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Diophantine Geometry: Abelian Case

The Hasse-Minkowski theorem says that

ax2 + by2 = c

has a solution in a number field F and only if it has a solution in Fv
for all v .

There are straightforward algorithms for determining this. For
example, we need only check for v =∞ and v |2abc , and there, a
solution exists if and only if

(a, b)v (b, c)v (c , a)v (c ,−1)v = 1.



Diophantine Geometry: Main Local-to-Global Problem

Locate

X (F ) ⊂ X (AF ) =
′∏
v

X (Fv )

The question is

How do the global points sit inside the local points?

In fact, there is a classical answer of satisfactory sort for conic
equations.



Diophantine Geometry: Main Local-to-Global Problem

In that case, assume for simplicity that there is a rational point
(and that the points at infinity are rational), so that

X ' Gm.

Then
X (F ) = F ∗, X (Fv ) = F ∗v .

Problem becomes that of locating

F ∗ ⊂ A×F .



Diophantine Geometry: Abelian Class Field Theory

We have the Artin reciprocity map

Rec =
∏
v

Recv : A×F - G ab
F .

Here,
G ab
F = Gal(F ab/F ),

and
F ab

is the maximal abelian algebraic extension of F .



Diophantine Geometry: Abelian Class Field Theory

Artin’s reciprocity law:

The map

F ∗ ⊂ - A×F
Rec- G ab

F

is zero.

That is, the reciprocity map gives a defining equation for Gm(F ).



Diophantine Geometry: Non-Abelian Reciprocity?

We would like to generalize this to other equations by way of a
non-abelian reciprocity law.

Start with a rather general variety X for which we would like to
understand

X (F )

via

X (F ) ⊂ - X (AF )
RecNA- some target with base-point 0

in such way that
RecNA = 0

becomes an equation for X (F ).



Diophantine Geometry: Non-Abelian Reciprocity

To rephrase: we would like to construct class field theory with
coefficients in a general variety X generalizing CFT with
coefficients in Gm

Will describe a version that works for smooth hyperbolic curves.



Diophantine Geometry: Non-Abelian Reciprocity

(Joint with Jonathan Pridham)

Notation:

F : number field.
GF = Gal(F̄/F ).
Gv = Gal(F̄v/Fv ) for a place v of F .
S : finite set of places of F .
AF : Adeles of F
AS
F : S-integral adeles of F .

GS
F = Gal(F S/F ), where F S is the maximal extension of F

unramified outside S .



Diophantine Geometry: Non-Abelian Reciprocity

X : a smooth curve over F with genus at least two; b ∈ X (F )
(sometimes tangential).

∆ = π1(X̄ , b) :

Pro-finite étale fundamental group of X̄ = X ×Spec(F ) Spec(F̄ )

with base-point b.

∆[n]

Lower central series with ∆[1] = ∆.

∆n = ∆/∆[n+1].

Tn = ∆[n]/∆[n+1].



Diophantine Geometry: Non-Abelian Reciprocity

We then have a nilpotent class field theory with coefficients in X
made up of a filtration

X (AF ) = X (AF )1 ⊃ X (AF )2 ⊃ X (AF )3 ⊃ · · ·

and a sequence of maps

Recn : X (AF )n - Gn(X )

to a sequence Gn(X ) of profinite abelian groups in such a way that

X (AF )n+1 = Rec−1
n (0).



Diophantine Geometry: Non-Abelian Reciprocity

· · · ⊂ X (AF )3= Rec−1
2 (0)⊂ X (AF )2= Rec−1

1 (0)⊂ X (AF )1= X (AF )

· · ·

· · · G3(X )

Rec3

?
G2(X )

Rec2

?
G1(X )

Rec1

?

Recn is defined not on all of X (AF ), but only on the kernel (the
inverse image of 0) of all the previous reci .



Diophantine Geometry: Non-Abelian Reciprocity

The Gn(X ) are defined as

Gn(X ) :=

Hom[H1(GF ,D(Tn)),Q/Z]

where
D(Tn) = lim−→

m

Hom(Tn, µm).

When X = Gm, then Gn(X ) = 0 for n ≥ 2 and

G1 = Hom[H1(GF ,D(Ẑ(1))),Q/Z]

= Hom[H1(GF ,Q/Z),Q/Z] = G ab
F .



Diophantine Geometry: Non-Abelian Reciprocity

The reciprocity maps are defined using the local period maps

jv : X (Fv ) - H1(Gv ,∆);

x 7→ [π1(X̄ ; b, x)].

