
Galois Representations assignments.

Problem 1 (for 27/10). Let K = Q(i) and O = Z[i], the ring of Gaussian
integers. Recall that every ideal of O is principal: I = (a+bi), NI = a2+b2.

(1) Prove that 2 = p2 with p = (1+i). In other words, 2 ramifies in K/Q.
(2) Use Kummer-Dedekind to show that every prime p ≡ 1 mod 4 of Q

splits (p) = p1p2 in K, and every p ≡ 3 mod 4 is inert, that is (p)
is a prime ideal of K with residue field Fp2 .

(3) Deduce that the Dedekind ζ-function of K factors as

ζK(s) = ζ(s)L(s),

with ζ(s) the Riemann zeta function and

L(s) =
∑

n ≥ 1 odd

χ(n)

ns
, χ(n) =

{
1 if n ≡ 1 mod 4
−1 if n ≡ 3 mod 4

.

(the L-function of the non-trivial character (Z/4Z)× → C×).

Problem 2 (for 3/11). Let K = Q(i,
√

17).

(1) Show that for every prime number p 6= 2, 17, either −1 or 17 or −17
is a square modulo p (possibly all 3).

(2) Show that p = 17 splits in Q(i) and that p = 2 splits in Q(
√

17).
(3) Deduce that every prime p of Q splits into 2 or 4 primes of K, and

consequently ζK(s) has every local polynomial Fp(T ) of the form
Gp(T )2 for some (usually quadratic) Gp(T ) ∈ Z[T ].

NB. In other words, just looking at the local factors, ζK(s) looks like a
square of some reasonable function. But it certainly isn’t! It has a simple
pole at s = 1, so whatever

∏
pGp(p

−s)−1 is, it does not have a meromorphic

continuation to C. (This gives some indication that meromorphic contin-
uation is a subtle business, and we cannot expect it for any function with
reasonable arithmetic coefficients.

Problem 3 (for 10/11). Let K = Q( 3
√
m) for some m ∈ N, not a cube.

Write F = Q(ζ3, 3
√
m) for its Galois closure, and G = Gal(F/Q) ∼= S3, the

permutation group on the three roots of x3 −m. Let p 6= 3 be a prime and
p|p a prime of F , with decomposition group D < G and inertia group I /D.

(a) Show that p, D and I must be in one of the following cases:

(1) p is unramified in F/Q, and D ∈ {C3, C2, C1},
(2) p is ramified in F/Q, and D = S3, I = C3,
(3) p is ramified in F/Q, and D = I = C3.

(b) All of these may indeed occur: for m = 2 show that p = 7, 5, 31, 2 cover
the three cases of (1) and (2), and m = p = 7 covers (3).

You may find it useful to employ the standard fact that the ramification and

residue degrees are multiplicative in towers: if Q ⊂ M ⊂ F and (p) = pe11 · · · p
ek
k

in OM and p1 = qE1
1 · · · qEr

r in OF , then clearly (p) = qe1E1
1 · · · in OF . In other

words e
F/Q
q1 = e

F/M
q1 e

M/Q
p1

, and similarly, f
F/Q
q1 = f

F/M
q1 f

M/Q
p1

. Both M = Q(ζ3) and

M = K give useful information about the splitting of (p) in F .



Problem 4 (for 17/11). Suppose F/Q is Galois with Galois group S3,
and C2

∼= H < G, so that M = FH is a cubic extension of Q. Let p ∈ Z be
a prime which ramifies in F/Q.

(1) Show that, up to conjugation, there are [at most] four possibilities
for the pair (Dp, Ip) in F/Q. (Optional: construct examples F, p to
show that all four do occur.)

(2) For each of the four, write down the double cosets H \G/Dp, and the
number, ramification and residue degrees of primes above p in M/Q.

(3) Deduce the possible local factors Fp(T ) of Dedekind ζ-functions
ζM (s) of cubic extensions M of Q at ramified primes p.

Problem 5 (for 24/11). Suppose F/Q is Galois with Galois group S3.
Let K,M ⊂ F be subfields with [K : Q] = 2, [M : Q] = 3. Decompose
ζK(s), ζM (s) and ζF (s) into L-functions of irreducible Artin representations
of Gal(Q̄/Q). Express ζF (s) in terms of ζK(s), ζM (s) and Riemann ζ(s).

Problem 6 (for 24/11 as well). Let pn be a prime power and F =Q(ζ),
ζ = ζpn , the pnth cyclotomic field. It is a standard fact that the ring of
integers of K is Z[ζ], and that π = 1− ζ generates the unique ideal above p,

(π)φ(p
n) = (p).

(1) Determine the decomposition group D = Dp = Dπ, the inertia group
I = Ip = Iπ in Gal(F/Q) = (Z/pnZ)×, and its filtration by the
higher ramification groups

{1} = Ik / · · · I2 / I1 / I0 = I.

(2) Let χ be a primitive character of (Z/pnZ)×, that is of modulus pn.
Prove, by definition of the conductor, that the associated 1-dimensio-
nal Galois representation ρχ of Gal(Q̄/Q) has conductor N(ρ) = pn.

Hint: σ ≡ id mod πk ⇐⇒ vπ(ζ − σ(ζ)) ≥ k.
Remark: the same argument (with a bit more notation) shows that any
Dirichlet character of modulus m (not necessarily a prime power) is the
conductor of the associated Galois representation.



Problem 7 (for 1/12). Show that Qp contains the (p − 1)th roots of
unity, in four (somewhat) different ways:

(1) If a ≡ b mod pn with a, b ∈ Z, show that ap ≡ bp mod pn+1. De-
duce that for a ∈ Z the sequence (ap

n
)n≥1 is Cauchy with respect

to the p-adic absolute value, and therefore converges in Zp to some
element that satisfies xp = x and x ≡ a mod p.

(2) Use Hensel’s lemma: if f(x) ∈ Zp[x] is a monic polynomial whose
reduction f̄(x) ∈ Fp[x] has a simple root t̄ ∈ Fp, then f(x) has a
unique root t ∈ Zp that reduces to t̄ mod p.

(3) The ‘primitive element theorem’ states that the group (Z/pnZ)× is
cyclic for every prime p > 2 and n ≥ 1. Use it to deduce that
Z×
p = lim←−(Z/pnZ)× contains a cyclic group of order p− 1.

(4) Compute Frobp ∈ Gal(Q(ζp−1)/Q) and take completions to deduce
that Q(ζp−1) ↪→ Qp. (There is one such embedding for every prime
above p in Q(ζp−1).)

Problem 8 (for 8/12). Let E/Q be the elliptic curve y2 = x3 + 1/4.

(1) On an elliptic curve y2 = x3 + ax+ b the x-coordinates of the non-
trivial 3-torsion points are roots of the 3-division polynomial x4 +
2ax2 + 4bx− a2/3. Use this to find E[3].

(2) Find a basis of E[3] in which GQ acts on E[3] as σ 7→
(
1
0

0
χ(σ)

)
, where

σ is the non-trivial 1-dimensional representation of Gal(Q(ζ3)/Q).
(3) Considering the 3-adic Tate module T3E, deduce that for every

prime p at which E has good reduction, the local factor of the L-
function L(E/Q, s)

Fp(T ) = det
(
1− Frob−1

p T
∣∣ V3E) = 1− aT + pT 2

has a ≡ 2 mod 3 if p ≡ 1 mod 3 and a ≡ 0 mod 3 if p ≡ 2 mod 3.


