV χW = χV⊗W

• χV = χV ? - the character of the dual rep g 7→ (ρ(g)t)−1.

Example 9.3. G is abelian if and only if |C| = |G| and |I| = |G|. Further∑
dim2 = |G| =⇒ all Vi ∈ I are 1-dimensional.

We also have that
{irreps of G} = Ĝ = Hom(G,C×).

For any group G,

{1-dim reps of G} = Ĝ =
Ĝ

[G,G]
,

where G
[G,G] is the maximal abelian quotient of G, so

#{1-dim reps} = (G : [G,G]).

Example 9.4. LetG = S4, so C = {e, [(1, 2)], [(1, 2, 3)], [(1, 2, 3, 4)], [(1, 2)(3, 4)]} and |I| = 5.
So every rep of S4 has the form

V ⊕n1
1 ⊕ · · · ⊕ V ⊕n5

5 .

We have 5 irreps ρi of dimension 1,1 (from G/[G,G] = S4/A4 = C2) and three others of
currently unknown dimensions. However

5∑
i=1

dim ρ2
i = |G| = 24 =⇒ 1 + 1 + 2 + 3 + 3.

Then we have characters from the following representations representations,

• χρ1: ρ1 = 1 : S4 → GL1(C) the trivial rep so χρ1 = (1, 1, 1, 1, 1).

• χρ2: ρ2 is the sign representation, so χρ2 = (1,−1, 1,−1, 1).

• χρ4: ρ4 comes from S4 acting on {1, 2, 3, 4}. Call this representation π then χπ =
(4, 2, 1, 0, 0) shows number of fixed points. This is reducible and we get that the inner
product: 〈χπ, χπ〉 = 2. Further

〈χπ, χρ1〉 = 1 =⇒ π ∼= 1⊕ ρ4.

Then χρ4 = χπ − χ1 = (3, 1, 0,−1,−1).
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• χρ5: we get this by taking the product of χρ2χρ4 = (3,−1, 0, 1,−1).

• Finally χρ3 = (2, 0,−1, 0, 2). We can get this in a number of ways: orthogonality, lifting
from S4/V4

∼= S3, from χC[G] =
∑5

i=1 dim ρiχρi , or from χ5χ5 and reducing it.

In total, this gives the character table

e [(1, 2)] [(1, 2, 3)] [(1, 2, 3, 4)] [(1, 2)(3, 4)]

χ1 1 1 1 1 1
χ2 1 −1 1 −1 1
χ3 2 0 −1 0 2
χ4 3 1 0 −1 −1
χ5 3 −1 0 1 −1

Alternatively, we could have recovered all the characters using induction:

Theorem 9.2. Let H < G be a subgroup of index d. There are maps

Reps of H Reps of G

ResH

IndGH

n-dim←[ n-dim

n-dim 7→ dn-dim

such that for all reps ρ : G→ GL(V ), σ : H → GL(W ).

• Frobenius Reciprocity holds: 〈V, IndW 〉G = 〈ResV,W 〉H .

• ResH V = same V with H action, i.e.

χResH V (h) = χV (h).

• IndGHW = {f : G → W : f(hg) = σ(h)f(g) ∀h ∈ H, g ∈ G}, and g ∈ G acts by
f(x) 7→ f(xg).

These are ‘complicated’ requirements, so instead often we use the following formula for
the character of the induction representation:

χIndGHW (g) =
1

|G|
∑
x∈G

χ0
W (xgx−1),

where

χ0
W =

{
χW on H
0 else.

.

• IndGH 1 ∼= C[G/H].
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10 Artin Formalism

Theorem 10.1 (L-functions are invariant under induction). If we have the following extension,

F

M

K

Hd

G

and if ρ : H → GLd(C) is an Artin representation then

L(ρ, s) = L(IndGH ρ, s),

where L(ρ, s) is a rep of GM of dimension n, and L(IndGH ρ, s) is a rep of GK of dimension nd
where d = (G : H).

Proof. Same argument as for ρ = 1,

IndGH ρ = C[G/H],

but instead of as a D-set

G/H =⊥⊥gi∈D\G/H D/D ∩ giHg−1
i ,

we use Mackey’s formula,

ResD IndGH ρ =
⊕

gi∈D\G/H

IndD
D∩giHg−1

i
ρgi .

Theorem 10.2 (Brauer Induction). Suppose we have a representation ρ : G→ GLn(C). Then

χρ =
∑
i

ni IndGHi χσ(i),

for some ni ∈ Z (in particular can be negative), Hi < G may be taken to be of the form
cyclic×p-group, σi : Hi → C× are 1-dim representation with characters χi.

Remark. This is used to construct character tables of groups.
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Corollary 10.2.1. Every ArtinL-function can be written in terms ofL-functions of 1-dimensional
representations,

L(ρ, s) =
∏
i

L(σi, s)
ni ← Hecke L-fns.