Because the homotopy classes of étale paths

π1(X̄ ; b, x)

form a torsor for ∆ with compatible action of Gv , we get a
corresponding class in non-abelian cohomology of Gv with
coefficients in ∆.



Diophantine Geometry: Non-Abelian Reciprocity

These assemble to a map

j loc : X (AF ) -
∏

H1(Gv ,∆),

which comes in levels

j locn : X (AF ) -
∏

H1(Gv ,∆n).



Diophantine Geometry: Non-Abelian Reciprocity

The first reciprocity map is just defined using

x ∈ X (AF ) 7→ d1(j loc1 (x)),

where

d1 :
S∏

H1(Gv ,∆
M
1 ) -

S∏
H1(Gv ,D(∆M

1 ))∨
loc∗- H1(GS

F ,D(∆M
1 ))∨,

is obtained from Tate duality and the dual of localization. One
needs first to work with a pro-M quotient for a finite set of primes
M and S ⊃ M. Then take a limit over S and then M.



Diophantine Geometry: Non-Abelian Reciprocity

To define the higher reciprocity maps, we use the exact sequences

0 - H1
c (GS

F ,T
M
n+1) - H1

z (GS
F ,∆

M
n+1) - H1

z (GS
F ,∆n)

δn+1- H2
c (GS

F ,T
M
n+1)

for non-abelian cohomology with support and Poitou-Tate duality

dn+1 : H2
c (GS

F ,T
M
n+1) ' H1(GS

F ,D(TM
n+1))∨.



Diophantine Geometry: Non-Abelian Reciprocity

Essentially,
RecMn+1 = dn+1 ◦ δn+1 ◦ loc−1 ◦ jn.

x ∈ X (AF )n+1
j locn-

S∏
H1(Gv ,∆

M
n )

loc−1

- H1
j locn (x)(G

S
F ,∆

M
n )

δn+1- H2
c (GS

F ,T
M
n+1)

dn+1- H1(GS
F ,D(TM

n+1))∨.

At each stage, take a limit over S and M to get the reciprocity
maps.



Diophantine Geometry: Non-Abelian Reciprocity

Put
X (AF )∞ = ∩∞n=1X (AF )n.

Theorem (Non-abelian reciprocity)

X (F ) ⊂ X (AF )∞.



Diophantine Geometry: Non-Abelian Reciprocity

Remark: When F = Q and p is a prime of good reduction, suppose
there is a finite set T of places such that

H1(GS
F ,∆

p
n) -

∏
v∈T

H1(Gv ,∆
p
n)

is injective. Then the reciprocity law implies finiteness of X (F ).



Non-Abelian Reciprocity: idea of proof

X (F ) - X (AF )

H1(GS
F ,∆

M
n )

jgn

? loc
-

∏
H1(Gv ,∆

M
n )

j locn

?

H1(GS
F ,∆

M
n+1)

X (F )
jgn-

j
g
n+

1
-

H1(GS
F ,∆

M
n+1)

?



Non-Abelian Reciprocity: idea of proof

If x ∈ X (AF ) comes from a global point xg ∈ X (F ), then there will
be a class

jgn (xg ) ∈ H1
jn(x)

(GS
F ,∆

M
n )

for every n corresponding to the global torsor

πet,M1 (X̄ ; b, xg ).

That is, jgn (xg ) = loc−1(j locn (x)) and

δn+1(jgn (xg )) = 0

for every n.



A non-abelian conjecture of Birch and Swinnerton-Dyer type
Let

Prv : X (AF ) - X (Fv )

be the projection to the v -adic component of the adeles.

Define
X (Fv )n := Prv (X (AF )n).

Thus,

X (Fv ) = X (Fv )1 ⊃ X (Fv )2 ⊃ X (Fv )3 ⊃ · · · ⊃ X (Fv )∞ ⊃ X (F ).

Conjecture: Let X/Q be a projective smooth curve of genus at
least 2. Then for any prime p of good reduction, we have

X (Qp)∞ = X (Q).



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Can consider more generally integral points on affine hyperbolic X
as well.

Conjecture: Let X be an affine smooth curve with non-abelian
fundamental group and S a finite set of primes. Then for any prime
p /∈ S of good reduction, we have

X (Z[1/S ]) = X (Zp)∞.

Should allow us to compute

X (Q) ⊂ X (Qp)

or
X (Z[1/S ]) ⊂ X (Zp).



