Diophantine Geometry, Fundamental Groups, and Non-Abelian Reciprocity

Minhyong Kim

Cambridge, March, 2015

Figure: John Coates at 700

Diophantine Geometry: Abelian Case

The Hasse-Minkowski theorem says that

$$
a x^{2}+b y^{2}=c
$$

has a solution in a number field F and only if it has a solution in F_{v} for all v.

There are straightforward algorithms for determining this. For example, we need only check for $v=\infty$ and $v \mid 2 a b c$, and there, a solution exists if and only if

$$
(a, b)_{v}(b, c)_{v}(c, a)_{v}(c,-1)_{v}=1
$$

Diophantine Geometry: Main Local-to-Global Problem

Locate

$$
X(F) \subset X\left(\mathbb{A}_{F}\right)=\prod^{\prime} x\left(F_{v}\right)
$$

The question is
How do the global points sit inside the local points?
In fact, there is a classical answer of satisfactory sort for conic equations.

Diophantine Geometry: Main Local-to-Global Problem

In that case, assume for simplicity that there is a rational point (and that the points at infinity are rational), so that

$$
X \simeq \mathbb{G}_{m}
$$

Then

$$
X(F)=F^{*}, \quad X\left(F_{v}\right)=F_{v}^{*} .
$$

Problem becomes that of locating

$$
F^{*} \subset \mathbb{A}_{F}^{x}
$$

Diophantine Geometry: Abelian Class Field Theory

We have the Artin reciprocity map

$$
\operatorname{Rec}=\prod_{v} \operatorname{Rec}_{v}: \mathbb{A}_{F}^{\times} \longrightarrow G_{F}^{a b}
$$

Here,

$$
G_{F}^{a b}=\operatorname{Gal}\left(F^{a b} / F\right)
$$

and

$$
F^{a b}
$$

is the maximal abelian algebraic extension of F.

Diophantine Geometry: Abelian Class Field Theory

Artin's reciprocity law:
The map

$$
F^{*} \hookrightarrow \mathbb{A}_{F}^{\times} \xrightarrow{\operatorname{Rec}} G_{F}^{a b}
$$

is zero.
That is, the reciprocity map gives a defining equation for $\mathbb{G}_{m}(F)$.

Diophantine Geometry: Non-Abelian Reciprocity?

We would like to generalize this to other equations by way of a non-abelian reciprocity law.

Start with a rather general variety X for which we would like to understand

$$
X(F)
$$

via

$$
X(F) \hookrightarrow X\left(\mathbb{A}_{F}\right) \xrightarrow{\operatorname{Rec}^{N A}} \text { some target with base-point } 0
$$

in such way that

$$
\operatorname{Rec}^{N A}=0
$$

becomes an equation for $X(F)$.

Diophantine Geometry: Non-Abelian Reciprocity

To rephrase: we would like to construct class field theory with coefficients in a general variety X generalizing CFT with coefficients in \mathbb{G}_{m}

Will describe a version that works for smooth hyperbolic curves.

Diophantine Geometry: Non-Abelian Reciprocity

(Joint with Jonathan Pridham)
Notation:
F : number field.
$G_{F}=\operatorname{Gal}(\bar{F} / F)$.
$G_{v}=\operatorname{Gal}\left(\bar{F}_{v} / F_{v}\right)$ for a place v of F.
S : finite set of places of F.
\mathbb{A}_{F} : Adeles of F
$\mathbb{A}_{F}^{S}: S$-integral adeles of F.
$G_{F}^{S}=\operatorname{Gal}\left(F^{S} / F\right)$, where F^{S} is the maximal extension of F unramified outside S.