Recall that ρ : GK → GLn(C) then σi : GMi → C× where Mi/K are finite extensions. In
particular, L(ρ, s) is meromorphic on C and satisfies functional equation under s↔ 1− s.

Conjecture (Artin). If ρ : GQ → GLn(C) is an irreducible Artin rep, ρ 6= 1, then L(ρ, s) has
analytic continuation to C.

Remark. The two properties:

L(V1 ⊕ V2, s) = L(V1, s)L(V2, s), L(IndV, s) = L(V, s),

that define L-functions uniquely from those of 1-dimensional representations are called Artin
formalism.

Example 10.1. Let K = Q, M = Q( 4
√

2), where 4
√

2 is a root of x4 − 2, and F = Q( 4
√

2, i)
which contains all four roots of x4−2. Then the Galois groups contains maps, σ which permute
the four roots cyclically, and a map τ acting as a reflection through complex conjugation:

4
√

2 i 4
√

2

−i 4
√

2 − 4
√

2

σ τ

Then G = 〈σ, τ〉 = Gal(F/K) ∼= D4.
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D4

C2
2 C4 C2

2

C2 C2 C2

1

K = Q

Q(
√

2) Q(i) Q(−
√

2)

M = Q( 4
√

2) Q(i,
√

2) Q( 4
√
−2)

Q( 4
√

2, i)

τ σ2 στ

χ8A χ4 χ8B

Figure 4: Galois correspondence between F/K and D4.

Note3 that 4
√
−2 = ζ8 · 4

√
2.

We also have a character table:

1 σ2 τ σ στ

1 1 1 1 1 1
χ4 1 1 −1 1 −1
χ8A 1 1 1 −1 −1
χ8B 1 1 −1 −1 1
ψ 2 −2 0 0 0

Table 3: Characters of irreps of D4.

The final character ψ is the standard representation of D4 → GL2(C). The commutator
G′ = Z(G) = {e, σ2} cuts out the maximal abelian extension of Q in F . Then

FG
′

= Q(i,
√

2) = Q(ζ8)

and
Gal(Q(ζ8)/Q) ∼= (Z/8Z)× ∼= C2 × C2,

has 1-dim reps 1, χ4, χ8A, χ8B where

χ4 ↔
(
−1
·

)
, χ8A ↔

(
2
·

)
, χ8B ↔

(
2
·

)
 Dirichlet L-function.

The only exceptional Dirichlet L-function is the one coming from the 2-dim rep with character
ψ. This yields L(ψ, s) of degree 2,

L(ψ, s) = 1 · 1

1− (3−s)2
· 1

1 + (5−s)2
· 1

1− (7−s)2
· · ·

3Also see D4 on groupnames.org
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The unit factor at the start comes from the case where we consider the prime 2, then I2 = D4

and there are no invariants on C2. Then by examining the third factor more, Frob5 is a rotation
by π/2 so it has characteristic polynomial (1 + T 2), and the fourth gives Frob7 is a reflection
and has characteristic polynomial (1− T 2). This can be expanded in to a Dirichlet series,

L(ψ, s) =

∞∑
n=1

an
ns
,

with ap = ψ(Frobp) at least on those p - ∆F .
Thus, all ζ-functions of subfields of F are products of these, for example

ζQ( 4√2)(s) = L(C[G/〈τ〉], s),

where C[G/〈τ〉] is the G set {1, 2, 3, 4} with natural D4 action. So,

χC[G/〈τ〉] = (4, 0, 2, 0, 0)

= (1, 1, 1, 1) + (1, 1, 1,−1,−1) + (2,−2, 0, 0, 0)

= 1 + χ8A + ψ,

so

ζQ( 4√2)(s) = L(1, s)L(χ8A, s)L(ψ, s)

= ζQ(
√

2)(s) · L(ψ, s).

Similarly,

ζQ( 4√−2)(s) = L(1, s)L(χ8B, s)L(ψ, s)

= ζQ(
√
−2)(s) · L(ψ, s),

and

ζQ(i,
√

2)(s) = L(1, s)L(χ4, s)L(χ8A, s)L(χ8B, s)

=
ζQ(i)(s) · ζQ(

√
2)(s) · ζQ(

√
−2)(s)

ζ(s)2
.

Remark. This is in practice how ζK(s) are computed - e.g. in Magma.

