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Analyzing known elementary relations between U(p) operators and Picard
functoriality of the Jacobians of each tower of modular curves of p-power
level, we get fairly exact control of the ordinary part of the limit Barsotti-
Tate groups and the (p-adically completed) limit Mordell-Weil groups with
respect to the weight Iwasawa algebra. Computing Galois cohomology of
these controlled Galois modules, we hope to get good control of the (ordinary
part of) limit Selmer groups and limit Tate-Shafarevich groups.



§0. Exotic Γ1-type congruence subgroups:

Let Γ := Z×p /µp−1
∼= 1 + pZp, for a prime p ≥ 5. Fix an exact

sequence of profinite groups 1 → Hp → Γ × Γ
πΓ−−→ Γ → 1, and

regard Hp as a subgroup of Γ× Γ. This implies πΓ(a, d) = aαd−δ

for a pair (α, δ) ∈ Z2
p with αZp+δZp = Zp. Let H be the pull-back

of Hp to Z×p × Z×p . Define, for Ẑ =
∏
l:primes Zl and 0 < M,N ∈ Z,

Γ̂0(M) :=
{(

a b
c d

)
∈ GL2(Ẑ)

∣∣∣c ∈M Ẑ
}
,

Γ̂1(M) :=
{(

a b
c d

)
∈ Γ0(M)

∣∣∣d− 1 ∈M Ẑ
}
,

Γ̂1
1(M) :=

{(
a b
c d

)
∈ Γ1(M)

∣∣∣a− 1 ∈M Ẑ
}
,

Γ̂s = Γ̂H,s :=

{(
a b
c d

)
∈ Γ̂0(p

s) ∩ Γ̂1(N)
∣∣∣(ap, dp) ∈ H/Hps−1

p

}

Γ̂rs = Γ̂rH,s := Γ̂0(p
s) ∩ Γ̂r (s ≥ r, p - N).

The group Γr := Γ̂r∩SL2(Q) is independent of H almost Γ1(Np
r).
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§1. Exotic modular tower.

Let Xr/Q and Xr
s/Q be Shimura’s canonical models associated

with Γ̂r and Γ̂rs. They are geometrically connected curve canoni-

cally defined over Q and the moduli of elliptic curves with certain

level structure (which can be defined over Z(p)).

We have an adelic expression of their complex points.

Xr
s(C) = GL2(Q)\GL2(A)/Γ̂rsR

×
+SO2(R) ∼= Γrs\H,

where Γrs = Γ̂rs∩SL2(Q) and Γr = Γ̂r∩SL2(Q). Note that Γr and

Γrs is independent of the choice of (α, δ).

Write Jrs/Q and Jr/Q for the corresponding Jacobian varieties.



§2. Galois representation.

Let f ∈ S2(Γr) be a Hecke eigenform and ρf be its p-adic Ga-

lois representation, taking the choice (α, δ) = (0,1). Note that

det ρf = νψf for a p-power order character ψ which has a unique

square root
√
ψf of p-power order. Then the same f gives rise to

ρf ⊗
√
ψf
−1 if (α, δ) = (1,1) and we regard fdz ∈ H0(Xr,ΩXr/C).

If we write the Mazur-Kitagawa p-adic L-function (interpolating

L(s, f)) for f in a two variable nearly ordinary family as L(k, s)

for the weight variable k ↔ f and the cyclotomic variable s, the

tower {Xr}r for (α, δ) gives the one variable variation the one

variable p-adic L-function k 7→ L(2δk + 2, αk + 1). In particular,

if (α, δ) = (0,1) gives the ordinary variation: the one variable

p-adic L-function k 7→ L(2k + 2,1), and (α, δ) = (1,1) gives

the central critical variation: the one variable p-adic L-function

k 7→ L(2k+ 2, k+ 1) (which can be identically 0).



§3. Ordinary Λ-BT group.

Define G = Gα,δ := lim−→s
Js[p∞]ord sometimes over Q sometimes

over Z(p)[µp∞]. Here “ord” indicates the image of the idempotent

e := lim−→n
U(p)n!. Since Γ = (Γ × Γ)/H = lim←−s Γ̂s/Γ̂

1
s naturally

acts on G, G has natural action of the weight Iwasawa algebra

Λ = Zp[[Γ]] = Zp[[T ]] with t = 1 + T generating Γ.

