Local Fields assignments.

Problem 1 (for 22/10). Fix a prime number p, and write $|\cdot|$ for the p-adic absolute value on \mathbb{Q} , say with $\alpha = 1/p$. (So $|p^n \frac{a}{b}| = p^{-n}$.)

- (1) Compute |6!| for every prime p.
- (2) Say that a sequence $(a_n)_{n=1}^{\infty}$ of rational numbers has a limit $a \in \mathbb{Q}$ if $|a_n a| \to 0$ as $n \to \infty$. For p = 2, prove that the two sequences

$$9, 99, 999, 9999, \dots$$
 and $5, 55, 555, 5555, \dots$

converge and find their limits.

(3) If $x \in \mathbb{Q}$ satisfies |x| < 1 (e.g. $x \in \mathbb{Z}$ is divisible by p), prove that

$$1 + x + x^{2} + x^{3} + \ldots = \frac{1}{1 - x},$$

in the sense that the partial sums in the left-hand side tend to the right-hand side; if $|x| \ge 1$, prove that the series diverges. For example, when p = 2,

$$1 + 2 + 4 + 8 + 16 + 32 + \ldots = -1.$$

Problem 2 (for 29/10). Suppose $k = \bar{k}$ is an algebraically closed field, and let K = k(t) be a field of rational functions in one variable.

- (1) Prove that every normalised discrete valuation on K which is trivial on k (i.e. v(a) = 0 for $a \in k^*$) is either of the form v_a for some $a \in k$ ("order of vanishing at a") or is $v_{\infty}(p/q) = \deg q - \deg p$.
- (2) What happens if k is not algebraically closed?

Problem 3 (for 5/11). Suppose p is an odd prime.

- (1) Prove that for every $a \in \mathbb{Z}_p^{\times}$ the sequence $(a^{p^n})_{n\geq 1}$ is Cauchy, and hence converges. Denote its limit by [a]. Show that $[a] \equiv a \mod p$.
- (2) Show that [a] = 1 when $a \equiv 1 \mod p$, and deduce that $a \mapsto [a]$ is an injective group homomorphism

$$\frac{\mathbb{Z}_p^{\times}}{1+p\mathbb{Z}_p} \cong (\mathbb{Z}/p\mathbb{Z})^{\times} \xrightarrow{[\cdot]} \mathbb{Z}_p^{\times}.$$

The map $a \mapsto [a]$ can be viewed as a (unique) way to lift elements from the residue field $(\mathbb{Z}/p\mathbb{Z})^{\times}$ back to \mathbb{Z}_p^{\times} , in a multiplicative way. It is called the *Teichmüller lift*, and it shows that \mathbb{Q}_p contains (p-1)th roots of unity.

Problem 4 (for 12/11). Prove that the equation

$$x^2 + y^2 = 3$$

- (1) has solutions in \mathbb{F}_p for every prime p > 3. (Hint: the sets $\{x^2 : x \in \mathbb{F}_p\}$ and $\{3 x^2 : x \in \mathbb{F}_p\}$ cannot have empty intersection.)
- (2) has solutions in \mathbb{Q}_p for every prime p > 3 (and in \mathbb{R} for that matter).
- (3) has no solutions in \mathbb{Q}_2 or in \mathbb{Q}_3 .

Problem 5 (for 19/11). For $n \ge 2$ write $\zeta_n = e^{2\pi i n}$, a primitive *n*th root of unity in \mathbb{C} . You may use that $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ is a Galois extension of degree $\phi(n)$, the Euler phi function of *n*.

- (1) Prove that $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ is naturally isomorphic to $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- (2) For every prime p, show that $\operatorname{Gal}(\bigcup_{m\geq 1} \mathbb{Q}(\zeta_{p^m})/\mathbb{Q}) \cong \mathbb{Z}_p^{\times}$ as groups.
- (3) Similarly, show that $\operatorname{Gal}(\bigcup_{n>1} \mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong \hat{\mathbb{Z}}^{\times}$.

Problem 6 (for 26/11). Prove that $\mathbb{R}, \mathbb{Q}_2, \mathbb{Q}_3, \mathbb{Q}_5, ...$ are pairwise nonisomorphic as fields (no topology!). [Hint: Problem 4 may give you a plan.]

Problem 7 (for 3/12). Let p be an odd prime, $K = \mathbb{Q}_p$ and $\eta \in \mathbb{Z}_p^{\times}$ a unit for which $\bar{\eta} \in \mathbb{F}_p^{\times}$ is a quadratic non-residue. Let

$$L = K$$
(roots of $x^4 - \eta p^2$).

- (1) Proof that $e_{L/K} = f_{L/K} = 2$.
- (2) Determine $\operatorname{Gal}(L/K)$ and list all intermediate fields $K \subset M \subset L$. Note: $p \equiv 3 \mod 4$ and $p \equiv 1 \mod 4$ give two different answers.

Problem 8 (for 10/12). Denote by $\zeta = \zeta_8$ a primitive 8th root of unity, that is a root of $x^4 + 1$.

- (1) Prove that $\mathbb{Q}_2(\zeta) = \mathbb{Q}_2(\sqrt{2}, \sqrt{-1}).$
- (2) Find the minimal polynomial of $\pi = \zeta 1$ over \mathbb{Q}_2 , and deduce that $\mathbb{Q}_2(\zeta)/\mathbb{Q}_2$ is totally ramified, and π is a uniformiser.
- (3) Determine the ramification groups $G_i \subset \text{Gal}(\mathbb{Q}_2(\zeta)/\mathbb{Q}_2) \cong C_2 \times C_2$.