Theorem 10.3. Suppose ρ, σ : Gal(Q̄/Q)→ GL?(C) be two Artin representations. Then

ρ ∼= σ ⇐⇒ L(ρ, s) = L(σ, s)

as analytic functions on Re(s)� 0. So the L-function determines the representation uniquely.
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Proof. The forward direction ( =⇒ ) is clear. To show the reverse, (⇐= ),
Step 1: For any Dirichlet series, f(s) =

∑∞
n=1

an
ns for Re(s) � 0, then we can recover the

coefficients:

a1 = lim
x→∞

f(x)

a2 = lim
x→∞

f(x)− a1

2x

...

so the ai are uniquely determined by f(s) as a function. Hence ρ, σ have the same local factors
at all primes. Then dim ρ = dimσ = degFp(T ) for p large.

Step 2: ρ : Gal(F1/Q) → GLd(C), σ : Gal(F2/Q) → GLd(C). Thus if we take the
compositum F = F1F2 then

ρ, σ : G→ GLd(C),

where G = Gal(F/Q) is the same group.
Step 3: The Chebotarev density theorem implies that for every conjugacy class C ⊂ G,

there exists infinitely many primes p such that Frob
F/Q
p ∈ C. Then we have that

χρ(C) = ap = χσ(C),

where ap is the pth term of the Dirichlet series. Thus χσ = χρ.
Step 4: From representation theorem, equality of characters implies an isomorphism of

representations, so χρ = χσ =⇒ ρ ∼= σ.

Remark. It is not true that ζM1(s) = ζM2(s) implies that M1
∼= M2. There exist Gassmann

triples (G,H1, H2) such that

G/H1 6∼= G/H2 as G-sets, but C[G/H1] ∼= C[G/H2] as representations.

An example of this is the following: G = GL3(F2), order 168, simple.

G

H1 H2

{1}

Above we have thatH1, H2 are two non-conjugate subgroups of index 7 such that C[G/H1] ∼=
C[G/H2]. This leads to degree 7 fieldsM1,M2 over Q (for every realisation ofG as Gal(F/Q))
with M1 6∼= M2 but ζM1(s) = ζM2(s).
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This is the smallest possible example, it is easy to check that in degree less than 7, ζM (s)
determines M . Such M1,M2 are called arithmetically equivalent fields. Many invariants of
M1,M2 are the same, for example

r1, r2 ← functions of complex conj acting on C[G/H].

|∆M | ← conductor of C[G/H]

R · h
#roots of 1

← ζM (0),

but for example h,R need not be the same (not functions of C[G/H]).

Remark. The above phenomenon has been explored for class groups, non-isomorphic curves
with isomorphic Jacobians, BSD conjecture, and notably Sunada 1985:

“Can you hear the shape of a drum?” : NO.

That is, there exists non-isomorphic manifolds with the same spectrum of the Laplacian (same
construction).

11 Γ-factors, ε-factors, and conductors

Suppose that we have an Artin representation ρ : GQ → GLd(C) with a degree d L-function
L(ρ, s), meromorphic. Then let us define the completed L-function:

L̂(ρ, s) =

(
N

πd

)s/2
γ(s)L(ρ, s),

and this satisfies the function equation

L̂(ρ, s) = w · L̂(ρ∗, s).

Above we have written

N = N(ρ), conductor ∈ N
γ(s) = γρ(s), Γ-factor

w = wρ, root number, sign in functional eq., |w| = 1.

Recall that 1-dimensional ρ correspond exactly to Dirichlet characters χ (and for ρ : GK →
C× ↔ Hecke similarly). Then

N = modulus4of χ=m

γ(s) =

{
Γ
(
s
2

)
if χ(−1) = 1 ⇐⇒ ρ(complex conj) = +1,

Γ
(
s+1

2

)
if χ(−1) = −1 ⇐⇒ ρ(complex conj) = −1.

w =
ε

|ε|
, ε =

m−1∑
a=1

χ(a)ζam, Gauss sum.
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For general ρ, we can define N, ε, w = ε
|ε| , γ(s) from 1-dimenisonals and Brauer induction. In

fact, for ε-factors cannot do much better,

ε(ρ) =
∏
v

places of Q

εV (ρ)← local ε-facors

{
dim ρ = 1 Tate’s thesis
dim ρ > 1 Langlands-Deligne.

γ-factors: To work out the γ-factors for ρ : GQ → GLd(C), we look at how complex
conjugation works,

complex conj 7→ matrix of order 2 with d+ eigenvalues

and d− eigenvalues −1 with d+ + d− = d.

Then

γ(s) = Γ
(s

2

)d+
Γ

(
s+ 1

2

)d−
.

To prove this just check that it is correct for 1-dimensionals and respects Artin formalism.

Example 11.1. LetM/Q be finite. Then ζM (s) = L(C[X], s) whereX = {embeddings M ↪→ C}
on which Gal(C/Q) acts. Then complex conjugation fixes r1 real embeddings and swaps com-
plex ones in pairs. So the matrix

1
. . .