Diophantine Geometry: Non-Abelian Reciprocity

X : a smooth curve over F with genus at least two; $b \in X(F)$ (sometimes tangential).

$$
\Delta=\pi_{1}(\bar{X}, b):
$$

Pro-finite étale fundamental group of $\bar{X}=X \times \operatorname{Spec}(F) \operatorname{Spec}(\bar{F})$ with base-point b.

$$
\Delta^{[n]}
$$

Lower central series with $\Delta^{[1]}=\Delta$.

$$
\begin{gathered}
\Delta_{n}=\Delta / \Delta^{[n+1]} \\
T_{n}=\Delta^{[n]} / \Delta^{[n+1]}
\end{gathered}
$$

Diophantine Geometry: Non-Abelian Reciprocity

We then have a nilpotent class field theory with coefficients in X made up of a filtration

$$
X\left(\mathbb{A}_{F}\right)=X\left(\mathbb{A}_{F}\right)_{1} \supset X\left(\mathbb{A}_{F}\right)_{2} \supset X\left(\mathbb{A}_{F}\right)_{3} \supset \cdots
$$

and a sequence of maps

$$
\operatorname{Rec}_{n}: X\left(\mathbb{A}_{F}\right)_{n} \longrightarrow \mathfrak{G}_{n}(X)
$$

to a sequence $\mathfrak{G}_{n}(X)$ of profinite abelian groups in such a way that

$$
X\left(\mathbb{A}_{F}\right)_{n+1}=\operatorname{Rec}_{n}^{-1}(0)
$$

Diophantine Geometry: Non-Abelian Reciprocity

$R e c_{n}$ is defined not on all of $X\left(\mathbb{A}_{F}\right)$, but only on the kernel (the inverse image of 0) of all the previous rec ${ }_{i}$.

Diophantine Geometry: Non-Abelian Reciprocity

The $\mathfrak{G}_{n}(X)$ are defined as

$$
\begin{gathered}
\mathfrak{G}_{n}(X):= \\
\operatorname{Hom}\left[H^{1}\left(G_{F}, D\left(T_{n}\right)\right), \mathbb{Q} / \mathbb{Z}\right]
\end{gathered}
$$

where

$$
D\left(T_{n}\right)=\underset{m}{\lim } \operatorname{Hom}\left(T_{n}, \mu_{m}\right)
$$

When $X=\mathbb{G}_{m}$, then $\mathfrak{G}_{n}(X)=0$ for $n \geq 2$ and

$$
\begin{aligned}
& \mathfrak{G}_{1}=\operatorname{Hom}\left[H^{1}\left(G_{F}, D(\hat{\mathbb{Z}}(1))\right), \mathbb{Q} / \mathbb{Z}\right] \\
& =\operatorname{Hom}\left[H^{1}\left(G_{F}, \mathbb{Q} / \mathbb{Z}\right), \mathbb{Q} / \mathbb{Z}\right]=G_{F}^{a b} .
\end{aligned}
$$

Diophantine Geometry: Non-Abelian Reciprocity

The reciprocity maps are defined using the local period maps

$$
\begin{gathered}
j^{v}: X\left(F_{v}\right) \longrightarrow H^{1}\left(G_{v}, \Delta\right) ; \\
x \mapsto\left[\pi_{1}(\bar{X} ; b, x)\right] .
\end{gathered}
$$

Because the homotopy classes of étale paths

$$
\pi_{1}(\bar{X} ; b, x)
$$

form a torsor for Δ with compatible action of G_{v}, we get a corresponding class in non-abelian cohomology of G_{v} with coefficients in Δ.

Diophantine Geometry: Non-Abelian Reciprocity

These assemble to a map

$$
j^{l o c}: X\left(\mathbb{A}_{F}\right) \longrightarrow \prod H^{1}\left(G_{v}, \Delta\right)
$$

which comes in levels

$$
j_{n}^{\text {loc }}: X\left(\mathbb{A}_{F}\right) \longrightarrow \prod H^{1}\left(G_{v}, \Delta_{n}\right)
$$

Diophantine Geometry: Non-Abelian Reciprocity

The first reciprocity map is just defined using

$$
x \in X\left(\mathbb{A}_{F}\right) \mapsto d_{1}\left(j_{1}^{l o c}(x)\right)
$$

where
$d_{1}: \prod^{S} H^{1}\left(G_{v}, \Delta_{1}^{M}\right) \longrightarrow \prod^{S} H^{1}\left(G_{v}, D\left(\Delta_{1}^{M}\right)\right)^{\vee} \xrightarrow{\operatorname{loc}^{*}} H^{1}\left(G_{F}^{S}, D\left(\Delta_{1}^{M}\right)\right)^{\vee}$,
is obtained from Tate duality and the dual of localization. One needs first to work with a pro- M quotient for a finite set of primes M and $S \supset M$. Then take a limit over S and then M.