The Λ-BT group G satisfies

(CT) For Gs := Js[p∞]ord, we have

Gs = G[tps−1 − 1] := Ker(tp
s−1 − 1 : G → G)

(in particular, Gs/R ↪→ G/R is a closed immersion for R = Z(p)[µp∞]);

(DV) The geometric generic fiber G(K) is isomorphic to (Λ∗)n

for the Pontryagin dual Λ∨ := HomZp(Λ,Qp/Zp); so,

TG = HomΛ(Λ∨,G(K)) is Λ-free of finite rank.



§4. The U(p)-operators.

Since Γrs .Γs, consider the cyclic quotient group C :=
Γrs
Γs

of order

ps−r. By the inflation restriction sequence, we have the following

commutative diagram with exact rows:

H1(C,T)
↪→−−→ H1(Γrs,T) −→ H1(Γs,T)γ

pr=1 −→ H2(C,T) = 0x ∪
x

x∪
x

? −→ Jrs(C) −→ Js(C)[γp
r−1 − 1] −→ ?.

Since C is a finite cyclic group of order ps−r (with generator g)

acting trivially on T, we have H1(C,T) = Hom(C,T) ∼= C and

H2(C,T) = T/(1 + g+ · · ·+ gp
s−r−1) = T/ps−rT = 0.



§5. The U(p)-isomorphism. By a cocycle computation, we

confirm that U(p) acts on H1(C,T) via multiplication by its de-

gree p, and hence U(p)s−r kill H1(C,T).

Hence Jrs → Js is an U(p)-isomorphism over C (meaning its kernel

and cokernel are killed by a power of U(p)) and hence over Q.

We record what we have proven:

U(p)s−r(H1(C,T)) = H2(C,T) = 0.

This fact has been exploited by the speaker to show (CT) and

(DV).

By (DV), for any factor $|tps − 1, we have an exact sequence

0→ G[$]→ G $−→ G → 0 (the first fundamental sequence)

of fppf abelian sheaves.



§6. The U(p)-identity.

Note a simple identity:

Usr (p
s−r) := Γrs\Γrs

(
1 0
0 ps−r

)
Γ1(Np

r) =

{(
1 u
0 ps−r

) ∣∣∣∣u mod ps−r
}

= Γ1(Np
r)\Γ1(Np

r)
(

1 0
0 ps−r

)
Γ1(Np

r) =: U(ps−r)

which implies the relation of U(ps−r)-operators:

Jr/Q
π∗−→ Jrs/Q

↓ u ↙ u′ ↓ u′′

Jr/Q
π∗−→ Jrs/Q,

where the middle u′ is given by Usr(p
s−r) and u and u′′ are U(ps−r).

Then the above diagram implies

Jr/Q[p∞]ord ∼= Jrs/Q[p∞]ord, Jord
r/Q
∼= J

r,ord
s/Q .



§7. Replace H1(Xs,T) by H1(Xs, O
×
Xs

).

Note H1
fppf(X,O

×
X/Q

) = PicX/Q for a smooth geometrically ir-

reducible curve X. Thus we have the following commutative

diagram with exact rows and columns for X = Xs and Y = Xr
s :

0 −→ Z Z −→ 0x deg

xonto deg

xonto

x

Ȟ1(H0
Y ) −→ PicY/S(T)

b−→ Ȟ0(XTYT
,PicY/S(T)) −→ Ȟ2(H0

Y )
x ∪

x

x∪
x

?1 −→ JY (T) −→
c

Ȟ0(XTYT
, JX(T)) −→ ?2,

Here J? is the Jacobian of the curve ?, and H•Y := H•(Gm/Y )(U) =

H•fppf(U , O
×
U ) for a Y -scheme U as a presheaf. By Čech cohomol-

ogy computation, one can easily show e(Ȟ•(H0
Y )) = 0.



§8. Arithmetic points.

Define h = hα,δ := Λ[T(n)|n = 1,2, . . . ] ⊂ EndΛ(TG). Take a

connected component Spec(T) and assume that T is a unique

factorization domain (this is usually the case).