1
0 1
1 0

. . .
0 1
1 0


so there are r1 + r2 number of +1 eigenvalues and r2 number of −1 eigenvalues. Therefore

γ(s) = Γ
(s

2

)r1+r2
Γ

(
s+ 1

2

)r2
,

as expected for ζM (s).

Conductors:

Definition (Artin conductor). Let ρ : Gal(F/K)→ GL(V ), where K is a finite extension of Q,
F/K is Galois with groupG, and dimV = d. Then we defineN(ρ), the global Artin conductor,
to be an ideal in OK ,

N(ρ) =
∏
p

pnp ,

where np is the local conductor exponent at p (sometimes np is written fp).
4If χ : (Z/mZ)× → C× primitive then the modulus of χ is m
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Theorem 11.1 (Local conductor exponent). Let D = Dp, I = Ip ⊂ G = Gal(F/K) be the
decomposition and inertia group of some

q|p|p

where q is in F , p is in K, and p ∈ Q. Then

np = np,tame + np,wild

(sometimes ‘wild’ is also called ‘Swan’), and

np,tame = d− dimV I ← ‘Missing degree for Fp(T )’

np,wild = 0 if p - |I|.

In general,
G > D . I0 = I

inertia
. I1 = p-Sylow(I)

wild inertia
. I2 . · · ·

where

In = {σ ∈ D|σ = id on Of/qn+1},

are higher ramification groups,

= {1} for n large.

Then

np,wild =
∑
n≥1

|In|
|I|

(d− dimV In) ∈ Z,

which measures how ‘badly ramified’ V is.

Example 11.2. ρ is unramified at p - that is (V I = 0) ⇐⇒

np,tame = 0 ⇐⇒ np = 0.

In particular np = 0 for all primes unramified in F/K.

Example 11.3. Let ρ : GQ → C× (thus they correspond to Dirichlet characters) then

N(ρ) = modulus of χ.

Theorem 11.2 (Conductor-discriminant formula, or Führerdiskriminantformel). Let M/K be a
finite extension and

ζM/K(s) = L(C[XM/K ], s),

where C[XM/K ] is K-embeddings M ↪→ K. Then NC[XM/K ] = |∆M/K | as ideals in OK .

Remark. This gives a way to compute discriminants of number fields using Artin representa-
tions.
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Example 11.4. Let F = Q(ζ, 3
√

3), and

F

M = Q( 3
√

3)

Q

C2

S3

q = (π)

p = (3)

totally ram.

Then π = 1−ζ
3√3

which has valuation 1/2− 1/3. We have that

C3 = I1
3-Sylow

/ I = D = G = S3.

Then the generator σ−1 of I1:

3
√

3→ ζ
3
√

3

1− ζ → 1− ζ,

so σ(π) = ζπ. How wild is the valuation σ? We compute

vq(π − σ(π)) = vq(π − ζπ)

= vq(π)vq(1− ζ)

= 1 + vq(1− ζ)

= 4.

Thus, σ is trivial mod π4. However σ 6≡ 1 mod π5 since σ(π) 6≡ π mod π5. This tells us how
deep σ lies in our inertia group:

· · · / {1} I4︸ ︷︷ ︸
{1}

/ I3 = I2 = I1︸ ︷︷ ︸
C3

/ I = S3

Take V = C[XM/K ] = C ⊕ C ⊕ C, and S3 acts naturally on this (permuting the basis
elements). Then S3, C3 have 1-dim invariants (#{orbits}), and {1} has 3-dim invariant.

Now

nV,3 = d− dimV I + np,wild =

tame︷ ︸︸ ︷
3− 1 +

I1︷ ︸︸ ︷
3

6
(3− 1) +

I2︷ ︸︸ ︷
3

6
(3− 1) +

I3︷ ︸︸ ︷
3

6
(3− 1) +0 = 5.

At all other primes, nV,p = 0, since p unramified in F/Q. So easily |∆M | = NV = 35 (and
|∆F | = 311).
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Finally, conductors (and ε-factors as well) are inductive in degree 0:

Theorem 11.3. Suppose [K : Q] = n. Then take two Artin representations ρ1, ρ2 of same
dimension,

ρ1, ρ2 : GK → GLd(C).

We consider the inductions

Ind ρ1, Ind ρ2 : GQ → GLnd(C),

then

NormK/Q
N(ρ1)

N(ρ2)
=
N(Ind ρ1)

N(Ind ρ2)
,

that is N(ρ1 	 ρ2) behaves well under induction.

Corollary 11.3.1. Take ρ = ρ1, ρ2 =

d︷ ︸︸ ︷
1⊕ · · · ⊕ 1. Then

N(Ind ρ1) = NormK/QN(ρ) · |∆K |d.

