Local Fields assignments.

Problem 1 (for 22/10). Fix a prime number p, and write $|\cdot|$ for the p-adic absolute value on \mathbb{Q}, say with $\alpha=1 / p$. (So $\left|p^{n} \frac{a}{b}\right|=p^{-n}$.)
(1) Compute |6!| for every prime p.
(2) Say that a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of rational numbers has a limit $a \in \mathbb{Q}$ if $\left|a_{n}-a\right| \rightarrow 0$ as $n \rightarrow \infty$. For $p=2$, prove that the two sequences

$$
9,99,999,9999, \ldots \quad \text { and } \quad 5,55,555,5555, \ldots
$$

converge and find their limits.
(3) If $x \in \mathbb{Q}$ satisfies $|x|<1$ (e.g. $x \in \mathbb{Z}$ is divisible by p), prove that

$$
1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x}
$$

in the sense that the partial sums in the left-hand side tend to the right-hand side; if $|x| \geq 1$, prove that the series diverges. For example, when $p=2$,

$$
1+2+4+8+16+32+\ldots=-1
$$

Problem 2 (for 29/10). Suppose $k=\bar{k}$ is an algebraically closed field, and let $K=k(t)$ be a field of rational functions in one variable.
(1) Prove that every normalised discrete valuation on K which is trivial on k (i.e. $v(a)=0$ for $a \in k^{*}$) is either of the form v_{a} for some $a \in k$ ("order of vanishing at a ") or is $v_{\infty}(p / q)=\operatorname{deg} q-\operatorname{deg} p$.
(2) What happens if k is not algebraically closed?

Problem 3 (for 5/11). Suppose p is an odd prime.
(1) Prove that for every $a \in \mathbb{Z}_{p}^{\times}$the sequence $\left(a^{p^{n}}\right)_{n \geq 1}$ is Cauchy, and hence converges. Denote its limit by $[a]$. Show that $[a] \equiv a \bmod p$.
(2) Show that $[a]=1$ when $a \equiv 1 \bmod p$, and deduce that $a \mapsto[a]$ is an injective group homomorphism

$$
\frac{\mathbb{Z}_{p}^{\times}}{1+p \mathbb{Z}_{p}} \cong(\mathbb{Z} / p \mathbb{Z})^{\times} \quad \xrightarrow{[\cdot]} \quad \mathbb{Z}_{p}^{\times} .
$$

The map $a \mapsto[a]$ can be viewed as a (unique) way to lift elements from the residue field $(\mathbb{Z} / p \mathbb{Z})^{\times}$back to \mathbb{Z}_{p}^{\times}, in a multiplicative way. It is called the Teichmüller lift, and it shows that \mathbb{Q}_{p} contains $(p-1)$ th roots of unity.

Problem 4 (for 12/11). Prove that the equation

$$
x^{2}+y^{2}=3
$$

(1) has solutions in \mathbb{F}_{p} for every prime $p>3$. (Hint: the sets $\left\{x^{2}: x \in \mathbb{F}_{p}\right\}$ and $\left\{3-x^{2}: x \in \mathbb{F}_{p}\right\}$ cannot have empty intersection.)
(2) has solutions in \mathbb{Q}_{p} for every prime $p>3$ (and in \mathbb{R} for that matter).
(3) has no solutions in \mathbb{Q}_{2} or in \mathbb{Q}_{3}.

Problem 5 (for 19/11). For $n \geq 2$ write $\zeta_{n}=e^{2 \pi i n}$, a primitive nth root of unity in \mathbb{C}. You may use that $\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}$ is a Galois extension of degree $\phi(n)$, the Euler phi function of n.
(1) Prove that $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ is naturally isomorphic to $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
(2) For every prime p, show that $\operatorname{Gal}\left(\bigcup_{m \geq 1} \mathbb{Q}\left(\zeta_{p^{m}}\right) / \mathbb{Q}\right) \cong \mathbb{Z}_{p}^{\times}$as groups.
(3) Similarly, show that $\operatorname{Gal}\left(\bigcup_{n \geq 1} \mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \cong \hat{\mathbb{Z}}^{\times}$.

Problem 6 (for 26/11). Prove that $\mathbb{R}, \mathbb{Q}_{2}, \mathbb{Q}_{3}, \mathbb{Q}_{5}, \ldots$ are pairwise nonisomorphic as fields (no topology!). [Hint: Problem 4 may give you a plan.]

Problem 7 (for 3/12). Let p be an odd prime, $K=\mathbb{Q}_{p}$ and $\eta \in \mathbb{Z}_{p}^{\times}$a unit for which $\bar{\eta} \in \mathbb{F}_{p}^{\times}$is a quadratic non-residue. Let

$$
L=K\left(\text { roots of } x^{4}-\eta p^{2}\right) .
$$

(1) Proof that $e_{L / K}=f_{L / K}=2$.
(2) Determine $\operatorname{Gal}(L / K)$ and list all intermediate fields $K \subset M \subset L$. Note: $p \equiv 3 \bmod 4$ and $p \equiv 1 \bmod 4$ give two different answers.

Problem 8 (for 10/12). Denote by $\zeta=\zeta_{8}$ a primitive 8 th root of unity, that is a root of $x^{4}+1$.
(1) Prove that $\mathbb{Q}_{2}(\zeta)=\mathbb{Q}_{2}(\sqrt{2}, \sqrt{-1})$.
(2) Find the minimal polynomial of $\pi=\zeta-1$ over \mathbb{Q}_{2}, and deduce that $\mathbb{Q}_{2}(\zeta) / \mathbb{Q}_{2}$ is totally ramified, and π is a uniformiser.
(3) Determine the ramification groups $G_{i} \subset \operatorname{Gal}\left(\mathbb{Q}_{2}(\zeta) / \mathbb{Q}_{2}\right) \cong C_{2} \times C_{2}$.