Define AT for the set of points in Spec(T)(Qp) with P |(tpr − 1)

for some r > 0. Then we have an abelian varieties AP ⊂ Jr and

Jr � BP associated to P and a Hecke eigenform fP associated

to P . Write HP = Q(fP ) ⊂ End(AP/Q)⊗Q for the Hecke field of

fP .

We then put

ΩT = {P ∈ AT|AP has potentially good reduction modulo p}.



§9. Second fundamental exact sequence

Define an fppf sheaf Jord
s (R) := e(lim←−n Js(R) ⊗Z Z/pnZ) and put

Jord∞ := lim−→s
Jord
s . Since T is a UFD, each prime P ∈ AT is

generated by $ ∈ T associated to a Hecke eigenform fP ∈ S2(Γ̂r)

and an abelian subvariety AP ⊂ Jr and an abelian quotient Jr �

BP isogenous to AP . We get the following exact sequence of

fppf sheaves:

0→ Aord
P → Jord

∞,T
$−→ Jord

∞,T → Bord
P ⊗Zp Qp→ 0,

where Xord(R) = e(lim←−nX(R)⊗Z Z/pnZ) for an abelian variety X

and Jord
∞,T = Jord∞ ⊗h T. In other words, Aord

P
∼= Jord

s,T [$] = Ker($ :

Jord
s,T → Jord

s,T ) for all s ≥ r and Bord
P
∼= Jord

r,T /$(Jord
r,T ), but the limit

lim−→s≥r J
ord
s,T /$(Jord

s,T ) is isomorphic to Bord
P ⊗Zp Qp.



§10. Arithmetic cohomology groups.

For a finite set of places S of a number field K containing all
places above Np and ∞, write KS/K for the maximal extension
unramified outside S. For a topological Gal(KS/K)-module M
and v ∈ S, we write H•(KS/K,M) (resp. H•(Kv,M) for the
v-completion Kv of K) for the continuous cohomology for the
profinite group Gal(KS/K) (resp. Gal(Kv/Kv) for an algebraic
closure Kv of Kv). Define

III(KS/K,M) = Ker(H1(KS/K,M)→
∏

v∈S
H1(Kv,M))⊗Z Zp.

In addition to the Mordell–Weil group Jr(K)⊗ZpQp/Zp, we study

the Tate–Shafarevich group IIIK(Jord
r ), IIIK(KS/K, Jr[p∞]ord) and

the Selmer group

SelK(Jord
r ) = Ker(H1(KS/K, Jr[p

∞]ord)→
∏

v∈S
H1(Kv, J

ord
r )).



§11. Theorem for Tate–Shafarevich groups.

Theorem III. Suppose that T is a unique factorization domain.

1. If IIIK(KS/K,AP0
[p∞]ord) is finite for a single point P0 ∈ ΩT,

then IIIK(KS/K,AP [p∞]ord) is finite for almost all P ∈ ΩT.

2. If IIIK(Aord
P0

) is finite and dimHP0
AP0

(K)⊗Z Q ≤ 1 for a single

point P0 ∈ ΩT, then IIIK(Aord
P ) is finite for almost all P ∈ ΩT.

3. If |IIIK(Aord
P0

)| < ∞ and dimHP0
AP0

(K) ⊗Z Q ≤ 1 for a single

point P0 ∈ ΩT, then dimHP AP(K)⊗Z Q = 0 or 1 independent

of P for almost all P ∈ ΩT.



§12. Theorem for Selmer groups.

Theorem S. Suppose that T is a unique factorization domain.

1. If SelK(Aord
P0

) is finite for a single point P0 ∈ ΩT, then SelK(Aord
P )

is finite for almost all P ∈ ΩT.

2. Suppose that all prime factors of p in K has residual degree 1.

If SelK(Aord
P0

) = 0 for a single point P0 ∈ ΩT such that AP0/Q

has good reduction modulo p with AP0
(Fp) = 0, SelK(Aord

P )

is finite for all P ∈ ΩT without exception.

This type of control has been studied by other people, notably,

J. Nekovar.



§13. Abelian variety of GL(2)-type.