Diophantine Geometry: Non-Abelian Reciprocity

To define the higher reciprocity maps, we use the exact sequences

$$
\begin{aligned}
& 0 \longrightarrow H_{c}^{1}\left(G_{F}^{S}, T_{n+1}^{M}\right) H_{z}^{1}\left(G_{F}^{S}, \Delta_{n+1}^{M}\right) \longrightarrow H_{z}^{1}\left(G_{F}^{S}, \Delta_{n}\right) \\
& \xrightarrow{\delta_{n+1}} H_{c}^{2}\left(G_{F}^{S}, T_{n+1}^{M}\right)
\end{aligned}
$$

for non-abelian cohomology with support and Poitou-Tate duality

$$
d_{n+1}: H_{c}^{2}\left(G_{F}^{S}, T_{n+1}^{M}\right) \simeq H^{1}\left(G_{F}^{S}, D\left(T_{n+1}^{M}\right)\right)^{\vee} .
$$

Diophantine Geometry: Non-Abelian Reciprocity

Essentially,

$$
\begin{gathered}
\operatorname{Rec}_{n+1}^{M}=d_{n+1} \circ \delta_{n+1} \circ \operatorname{loc}^{-1} \circ j_{n} . \\
x \in X\left(\mathbb{A}_{F}\right)_{n+1} \xrightarrow{j_{n}^{l o c}} \prod^{S} H^{1}\left(G_{v}, \Delta_{n}^{M}\right) \xrightarrow{\operatorname{loc}^{-1}} H_{j_{n}^{l o c}(x)}^{1}\left(G_{F}^{S}, \Delta_{n}^{M}\right) \\
\xrightarrow{\delta_{n+1}} H_{c}^{2}\left(G_{F}^{S}, T_{n+1}^{M}\right) \xrightarrow{d_{n+1}} H^{1}\left(G_{F}^{S}, D\left(T_{n+1}^{M}\right)\right)^{\vee} .
\end{gathered}
$$

At each stage, take a limit over S and M to get the reciprocity maps.

Diophantine Geometry: Non-Abelian Reciprocity

Put

$$
X\left(\mathbb{A}_{F}\right)_{\infty}=\cap_{n=1}^{\infty} X\left(\mathbb{A}_{F}\right)_{n}
$$

Theorem (Non-abelian reciprocity)

$$
X(F) \subset X\left(\mathbb{A}_{F}\right)_{\infty}
$$

Diophantine Geometry: Non-Abelian Reciprocity

Remark: When $F=\mathbb{Q}$ and p is a prime of good reduction, suppose there is a finite set T of places such that

$$
H^{1}\left(G_{F}^{S}, \Delta_{n}^{p}\right) \longrightarrow \prod_{v \in T} H^{1}\left(G_{v}, \Delta_{n}^{p}\right)
$$

is injective. Then the reciprocity law implies finiteness of $X(F)$.

Non-Abelian Reciprocity: idea of proof

Non-Abelian Reciprocity: idea of proof

If $x \in X\left(\mathbb{A}_{F}\right)$ comes from a global point $x^{g} \in X(F)$, then there will be a class

$$
j_{n}^{g}\left(x^{g}\right) \in H_{j_{n}(x)}^{1}\left(G_{F}^{S}, \Delta_{n}^{M}\right)
$$

for every n corresponding to the global torsor

$$
\pi_{1}^{e t, M}\left(\bar{X} ; b, x^{g}\right)
$$

That is, $j_{n}^{g}\left(x^{g}\right)=\operatorname{loc}^{-1}\left(j_{n}^{\text {loc }}(x)\right)$ and

$$
\delta_{n+1}\left(j_{n}^{g}\left(x^{g}\right)\right)=0
$$

for every n.