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Whenever we have an element

kn ∈ H1(GT ,Hom(TM
n ,Qp(1))),

we get a function

X (AQ)n
recn- H1(GT ,D(TM

n ))∨
kn- Qp

that kills X (Q) ⊂ X (AQ)n.

Need an explicit reciprocity law that describes the image

X (Qp)n.



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Computational approaches all rely on the theory of

U(X , b),

the Qp-pro-unipotent fundamental group of X̄ with Galois action,
and the diagram

X (Q) - X (Qp)

H1
f (GT

Q ,Un)

jgn

?
locpn- H1

f (Gp,Un)

jpn

? 'D
- UDR

n /F 0

j DRn

-



A non-abelian conjecture of Birch and Swinnerton-Dyer type

The key point is that the map

X (Qp)
jDR
- UDR/F 0

can be computed explicitly using iterated integrals, and

X (Q) ⊂ X (Qp)n ⊂ [jDR
n ]−1[Im(D ◦ locpn)].



A non-abelian conjecture of Birch and Swinnerton-Dyer type
Two more key facts:

1. As soon as D ◦ locpn has non-dense image, X (Qp)n is finite. This
follows from analytic properties of Coleman functions and the fact
that jDR

n has dense image. That is, in this case,
Im(jDR

n ) ∩ Im(D ◦ locp) is finite.

X (Q)

H1
f (GT

Q ,Un)
�

X (Qp)

-

UDR
n /F 0

�
-



A non-abelian conjecture of Birch and Swinnerton-Dyer type

2. If ADR
n denotes the coordinate ring of UDR

n /F 0, then the
functions [jDR

n+1]∗(ADR
n+1) contains many elements algebraically

independent from [jDR
n ]∗(ADR

n ).

UDR
n+1/F

0

X (Qp)
jDR
n-

j
D
R
n+

1
-

UDR
n /F 0
?



A non-abelian conjecture of Birch and Swinnerton-Dyer type

Predicted phenomena: At some point X (Qp)n should be finite, and
then one should have a strongly increasing set of functions

[JDR
m ]∗(IDR

m )

for m ≥ n that vanish on X (Q).

This is implied, for example, by the Fontaine-Mazur conjecture on
geometric Galois representations, which implies

dim[UDR
n /F 0]− dim[Im(D ◦ locpn)] - ∞

as n grows.

Can prove this for curves X that have CM Jacobians (joint with J.
Coates).



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: Examples [Joint with Jennifer Balakrishnan, Ishai
Dan-Cohen, Stefan Wewers]

Let X = P1 \ {0, 1,∞}. Then X (Z) = φ.

X (Zp)2 = {z | log(z) = 0, log(1− z) = 0}.

Must have z = ζn and 1− z = ζm, and hence, z = ζ6 or z = ζ−1
6 .



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Thus, if p = 3 or p ≡ 2 mod 3, we have

X (Zp)2 = φ = X (Z),

so the conjecture holds already at level 2.

When p ≡ 1 mod 3

X (Z) = φ ( {ζ6, ζ−1
6 } = X (Zp)2

and we must go to a higher level.



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Let
Li2(z) =

∑
n

zn

n2

be the dilogarithm. Then

X (Zp)3 = {z | log(z) = 0, log(1− z) = 0, Li2(z) = 0}.

and the conjecture is true for X (Z) if

Li2(ζ6) 6= 0.

Can check this numerically for all 2 < p < 105.



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Let X = E \ O where E is a semi-stable elliptic curve of rank 0 and
|X(E )(p)| <∞.

log(z) =

∫ z

b
(dx/y).

(b is a tangential base-point.)

Then

X (Zp)2 = {z ∈ X (Zp) | log(z) = 0} = E(Zp)[tor ] \ O.

For small p, it happens frequently that

E(Z)[tor ] = E(Zp)[tor ]

and hence that
X (Z) = X (Zp)2.

But of course, this fails as p grows.



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Must then examine the inclusion

X (Z) ⊂ X (Zp)3.

Let
D2(z) =

∫ z

b
(dx/y)(xdx/y).



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Let S be the set of primes of bad reduction. For each l ∈ S , let

Nl = ordl(∆E),

where ∆E is the minimal discriminant.
Define a set

Wl := {(n(Nl − n)/2Nl) log l | 0 ≤ n < Nl},

and for each w = (wl)l∈S ∈W :=
∏

l∈S Wl , define

‖w‖ =
∑
l∈S

wl .



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Theorem
Suppose E has rank zero and that XE [p∞] <∞. With
assumptions as above

X (Zp)3 = ∪w∈W Ψ(w),

where

Ψ(w) := {z ∈ X (Zp) | log(z) = 0, D2(z) = ‖w‖}.