A Q-simple abelian variety (with a polarization) is “of GL(2)-

type” if we have a subfield HA ⊂ End0(A/Q) = End(A/Q) ⊗Z Q

of degree dimA (stable under Rosati-involution).

Then, for the two-dimensional compatible system ρA of Galois

representation of A with coefficients in HA, HA is generated by

traces Tr(ρA(Frobl)) of Frobenius elements Frobl for primes l

of good reduction (i.e., the field HA is uniquely determined by

A). We always regard Q as a subfield of the algebraic closure

Q. Thus O′A := End(A/Q) ∩ HA is an order of HA. Write OA
for the integer ring of HA. Replacing A by the abelian variety

representing the group functor R 7→ A(R)⊗O′AOA, we may choose

A so that O′A = OA in the Q-isogeny class of A.



§14. Congruence among abelian varieties.

To reformulate the result, we introduce congruence among abelian

varieties.

For two abelian varieties A and B of GL(2)-type over Q, we say

that A is congruent to B modulo a prime p over Q if we have

a prime factor pA (resp. pB) of p in OA (reso. OB) and field

embeddings σA : OA/pA ↪→ Fp and σB : OB/pB ↪→ Fp such that

(A[pA]⊗OA/pA,σA Fp)ss ∼= (B[pB]⊗OB/pB,σB Fp)ss as semi-simplified

Gal(Q/Q)-modules.

We call that A is of pA-type (α, δ) if the pA-adic Tate mod-

ule produces a local representation ρpA of Gal(Qp/Qp) such that

ρpA|Ip ∼=
(
νpε−δ ∗

0 εα

)
for a character ε : Ip → µp∞ of the inertia

group Ip at p.



§15. Rational elliptic curves.

Let E/Q be an elliptic curve. Writing the Hasse–Weil L-function

L(s,E) as a Dirichlet series
∑
n=1 ann

−s (an ∈ Z) (i.e., 1+p−ap =

|E(Fp)| for each prime p of good reduction for E), we call p

admissible for E if E has good reduction at p and (ap mod p) is

not in ΩE := {±1,0} (so, 2 and 3 are not admissible). Therefore,

the maximal étale quotient of E[p] over Zp is not isomorphic to

Z/pZ up to unramified quadratic twists.

By the Hasse bound |ap| ≤ 2
√
p, p ≥ 7 is not admissible if and only

if ap ∈ ΩE. Thus if E does not have complex multiplication, the

Dirichlet density of non-admissible primes is zero by a theorem

of Serre as L(s,E) = L(s, f) for a rational Hecke eigenform f .



§16. Vanishing of III proliferates.

Let E/Q be an elliptic curve with |IIIK(E)| <∞ and dimQE(K)⊗Z

Q ≤ 1. Let N be the conductor of E, and pick an admissible

prime p for E. Consider the set AE,p made up of all Q-isogeny

classes of Q-simple abelian varieties A/Q of pA-type (α, δ) with

prime-to-p conductor N congruent to E modulo p over Q.

Theorem B. There exists an explicit (computable) finite set

SE of primes depending on N but independent of K such that

if p 6∈ SE, almost all members A ∈ AE,p have finite IIIK(A)[p∞A ]

and constant dimension dimHAA(K) ≤ 1. If further E(K)p =

IIIK(E) = 0 (i.e., SelK(E) = 0 in short) and E can be embedded

into Jr for some r > 0, then as long as p totally splits in K/Q,

every A ∈ AE,p has finite IIIK(A)[p∞A ] and SelK(A)[p∞A ] as long as

p 6∈ SE.



§17. More concrete statement.

Corollary C. Let N ∈ {11,14,15,17,19,20,21,24,27,32,36,49}
(all the cases when X0(N) is an elliptic curve with finite X0(N)(Q)).

Pick an admissible prime p for X0(N). Then |IIIQ(A)[p∞A ]| < ∞
and |SelQ(A)[p∞A ]| < ∞ for almost all A in AX0(N),p. If further

X0(N)(Q)p = IIIQ(X0(N))p = 0, SelQ(A)[p∞A ] and IIIQ(A)[p∞A ] are

both finite for all A in AX0(N),p without exception.