A non-abelian conjecture of Birch and Swinnerton-Dyer type
Let

$$
\operatorname{Pr}_{v}: X\left(\mathbb{A}_{F}\right) \longrightarrow X\left(F_{V}\right)
$$

be the projection to the v-adic component of the adeles.
Define

$$
X\left(F_{V}\right)_{n}:=\operatorname{Pr}_{v}\left(X\left(\mathbb{A}_{F}\right)_{n}\right)
$$

Thus,

$$
X\left(F_{v}\right)=X\left(F_{v}\right)_{1} \supset X\left(F_{v}\right)_{2} \supset X\left(F_{v}\right)_{3} \supset \cdots \supset X\left(F_{v}\right)_{\infty} \supset X(F)
$$

Conjecture: Let X / \mathbb{Q} be a projective smooth curve of genus at least 2. Then for any prime p of good reduction, we have

$$
X\left(\mathbb{Q}_{p}\right)_{\infty}=X(\mathbb{Q}) .
$$

A non-abelian conjecture of Birch and Swinnerton-Dyer type

Can consider more generally integral points on affine hyperbolic X as well.

Conjecture: Let X be an affine smooth curve with non-abelian fundamental group and S a finite set of primes. Then for any prime $p \notin S$ of good reduction, we have

$$
X(\mathbb{Z}[1 / S])=X\left(\mathbb{Z}_{p}\right)_{\infty}
$$

Should allow us to compute

$$
X(\mathbb{Q}) \subset X\left(\mathbb{Q}_{p}\right)
$$

or

$$
X(\mathbb{Z}[1 / S]) \subset X\left(\mathbb{Z}_{p}\right)
$$

A non-abelian conjecture of Birch and Swinnerton-Dyer type

Whenever we have an element

$$
k_{n} \in H^{1}\left(G_{T}, \operatorname{Hom}\left(T_{n}^{M}, \mathbb{Q}_{p}(1)\right)\right)
$$

we get a function

$$
X\left(\mathbb{A}_{\mathbb{Q}}\right)_{n} \xrightarrow{r e c_{n}} H^{1}\left(G_{T}, D\left(T_{n}^{M}\right)\right)^{\vee} \xrightarrow{k_{n}} \mathbb{Q}_{p}
$$

that kills $X(\mathbb{Q}) \subset X\left(\mathbb{A}_{\mathbb{Q}}\right)_{n}$.
Need an explicit reciprocity law that describes the image

$$
X\left(\mathbb{Q}_{p}\right)_{n} .
$$

A non-abelian conjecture of Birch and Swinnerton-Dyer type

Computational approaches all rely on the theory of

$$
U(X, b)
$$

the \mathbb{Q}_{p}-pro-unipotent fundamental group of \bar{X} with Galois action, and the diagram

$$
\begin{gathered}
X(\mathbb{Q}) \longrightarrow X\left(\mathbb{Q}_{p}\right) \\
j_{n}^{g} \mid \\
H_{f}^{1}\left(G_{\mathbb{Q}}^{T}, U_{n}\right) \xrightarrow{l o c_{n}^{p}} H_{f}^{1}\left(G_{p}, U_{n}\right) \xrightarrow{D_{0}^{D}} U_{n}^{D R} / F^{0}
\end{gathered}
$$

A non-abelian conjecture of Birch and Swinnerton-Dyer type

The key point is that the map

$$
X\left(\mathbb{Q}_{p}\right) \xrightarrow{j^{D R}} U^{D R} / F^{0}
$$

can be computed explicitly using iterated integrals, and

$$
X(\mathbb{Q}) \subset X\left(\mathbb{Q}_{p}\right)_{n} \subset\left[j_{n}^{D R}\right]^{-1}\left[\operatorname{Im}\left(D \circ \operatorname{loc}_{n}^{p}\right)\right]
$$

A non-abelian conjecture of Birch and Swinnerton-Dyer type

 Two more key facts:1. As soon as $D \circ \operatorname{loc}_{n}^{p}$ has non-dense image, $X\left(\mathbb{Q}_{p}\right)_{n}$ is finite. This follows from analytic properties of Coleman functions and the fact that $j_{n}^{D R}$ has dense image. That is, in this case, $\operatorname{Im}\left(j_{n}^{D R}\right) \cap \operatorname{Im}\left(D \circ \operatorname{loc}_{p}\right)$ is finite.

A non-abelian conjecture of Birch and Swinnerton-Dyer type

2. If $\mathcal{A}_{n}^{D R}$ denotes the coordinate ring of $U_{n}^{D R} / F^{0}$, then the functions $\left[j_{n+1}^{D R}\right]^{*}\left(\mathcal{A}_{n+1}^{D R}\right)$ contains many elements algebraically independent from $\left[j_{n}^{D R}\right]^{*}\left(\mathcal{A}_{n}^{D R}\right)$.