Of course,
X (Z) ⊂ X (Zp)3,

but depending on the reduction of E , the latter could be made up
of a large number of Ψ(w), creating potential for some discrepancy.



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

The curve
y2 + xy = x3 − x2 − 1062x + 13590

has integral points

(19,−9), (19,−10).

We find

X (Z) = {z | log(z) = 0,D2(z) = 0} = X (Zp)3

for all p such that 5 ≤ p ≤ 97.

Note that
D2(19,−9) = D2(19,−10) = 0

is already non-obvious. (A non-abelian reciprocity law.)



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

In fact, so far, we have checked

X (Z) = X (Zp)3

for the prime p = 5 and 256 semi-stable elliptic curves of rank zero.



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Cremona label number of ||w ||-values
1122m1 128
1122m2 384
1122m4 84
1254a2 140
1302d2 96
1506a2 112
1806h1 120
2442h1 78
2442h2 84
2706d2 120
2982j1 160
2982j2 140
3054b1 108



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Cremona label number of ||w ||-values
3774f1 120
4026g1 90
4134b1 90
4182h1 300
4218b1 96
4278j1 90
4278j2 100
4434c1 210
4774e1 224
4774e2 192
4774e3 264
4774e4 308
4862d1 216



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples

Hence, for example, for the curve 1122m2,

y2 + xy = x3 − 41608x − 90515392

there are potentially 384 of the Ψ(w)’s that make up X (Zp)3.

Of these, all but 4 end up being empty, while the points in those
Ψ(w) consist exactly of the integral points

(752,−17800), (752, 17048), (2864,−154024), (2864, 151160).



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples [Netan Dogra and Jennifer Balakrishnan]

X : y2 = x6 − 4x4 + 3x2 + 1;

E1 : y2 = x3 − 4x2 + 3x + 1;

E2 : y2 = x3 + 3x2 − 4x + 1;

f1 : X - E1;

(x , y) 7→ (x2, y);

f2 : X - E2;

(x , y) 7→ (1/x2, y/x3);



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples [Netan Dogra and Jennifer Balakrishnan]

z1 ∈ E1(Q), z2 ∈ E2(Q), generators for Mordell-Weil group.

hi , p-adic height on Ei (Q).

logi , p-adic log on Ei (Qp) with respect to suitable choice of
invariant differential form.

λi , local p-adic height on Ei (Qp). Hence, given by log of p-adic
sigma function.



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples [Netan Dogra and Jennifer Balakrishnan]

Define ρ : X (Qp) - Qp by

ρ(z)

= 2λ1(f1(z))−2log
2
1(f1(z))

log2
1(z1)

h1(z1)−λ2(f2(z)−(0, 1))−λ2(f2(z)+(0, 1))

+
log2

2(f2(z)− (0, 1)) + log2
2(f2(z) + (0, 1)))

log2
1(z2)

h2(z2).

Then

X (Qp)3 ⊂ {ρ(z) = log 2}∪{ρ(z) = 2 log 2}∪{ρ(z) = (−1/3) log 2}



A non-abelian conjecture of Birch and Swinnerton-Dyer
type: examples [Netan Dogra and Jennifer Balakrishnan]

Get some nice explicit reciprocity laws like

ρ(0,±1) = log 2;

ρ(5/2,±83/8) = 2 log 2;

ρ(1,±1) = (−1/3) log 2.



Non-abelian reciprocity: a brief comparison

Usual (Langlands) reciprocity:

L(M) = L(π)

where M is a motive and π is an algebraic automorphic
representation on GLn(AF ).

The relevance to arithemic comes from conjectures that say
L(N∗ ⊗M) encodes

RHom(N,M).

So in some sense, L functions classify motives.

However, in classical (non-linear) Diophantine geometry, we are
interested in schemes, not motives, in particular, actual maps
between schemes. Hence, a need for a nonlinear reciprocity of some
sort.



Non-abelian reciprocity: a brief comparison

X/F as above, ∆n, Tn = ∆n/∆n+1, etc.

Langlands reciprocity

ρ ∈ H1(GF ,GL(T1)) 7→ functions on GL(HDR
1 (F ))\GL(HDR

1 (X )(AF )).

π1 reciprocity

k ∈ H1(GF ,Tn) 7→ functions on X (AF )

via functions on

H1(GF ,Un)\
′∏
H1(Gv ,Un).