If E is the factor of J0(37) with root number −1 (so, rankE(Q) =

1), for an admissible prime p for E, we have |IIIQ(A)[p∞A ]| < ∞
for almost all A in AE,p.



§18. Conjecture.

Here is a conjecture:

Conjecture 1. Let Spec(I) be a new irreducible component of

Spec(hα,δ), and pick a totally real field K.

(1) Suppose (α, δ) = (1,1) and that the root number of I is

ε := ±1 over the totally real number field K. Then for almost

all P ∈ ΩI, we have dimHP AP(K)⊗Z Q = 1−ε
2 .

(2) Suppose (α, δ) 6= (1,1). Then for almost all P ∈ ΩI, we have

dimHP AP(K)⊗Z Q = 0.

Combined with the solution of the parity conjecture by Nekovar

and Dokchitser/Dokchitser with our result, the above conjecture

holds in many cases.



§19. Start of the proof for III(G) := III(QS/Q,G) for K = Q.

Recall the 1st fundamental sequence: 0 → AP [p∞] → G $−→ G →
0. Then we get a commutative diagram with exact bottom two

rows and exact columns:

Ker(ιW,∗) −→ III(Aord
P [p∞])

ιW,∗−−→ III(G) $W,∗−−−→ III(G)
∩

y ∩
y ∩

y ∩
y

E∞BT (K)
↪→−−→ H1(Aord

P [p∞])
ι∗−→ H1(G) $∗−−→ H1(G)y

y

y

y
∏
v∈S E∞BT (Kv)

↪→−−→ H1
S(A

ord
P [p∞])

ιS,∗−−→ H1
S(G)

$S,∗−−−→ H1
S(G),

where E∞BT (k) = Coker($ : G(k)→ G(k)) and H1
S(?) =

∏
l∈SH1(Kl,?).



§20. Conclusion of the proof for III(G).

If ap 6≡ 1 mod p, we have G(Q) = G(Qp) = 0. If the residual

representation of ρfP is irreducible, again G(Q) = 0. It is easy to

show E∞BT (K) and
∏
v∈S E∞BT (Kv) are finite. Thus the sequence

0→ III(Aord
P [p∞])→ III(G)→ III(G)

is exact up to finite error. Thus if III(Aord
P0

[p∞]) is finite, the

Pontryagin dual III(G)∨ is a torsion T-module of finite type; so,

for most P ∈ ΩT, |III(Aord
P [p∞])| <∞.



§21. Start of the proof for Sel(Aord
P ) := SelK(Aord

P ) for K = Q.

Recall the following second fundamental exact sequence:

0→ Aord
P (K ′)→ Jord

∞ (K ′) $−→ Jord
∞ (K ′)→ Bord

P (K ′)⊗Zp Qp→ 0,

where Jord∞ = lim−→s
Jord
s and K ′ = QS and Ql. We separate it into

two short exact sequences:

0→Aord
P (K ′)→ Jord

∞ (K ′) $−→ $(Jord
∞ )(K ′)→ 0,

0→$(Jord
∞ )(K ′)→ Jord

∞ (K ′)→ Bord
P (K ′)⊗Zp Qp→ 0.



§22. The proof for Sel(Aord
P ) continues.

Look into the following commutative diagram of sheaves with

exact rows:

AP [p∞]ord
↪→−−→ Jord∞ [p∞]

$[p∞]−−−−→ Jord∞ [p∞] −→ 0y

y i

y

y

Aord
P

↪→−−→ Jord∞
$−→ Jord∞ −→ Bord

r ⊗Qp.

Since Bord
r ⊗Qp is a sheaf of Qp-vector spaces and Jord∞ [p∞] is p-

torsion, the inclusion map i factors through the image Im($) =

$(Jord∞ ); so,

$(Jord
∞ )[p∞] = Jord

∞ [p∞].



§23. Injectivity of Sel($(Jord∞ ))→ Sel(Jord∞ ).