A non-abelian conjecture of Birch and Swinnerton-Dyer type

Predicted phenomena: At some point $X\left(\mathbb{Q}_{p}\right)_{n}$ should be finite, and then one should have a strongly increasing set of functions

$$
\left[J_{m}^{D R}\right]^{*}\left(I_{m}^{D R}\right)
$$

for $m \geq n$ that vanish on $X(\mathbb{Q})$.
This is implied, for example, by the Fontaine-Mazur conjecture on geometric Galois representations, which implies

$$
\operatorname{dim}\left[U_{n}^{D R} / F^{0}\right]-\operatorname{dim}\left[I m\left(D \circ \operatorname{loc}_{n}^{p}\right)\right] \longrightarrow \infty
$$

as n grows.
Can prove this for curves X that have CM Jacobians (joint with J. Coates).

A non-abelian conjecture of Birch and Swinnerton-Dyer type: Examples [Joint with Jennifer Balakrishnan, Ishai Dan-Cohen, Stefan Wewers]

$$
\begin{aligned}
& \text { Let } \mathcal{X}=\mathbb{P}^{1} \backslash\{0,1, \infty\} \text {. Then } \mathcal{X}(\mathbb{Z})=\phi \\
& \qquad \mathcal{X}\left(\mathbb{Z}_{p}\right)_{2}=\{z \mid \log (z)=0, \log (1-z)=0\}
\end{aligned}
$$

Must have $z=\zeta_{n}$ and $1-z=\zeta_{m}$, and hence, $z=\zeta_{6}$ or $z=\zeta_{6}^{-1}$.

A non-abelian conjecture of Birch and Swinnerton-Dyer type: examples

Thus, if $p=3$ or $p \equiv 2 \bmod 3$, we have

$$
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{2}=\phi=\mathcal{X}(\mathbb{Z})
$$

so the conjecture holds already at level 2 .
When $p \equiv 1 \bmod 3$

$$
\mathcal{X}(\mathbb{Z})=\phi \subsetneq\left\{\zeta_{6}, \zeta_{6}^{-1}\right\}=\mathcal{X}\left(\mathbb{Z}_{p}\right)_{2}
$$

and we must go to a higher level.

A non-abelian conjecture of Birch and Swinnerton-Dyer type: examples

Let

$$
L i_{2}(z)=\sum_{n} \frac{z^{n}}{n^{2}}
$$

be the dilogarithm. Then

$$
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{3}=\left\{z \mid \log (z)=0, \log (1-z)=0, L i_{2}(z)=0\right\} .
$$

and the conjecture is true for $\mathcal{X}(\mathbb{Z})$ if

$$
L i_{2}\left(\zeta_{6}\right) \neq 0
$$

Can check this numerically for all $2<p<10^{5}$.

A non-abelian conjecture of Birch and Swinnerton-Dyer type: examples

Let $\mathcal{X}=\mathcal{E} \backslash O$ where \mathcal{E} is a semi-stable elliptic curve of rank 0 and $|\amalg(E)(p)|<\infty$.

$$
\log (z)=\int_{b}^{z}(d x / y)
$$

(b is a tangential base-point.)
Then

$$
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{2}=\left\{z \in X\left(\mathbb{Z}_{p}\right) \mid \log (z)=0\right\}=\mathcal{E}\left(\mathbb{Z}_{p}\right)[\text { tor }] \backslash O
$$

For small p, it happens frequently that

$$
\mathcal{E}(\mathbb{Z})[\text { tor }]=\mathcal{E}\left(\mathbb{Z}_{p}\right)[\text { tor }]
$$

and hence that

$$
\mathcal{X}(\mathbb{Z})=\mathcal{X}\left(\mathbb{Z}_{p}\right)_{2}
$$

But of course, this fails as p grows.