12 Local Fields

Let K = Q, and p a prime then this gives rise to the p-adic absolute value, usually denoted

| · |p

on Q. ‘Absolute values’ are multiplicative functions that satisfy the triangle inequality. In fact,
the only absolute values on Q (up to a natural equivalence) are the classical absolute value and
the p-adic ones, defined as ∣∣∣pna

b

∣∣∣
p

=
1

pn
, |0| = 0.

The p-adic absolute value gives rise to a metric

dp(x, y) = |x− y|p.

Definition (p-adic integers). Define the p-adic integers Zp by

Zp = the topological completion of Z with respect to | · |p

=
{Cauchy sequences (xn)n in Z}

{sequences xn → 0}
= lim
←n

Z/pnZ

= lim
←n
{seq. xn ∈ Z/pnZ s.t. xn ≡ xn+1 mod pn}

=

{ ∞∑
n=0

anp
n|an ∈ {0, . . . , p− 1}

}
.

Then Zp is a DVR, local ring, which has only one maximal ideal (p), and residue field Fp.
Further Zp ⊇ Z.
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Definition (p-adic numbers). The p-adic numbers Qp satisfy:

Qp = topological completion of Q wrt dp
= Field of fractions of Zp

=

{ ∞∑
n=n0

anp
n|an ∈ {0, . . . , p− 1}

}
.

This is a field that contains Q, and so has characteristic 0.

Example 12.1. In Q2,

21 = 1 + 22 + 24 ∈ Z2.

3

2
= 2−1 + 1 6∈ Z2

−1 = 1 + 2 + 22 + 23 + · · · ∈ Z2(=
1

1− x
geo series with x = 2, |x|2 < 1.).

Example 12.2. Similarly, for K/Q finite, O, p, with O/p = k finite. Then this gives p-adic
absolute value:

|x|p =

(
1

|k|

)vp(x)

.

Then we say thatKp is the topological completion ofK with respect to |·|p and is called the local
or p-adic field. We have that Kp is a finite extension of Qp, wrt p|p, and every finite extension of
Qp arises this way. So

Kp =

{ ∞∑
n=n0

anπ
n|an ∈ A

}
where π is any uniformiser, vp(π) = 1 (e.g. π ∈ p\p2), and A is any set of reprsentatives of
O/p.

Proposition 12.1. Take

F

K

Galois

q

p

Then Fq/Kp is Galois with Gal(Fq/Kp) = Dq - this is the same for all q|p. Passing to the
algebraic closure,

Q

Q

prime q above p in Q

p

complete
 

Qp

Qo

GQp = Dq < GQ
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We can think of these as the ‘same’ as number fields, but only one prime and much sim-
pler (look at R,C versus Q). Further, inertia, Frobenius, and tame inertia etc. take the same
definition. The structure of GQp = Gal(Qp/Qp) is as follows,

Qp

Qt
p

Qnr
p

Qp

I wild

I tame

=
⋃
p-nQp(ζn, n

√
p)

=
⋃
p-nQp(ζn)

GFp

I itertia

←(pro-) p-group

←(pro-) cyclic

←(pro-) cyclic gen. by x 7→ xp,
lift it to Frobp ∈ GQp

(p)

(p)

Fp

Fp

Local fields have only finitely many extensions of a given degree. For example,

Q5(
√
−3) = Q5(

√
2) = Q5(ζ3) = Q5(ζ8) = Q5(ζ24),

all of which are the unique quadratic unramified extension of Q5.

13 l-adic reprsentations

Example 13.1. Take

GQ {roots of unity in Q} = {torsion points in Gm(Q) = Q×}

This action of does not factor through a finite Galois group. We want to associate to it a 1-
dimensional Galois representation as follows.

Take l prime.

. . . . . .

↓ ↓
{l3 roots of unity} ∼= Z/l3Z GQ

↓ x 7→ xl ↓ [l]

{l2 roots of unity} ∼= Z/l2Z GQ

↓ x 7→ xl ↓ [l]

{lth roots of unity} ∼= Z/lZ GQ.
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We have that in the final line, GQ acts from (Z/lZ)× = Gal(Q(ζl)/Q). Pictorially:

...

Q(ζl3)

Q(ζl2)

Q(ζl)

Q

(Z/lZ)×

(Z/l2Z)×

(Z/l3Z)×

Taking the inverse limit, we find that

GQ lim
←n

Z/lnZ ∼= Zl.

In other words, we get a representation

χl : GQ → Z×l = GL1(Zl) = lim
←n

(Z/lnZ)× = Gal(Q(ζl∞)/Q).

Then if we embed Zl ↪→ Ql ↪→ C, we can view χl as mapping

χl : GQ → GL1(C),

which is a 1-dimensional Galois representation (one for every l). This is called the l-adic cyclo-
tomic character.

Definition. Let K be a number field, GK = Gal(K/K). An l-adic representation over K of
dimension (or degree) d is a continuous homomorphism

ρl : GK → GLd(Ql).