From the exact sequence, $(Jord) ↪→ Jord
� Bord

r ⊗Zp Qp, taking

its cohomology sequence, we get the bottom sequence of the

following commutative diagram with exact rows:

0 −→ H1($(Jord∞ )[p∞]) H1(Jord∞ [p∞])y i

y

y
∏
l∈S E∗Sel(Ql)

↪→−−→ H1
S($(Jord∞ ))

�−→ H1
S(J

ord∞ ),

where we have written H1
S(X) :=

∏
v∈SH1(Kv, X) and

E∗Sel(Ql) := Coker(Jord
∞ (Kv)→ Bord

r (Kv)⊗Zp Qp).



§24. Conclusion for injectivity.

By the snake lemma, we get an exact sequence

0→ SelK($(Jord
∞ ))→ SelK(Jord

∞ )→
∏

v|p
E∗Sel(Kv),

since it is easy to see Bord
P (Ql)⊗Zp Qp = E∗Sel(Ql) = 0 if l 6= p.



§25. Hard part.

We look into:

Ker(ι∗)
i0−→ Sel(Aord

P )
ι∗−→ Sel(Jord

∞,T)
$∗−−→ Sel($(Jord

∞,T))

i

y ∩
ya ∩

y ∩
y

EBT (Q)
↪→−−→ H1(Aord

P [p∞])
ι∗−→ H1(G) $∗−−→ H1(G)

e

y

y

y

y

E∞(Qp)
↪→−−→
e0

H1
S(A

ord
P )

ιS,∗−−→ H1
S(J

ord
∞,T)

$∗−−→
�

H1
S($(Jord

∞,T)).

Here E∞(k) = lim−→s

α(Jord
∞,T)(k)

α(Jord
∞,T(k))

. The error E∞(Qp) injects into

H1(Qp[µp∞]/Qp, A
ord
P (Qp[µp∞])).



§26. Conclusion.

If AP has good reduction modulo p, by a result of P. Schneider

on universal norm, |E∞(Qp)| ≤ |H1(Qp[µp∞]/Qp, Aord
P (Qp[µp∞])| =

|AP (Fp)|2. If AP has good reduction over Zp[µpr], we have an

exact sequence for Kr = Qp[µpr]:

H1(Kr/K,A
ord
P (Kr))→ H1(K∞/K,Aord

P (K∞))

→ H0(Kr/K,H
1(K∞/Kr, Aord

P (K∞))→ H2(Kr/K,A
ord
P (Kr)),

we get the finiteness of E∞(Qp).

As already seen, EBT (Q) is finite, we get an exact sequence

0→ Sel(Aord
P )→ Sel(Jord

∞,T)
$−→ Sel(Jord

∞,T)

and hence if Sel(Aord
P0

) is finite, Sel(Jord
∞,T)∨ is T-torsion, so, Sel(Aord

P )

is finite for most of P .



§27. Case where Sel(Aord
P0

) = 0.

If Sel(Aord
P0

) = 0 and AP0
has good reduction modulo p with

Aord
P0

(Fp) = 0, again by Schneider, the sequence

0→ Sel(Aord
P0

)→ Sel(Jord
∞,T)→ Sel(Jord

∞,T)

is exact, and hence Sel(Jord
∞,T) = 0. This shows that finiteness of

Sel(Aord
P ) for all P ∈ ΩT.



§28. Sketch for III(Aord). Assume that IIIK(AP0
[p∞]ord) is finite

(this follows from dimHP0
Aord
P0

(K) ⊗ Q ≤ 1 and |IIIK(Aord
P0

)| < ∞
by Kummer theory). Then from the sheaf exact sequence:

0→ Aord
P0

[p∞]→ Aord
P0
⊕$(Jord

∞ )
π−→ Jord

∞ → 0,

by a diagram chasing, we get the finiteness of the kernel of

IIIK($(Jord
∞,T))→ IIIK(Jord

∞,T).

Then similarly to the control of the Selmer group, we get the

following exact sequence up to finite error:

0→ IIIK(Aord
P0

)→ IIIK(Jord
∞,T)

$−→ IIIK(Jord
∞,T).

Then in the same way as Selmer group, we get T-torsion prop-

erty of IIIK(J∞,T)ord,∨, and by some more argument finiteness of

IIIK(Aord
P ) with dimHP AP(K)⊗Q ≤ 1 for most P .