A non-abelian conjecture of Birch and Swinnerton-Dyer type: examples

Must then examine the inclusion

$$
\mathcal{X}(\mathbb{Z}) \subset \mathcal{X}\left(\mathbb{Z}_{p}\right)_{3}
$$

Let

$$
D_{2}(z)=\int_{b}^{z}(d x / y)(x d x / y)
$$

A non-abelian conjecture of Birch and Swinnerton-Dyer type: examples

Let S be the set of primes of bad reduction. For each $I \in S$, let

$$
N_{l}=\operatorname{ord}_{l}\left(\Delta_{\mathcal{E}}\right)
$$

where $\Delta_{\mathcal{E}}$ is the minimal discriminant.
Define a set

$$
W_{l}:=\left\{\left(n\left(N_{l}-n\right) / 2 N_{l}\right) \log l \mid 0 \leq n<N_{l}\right\},
$$

and for each $w=\left(w_{l}\right)_{l \in S} \in W:=\prod_{l \in S} W_{l}$, define

$$
\|w\|=\sum_{l \in S} w_{l}
$$

A non-abelian conjecture of Birch and Swinnerton-Dyer

 type: examplesTheorem
Suppose \mathcal{E} has rank zero and that $\Pi_{E}\left[p^{\infty}\right]<\infty$. With assumptions as above

$$
\mathcal{X}\left(\mathbb{Z}_{p}\right)_{3}=\cup_{w \in W} \Psi(w),
$$

where

$$
\Psi(w):=\left\{z \in \mathcal{X}\left(\mathbb{Z}_{p}\right) \mid \log (z)=0, \quad D_{2}(z)=\|w\|\right\} .
$$

Of course,

$$
\mathcal{X}(\mathbb{Z}) \subset \mathcal{X}\left(\mathbb{Z}_{p}\right)_{3},
$$

but depending on the reduction of \mathcal{E}, the latter could be made up of a large number of $\Psi(w)$, creating potential for some discrepancy.

A non-abelian conjecture of Birch and Swinnerton-Dyer type: examples

The curve

$$
y^{2}+x y=x^{3}-x^{2}-1062 x+13590
$$

has integral points

$$
(19,-9), \quad(19,-10)
$$

We find

$$
\mathcal{X}(\mathbb{Z})=\left\{z \mid \log (z)=0, D_{2}(z)=0\right\}=\mathcal{X}\left(\mathbb{Z}_{p}\right)_{3}
$$

for all p such that $5 \leq p \leq 97$.
Note that

$$
D_{2}(19,-9)=D_{2}(19,-10)=0
$$

is already non-obvious. (A non-abelian reciprocity law.)

A non-abelian conjecture of Birch and Swinnerton-Dyer type: examples

In fact, so far, we have checked

$$
\mathcal{X}(\mathbb{Z})=\mathcal{X}\left(\mathbb{Z}_{p}\right)_{3}
$$

for the prime $p=5$ and 256 semi-stable elliptic curves of rank zero.

A non-abelian conjecture of Birch and Swinnerton-Dyer type: examples

Cremona label	number of $\\|w\\|$-values
1122 m 1	128
1122 m 2	384
1122 m 4	84
1254 a 2	140
1302 d 2	96
1506 a 2	112
1806 h 1	120
2442 h 1	78
2442 h 2	84
2706 d 2	120
2982 j 1	160
2982 j 2	140
3054 b 1	108

A non-abelian conjecture of Birch and Swinnerton-Dyer type: examples

Cremona label	number of $\\|w\\|$-values
3774 f 1	120
4026 g 1	90
4134 b 1	90
4182 h 1	300
4218 b 1	96
4278 j 1	90
4278 j 2	100
4434 c 1	210
4774 e 1	224
4774 e 2	192
4774 e 3	264
4774 e 4	308
4862 d 1	216

A non-abelian conjecture of Birch and Swinnerton-Dyer

 type: examplesHence, for example, for the curve $1122 m 2$,

$$
y^{2}+x y=x^{3}-41608 x-90515392
$$

there are potentially 384 of the $\Psi(w)$'s that make up $\mathcal{X}\left(\mathbb{Z}_{p}\right)_{3}$.
Of these, all but 4 end up being empty, while the points in those $\Psi(w)$ consist exactly of the integral points

$$
(752,-17800),(752,17048),(2864,-154024),(2864,151160) .
$$

A non-abelian conjecture of Birch and Swinnerton-Dyer type: examples [Netan Dogra and Jennifer Balakrishnan]

$$
\begin{gathered}
x: y^{2}=x^{6}-4 x^{4}+3 x^{2}+1 ; \\
E_{1}: y^{2}=x^{3}-4 x^{2}+3 x+1 ; \\
E_{2}: y^{2}=x^{3}+3 x^{2}-4 x+1 ; \\
f_{1}: x \longrightarrow E_{1} ; \\
(x, y) \mapsto\left(x^{2}, y\right) ; \\
f_{2}: x \longrightarrow E_{2} ; \\
(x, y) \mapsto\left(1 / x^{2}, y / x^{3}\right) ;
\end{gathered}
$$