A compatible system of l-adic representations (or ‘a motive’) is collection ρ = (ρl)l prime such
that

(1) There is a finite set S of ‘bad’ primes of K such that each ρl is unramified outside Sl =
S ∪ {primes|l}, i.e.

p 6∈ Sl =⇒ ρl(Ip) = 1.
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(2) For every prime p of K, then the local polynomial

Fp(T ) = det
(

1− Frob−1
p T |ρIpl

)
∈ Ql[T ],

is a polynomial in Q[T ] and is independent of l, for p - l.

We then define the L-function of ρ to be

L(ρ, s) =
∏
p

Fp(Np−s).

The collection (ρl)l is really a ‘poor man’s version’ of one global representation ρ : GQ →
GLd(Q).

We have the standard constructions ⊕,⊗, Ind,Res, etc for compatible systems. Further,
L-functions satisfy Artin formalism.

Example 13.2. Take ρ : GK → GLn(Q), Artin representation (so this has finite image and
factors through some finite Galois group Gal(F/K)). So

ρl : GK → GLn(Q) ↪→ GLn(Ql),

is obviously a compatible system taking

S = {primes ramified in F/K}.

Remark. In principle, we can replace (Ql)l prime of Q with (Mλ)λ primes of M , where M is a num-
ber field, to include all Artin representations GK → GLn(C), for example Dirichlet characters.

Example 13.3. Take χ = (χl)l a cyclotomic character. Recall that

χl : GQ → Gal(Q(ζl∞)/Q) = Z×l ↪→ GL1(Ql).

Then we have that

Ip 7→ 1, for all p 6= l,

Frobp 7→ p−1 can take S = ∅, so Sl = {l},
ζln 7→ ζpln

Then
Fp(T ) = det

(
1− Frob−1

p T |ZIpl
)

= 1− pT ∈ Q[T ],

and recall that GQ ZIpl . So Fp(T ) is independent of l. Thus the χl form a compatible system
with

L(χ, s) =
∏
p

1

1− p · p−s
= ζ(s− 1).

In modern language, χl are l-adic realisations of the ‘Tate motive Q(1)’ (and the χl denoted
Ql(1)) which has associated L-function ζ(s− 1).
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13.1 Étale Cohomology (Grothendieck, Deligne, Verdier)

Take V/Q (or over some number fieldK) a non-signular projective variety of dimension d. Take
0 ≤ i ≤ 2d then this leads to

H i(V ) = H i
ét(VQ,Ql),

called the ith étale cohomology group. It is a Ql-vector space of dimension bi(V (C)) (bi the ith

Betti number) with a continuous action of GQ. This yields an l-adic representation of GQ for
every l - we check the conditions:

(1) We do have that it is unramified outside S = {primes of bad reduction for V } ∪ {l}.

(2) This is known to be compatible at p 6∈ S, and often (H0, H1, curves, abelian varieties) for
p ∈ S as well.

Example 13.4. Take H0(V ) = Ql[connected components of V/Q] and GQ H0(V ). We can
take a permutation representation on connected components (factors through some finite Gal(F/Q)).

Example 13.5. Take a variety V with dimV = 0 so we only have H0. Then

V : f(x) = 0 ⊂ A1
x

for f ∈ Q[x]. So the absolute Galois group permutes the roots of f .

H0(V ) = Ql[roots of f ].

If f(x) = f1(x) · · · fn(x), fi(x) ∈ Q[x] irreducible, then take

Ki = Q[x]/(fi).

Hence
L(H0(V ), s) = ζK1(s) · · · ζKn(s).

14 Torsion Points on Elliptic Curves & H1(E)

Suppose we have an elliptic curve E and a number field K, where

y2 = x3 + ax+ b; a, b ∈ K,

defines an elliptic curve. Then E(K) form an abelian group.
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y2 = x3 − 2x

x

y

p•

q•

•p ∗ q

•p+ q

Figure 5: Plot of the elliptic curve y2 = x3 − 2x

Definition. Take m ≥ 1 integer. Then

E[m] = {p ∈ E(K)|mP = 0}

is the set of m-torsion points, called m-torsion. As an abelian group,

E[m] ∼= (Z/mZ)2 Gk acts linearly,

so (P +Q)σ = P σ +Qσ.

This gives a representation [‘mod m’ representation],

ρE,m : GK → GL2(Z/mZ).

Example 14.1. Take m = 2, so we are considering the 2-torsion points. Then

E[2] = {0, (α, 0), (β, 0), (γ, 0)}

where α, β, γ are the roots of f . Again

E[2] ∼= (Z/2Z)2

and the Galois groups acts by permutation on the roots. Then we get

ρE,2 : GK → GL2(F2) ∼= S3.
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Now take m = ln where l is prime. Then we get a compatible system:

→ E[ln]
[l]→ E[Ln−1]

[l]→ · · · [l]→ E[l]

→ (Z/lnZ)2 →
(
Z/ln−1Z

)2 → · · · → (Z/lZ)2 .