A non-abelian conjecture of Birch and Swinnerton-Dyer

 type: examples [Netan Dogra and Jennifer Balakrishnan]$z_{1} \in E_{1}(\mathbb{Q}), z_{2} \in E_{2}(\mathbb{Q})$, generators for Mordell-Weil group.
h_{i}, p-adic height on $E_{i}(\mathbb{Q})$.
$\log _{i}, p$-adic \log on $E_{i}\left(\mathbb{Q}_{p}\right)$ with respect to suitable choice of invariant differential form.
λ_{i}, local p-adic height on $E_{i}\left(\mathbb{Q}_{p}\right)$. Hence, given by log of p-adic sigma function.

A non-abelian conjecture of Birch and Swinnerton-Dyer type: examples [Netan Dogra and Jennifer Balakrishnan]

Define $\rho: X\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$ by

$$
\rho(z)
$$

$$
\begin{gathered}
=2 \lambda_{1}\left(f_{1}(z)\right)-2 \frac{\log _{1}^{2}\left(f_{1}(z)\right)}{\log _{1}^{2}\left(z_{1}\right)} h_{1}\left(z_{1}\right)-\lambda_{2}\left(f_{2}(z)-(0,1)\right)-\lambda_{2}\left(f_{2}(z)+(0,1)\right) \\
+\frac{\left.\log _{2}^{2}\left(f_{2}(z)-(0,1)\right)+\log _{2}^{2}\left(f_{2}(z)+(0,1)\right)\right)}{\log _{1}^{2}\left(z_{2}\right)} h_{2}\left(z_{2}\right) .
\end{gathered}
$$

Then
$X\left(\mathbb{Q}_{p}\right)_{3} \subset\{\rho(z)=\log 2\} \cup\{\rho(z)=2 \log 2\} \cup\{\rho(z)=(-1 / 3) \log 2\}$

A non-abelian conjecture of Birch and Swinnerton-Dyer type: examples [Netan Dogra and Jennifer Balakrishnan]

Get some nice explicit reciprocity laws like

$$
\begin{gathered}
\rho(0, \pm 1)=\log 2 ; \\
\rho(5 / 2, \pm 83 / 8)=2 \log 2 ; \\
\rho(1, \pm 1)=(-1 / 3) \log 2 .
\end{gathered}
$$

Non-abelian reciprocity: a brief comparison

Usual (Langlands) reciprocity:

$$
L(M)=L(\pi)
$$

where M is a motive and π is an algebraic automorphic representation on $G L_{n}\left(\mathbb{A}_{F}\right)$.

The relevance to arithemic comes from conjectures that say $L\left(N^{*} \otimes M\right)$ encodes

$$
R H o m(N, M)
$$

So in some sense, L functions classify motives.
However, in classical (non-linear) Diophantine geometry, we are interested in schemes, not motives, in particular, actual maps between schemes. Hence, a need for a nonlinear reciprocity of some sort.

Non-abelian reciprocity: a brief comparison

X / F as above, $\Delta_{n}, T_{n}=\Delta^{n} / \Delta^{n+1}$, etc.
Langlands reciprocity
$\rho \in H^{1}\left(G_{F}, G L\left(T_{1}\right)\right) \mapsto$ functions on $G L\left(H_{1}^{D R}(F)\right) \backslash G L\left(H_{1}^{D R}(X)\left(\mathbb{A}_{F}\right)\right)$.
π_{1} reciprocity

$$
k \in H^{1}\left(G_{F}, T_{n}\right) \mapsto \text { functions on } X\left(\mathbb{A}_{F}\right)
$$

via functions on

$$
H^{1}\left(G_{F}, U_{n}\right) \backslash \prod^{\prime} H^{1}\left(G_{v}, U_{n}\right)
$$