Definition (The l-adic Tate module). We have

TlE = lim
←n

E[ln] ∼= Z2
l Gk

and
VlE = TlE ⊗Zl Ql

∼= Q2
l Gk.

Then by embedding Ql ↪→ C, we get a 2-dimensional l-adic representation for E/K,

H1
ét(EK ,Ql) = VlE

∗

as a GK representation.

We will see that these form a compatible system so

Definition (The L-function of E/K).

L(E/K, s) =
∏
p

Fp(Np−s)

where
Fp(T ) = det

(
1− Frob−1

p T |ρIpl
)

for any l such that p - l. This is a degree 2 L-function.

Recall that we let E/Q be an elliptic curve with:

Q

Q

q

p

Dp = GQp

Qp

Qnr
p

Qp

GQp = Dq < GQ

Ip

〈Frobp〉

We want to understand Dp on EQ[ln] = action of GQp on EQp
[ln]. From now onwards let

K be a p-adic field (i.e. local),
OK/(π) ∼= k ∼= Fq

where (π) is a maximal ideal. Then I / Gk and Frob ∈ GK . We write χl for the cyclotomic
character (I 7→ 1,Frob 7→ q).
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15 Good and bad reduction

Let E/K be an elliptic curve. Then this gives rise to a “minimal Weierstrass model”, with
coefficients in OK and v(∆) minimal. Upon reduction, Ẽ/K is possibly singular. The possible
reduction types are:

Ẽ Reduction Example over Q5

Good E1 : y2 = x3 − 1
(Distinct roots mod 5)

Slopes
in Fq

Split
Multiplicative

E2 : y2 = (x−1)(x2−5)
(Double root mod 5)

Swapped
by Frob

Non-split
Multiplicative

E2′ : y2 = (x−2)(x2−5)
(Double root mod 5)

Additive E3 : y2 = x3 − 5
(Triple root)

Note that (0, 0) is the singular point. Then we have the following reductions, and how they
behave near (0, 0):

Ẽ2 : y2 = 4x2 + h.o.t./F5
near (0,0)−−−−−→

y = 2x

y = −2x

Ẽ2′ : y2 = 3x2 + h.o.t./F5
near (0,0)−−−−−→

y =
√
3x

y = −
√
3x

for
√

3 ∈ F52 .
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Theorem 15.1. We have that

(a) The set of non-singular points, Ens(k) form a group, under the same group law (3 points
on a line ⇐⇒ they add up to 0),

(b) VlEI ∼= VlẼns as Gk-modules,

(c) detVlE = χl, that is for ρl : Gπ → AutVlE = GL2(Q2), and

det ρl(σ) =

{
1 for σ ∈ I
q for σ = Frob .

Remark. This is very important since it relats geometry of the reduction to arithmetic of l-
torsion. No analogue for general varieties (only for curves and abelian varieties).

Remark. For the Néron model, (b) holds for E[ln] and TlE as well.

Example 15.1. 2-torsion on E1, E2, E3.

E1 : y2 = x3 − 1

ζζ2 1

↓ Reduction

Ẽ1

ζ2ζ 1

E2 : y2 = (x− 1)(x2 − 5)

√
5−

√
5 1

↓ Reduction

Ẽ2

1

E3 : y2 = x3 − 5

ζ 3
√

5

3
√

5 ζ2 3
√

5

↓ Reduction

Ẽ3

Figure 6: Plots showing how roots behave under different types of reduction. Note that the
inertia group I swaps −

√
5↔

√
5 for E2 and I permutes the roots for E3.

Recall that our theorem says that inertia invariant points are non-singular when reduced.
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Theorem 15.2. The local factor F (T ) for the L-function of E is

Reduction Ẽns(k) VlẼns F(T)
Good Ell. curve Q2

l GK 1− aT + qT 2

(a = q + 1−#Ẽ(Fq))
Split mult. k

×
χl 1− T

(Ql with Frob acting as q)
Nonsplit mult. k

×
Quad. twist of Ql 1 + T

(Ql with Frob acting as −q)
Additive (k,+) 0 1

In particular, F (T ) ∈ Z[T ] and is independent of l (i.e. (VlE)l form a compatible system).

Proof. Good reduction
Let Ẽ/k be an elliptic curve. Then

ith Étale coho. group Frob−1 eigenvalues
H0

ét(Ẽ) = Ql 1

H1
ét(E) = H1

ét(Ẽ) Some α, β
H2

ét(Ẽ) = χ−1
l q

( Poincaré duality)

Note that for the Frob−1-eigenvalues, abs. value |q|i/2 on H i. The Lefschetz trace formula
gives

ZẼ(Fq)(T ) := exp
∞∑
n=1

#Ẽ(Fqn)

n
Tn

Lefschetz
=

(1− αT )(1− βT )

(1− T )(1− qT )
.

This implies that

1 + #Ẽ(Fq)T +O(T 2) = 1 + (q + 1− α− β)T +O(T 2).

Hence
#Ẽ(Fq) = q + 1− tr

(
Frob−1 |H1

ét(E)
)

and det
(
Frob−1 |H1

ét(E)
)

= q, detVl = χl. Thus we see that

det
(
1− Frob−1 T |VlEI

)
= det

(
1− Frob−1 T |VLE

)
= 1− aT + qT 2

where a = q + 1−#Ẽ(Fq).
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Bad reduction
We have that

Ẽns

normalisation←−∼=


P′\{2 pts/k} = A′\{0} = Gm

P′\{2 pts swapped by Frob} = quad. twist of Gm

P′\{1 pt} = A′ = Ga.

The only algebraic groups of dimension 1 are elliptic curves, Ga and Gm.
Additive
Then Ẽns(k) = Ga(k) = (k,+) and k is∞-dim Fp vector space, p = char k. Thus there is no
l torsion for l 6= char k and

TlEns = 0
Thm
=⇒ VlE

I = 0.

Hence F (T ) = 1.
Split mult.
Now Gm(k) = k

×
, VlGm = χl. So GK acts on VlE as(

χl ·
0 1

)
where · is non-zero on inertia, and bottom row elements are 0 by I-invariants on VlE = VlGm

and 1 since detVl = χl. Further, GK acts on H1
ét(E) = VlE

∗ as(
χ−1
l 0
· 1

)
.

Noting that H1
ét(E)I , trivial Frob action gives the second column as

(
0
1

)
. Thus

F (T ) = det
(
1− Frob−1 T |H ′(E)I

)
= 1− T.

Multiplicative
Similarly, unr. quad. ⊗ split: I acts as (

1 ·
0 1

)
,

and Frob as (
1 0
· q

)(
−q−1 0
· −1

)
.

So F (T ) = 1 + T .

In the multiplicative case, E[ln] is also completely described using the Tate curve: ForE/C,

E(C) ∼= C/Z + τZ
exp(2πi·)∼= C×/qZ for q = e2πiτ .

This isomorphism from E(C) to C×/qZ is analytic.
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Theorem 15.3 (Tate). Let K be a local field, E/K an elliptic curve with split mult. red. Then
∃!q ∈ K, v(q) > 0 such that

E(K)
∼→ K

×
/qZ,

as GK-modules. This is the same analytic isomorphism as described above, e.g.

j(E) = q−1 + 744 + 196884q + . . . ; v(j) = −v(q) < 0.

Corollary 15.3.1. As a GK-module,

E[ln] ∼= {ln − torsion pts in K×/qZ}
= 〈ζln , ln

√
q〉

∼= (Z/lnZ)2.

So GK acts on TlE as (
χl ·
0 1

)
.

I acts as (
1 c · τl
0 1

)
,

where c = v(q) = −v(j), and

τl : I → Zl l-adic tame char

σ 7→
(
σ( ln
√
π)

ln
√
π

)
n

∈ lim
←

(lnth roots of 1) = Zl.

[Iwild / I, Itame = I/Iwild =
∏

l 6=char k

Zl, τl : Itame � Zl.]

Remark. In the additive reduction case, E/K acquires good (v(j) ≥ 0) or multiplicative
(v(j) < 0) reduction over some finite F/K. Thus, in the additive case, I has a finite index
subgroup IF (normally Ip) that acts on TlE as(

1 0
0 1

)
, or as

(
1 c · τl
0 1

)
.

Remark. Good and multiplicative reduction are also called stable (stay the same in all finite
extensions) and additive reduction is called unstable.

Theorem 15.4 (Grothendieck Monodromy Theorem). Let K be a local field, V/K a non-
singular projective variety. Then there exists a finite extension F/K such that IF acts on
H i

ét(VK ,Ql) as Id +τlN for some nilpotent matrix N . Such a representation of GK is called a
Weil representation if N = 0, and a Weil-Deligne representation in general.
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Example 15.2. Let E/K be an elliptic curve. Then we have

potentially good reduction v(j) ≥ 0, N = 0, H1
ét(E) is a Weil rep

potentially mult. v(j) < 0, N =

(
0 c
0 0

)
, H1(E) is a W-D rep.

Example 15.3. For varieties other than curves and abelian varieties, we do not have a geo-
metric counterpart of this statement - it is conjectured, but not known, that any V/K acquires
semistable reduction (only ordinary double points as singularities) after some finite extension
F/K - if true this proves independence of l by roughly the same argument.
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