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1 Introduction

The aim of these notes is to give an introduction to the notion of modularity of elliptic curves and related
objects. This is a vast topic, and we can barely scratch the surface here. We therefore focus on the basic
definitions, and their consequences for arithmetic and for the properties of L-functions. We pass over in
silence the question of how modularity theorems are actually proved; and we can mention only very briefly
the theory of automorphic representations (and the foundational results in the representation theory of real
and p-adic groups) that gives the deepest understanding of the picture we sketch here. For the reader who
wishes to go further, we have included references to the wider literature at the end of each lecture.

2 Lectures

2.1 Lecture 1

Let E be an elliptic curve over Q of conductor N = NE . Its L-function

L(E, s)
.
=

∏
p prime

(1− app−s + p1−2s)−1

is a function of a complex variable s, defined by an infinite product which converges absolutely in the region
Re s > 3/2.1 It admits an analytic continuation to the whole complex plane, and satisfies the functional

1Here we use
.
= to denote equality up to finite many factors in the Euler product, namely those corresponding to primes p

where E has bad reduction.
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equation Λ(E, s) = ±Λ(E, 2− s), where by definition

Λ(E, s) = Ns/2(2π)−sΓ(s)L(E, s).

The goal of this lecture is to explain what this picture has to do with modular forms.

Let H = {τ ∈ C | im τ > 0} denote the usual complex upper half plane. The group GL2(R)+ (real matrices
with positive determinant) acts transitively on H by Möbius transformations:(

a b
c d

)
τ =

aτ + b

cτ + b
.

Let Γ = SL2(Z) ⊂ GL2(R)+; then the group Γ acts properly and discontinuously on H. (By definition, this
means that for any τ1, τ2 ∈ H, there exist open neighbourhoods U1 of τ1 and U2 of τ2 in H with the following
property: for any γ ∈ Γ, we have γ(U1) ∩ U2 6= ∅ ⇒ γ(τ1) = τ2.)

For any N ≥ 1, we define the congruence subgroup

Γ0(N) =

{(
a b
c d

)
∈ Γ | c ≡ 0(N)

}
.

The quotient Y0(N) = Γ0(N)\H is a Hausdorff topological space, and in fact has a natural structure of
Riemann surface, which we describe in the exercises. This Riemann surface can be compactified by adding
finitely many ‘cusps’ as follows: let H∞ = H t P1(Q). The group Γ acts on H∞ in a natural way extending
its action on H. We give H∞ the topology where H is an open subspace and, for each element γ ∈ Γ, the
point γ(∞) has a basis of open neighbourhoods of the form γ(Uy ∪{∞}) = γ({τ ∈ H | Im τ > y}∪∞). This
describes the topology, since Γ acts transitively on P1(Q)!

One can show that X0(N) = Γ0(N)\H∞ is a compact Hausdorff space, and has a natural structure of
connected compact Riemann surface. We write S2(Γ0(N),C) for the vector space H0(X0(N),Ω1

X0(N)); it
is canonically identified with the usual space of cuspidal holomorphic modular forms of weight 2 and level
Γ0(N). More precisely, if ω ∈ H0(X0(N),Ω1

X0(N)), then the pullback of ω to H can be written as F (τ)dτ ,
where F : H → C is a holomorphic function. Those who are familiar with the definitions can check that
F (τ) is cuspidal holomorphic modular form of weight 2 and level Γ0(N), and conversely that any such
function F (τ) determines a Γ0(N)-invariant holomorphic differential on H which descends to an element of
H0(X0(N),Ω1

X0(N)).

It is a fact that X0(N) can be defined canonically as an algebraic curve over Q. We now change notation
and write X0(N) for this algebraic curve over Q (and Y0(N) ⊂ X0(N) for the open subvariety, also defined
over Q, which is the complement of the cusps). The existence of this model for X0(N) is a consequence of
its interpretation as a moduli space for elliptic curves. The starting point for this is the following lemma.

Lemma 2.1. The map τ ∈ H 7→ (Eτ , Cτ ) = (C/(Z ⊕ Zτ), ( 1
NZ ⊕ Zτ)/(Z ⊕ Zτ)) determines a bijection

between the following two sets:

• The set Γ0(N)\H.

• The set of equivalence classes of pairs (E,C), where E is an elliptic curve over C and C ⊂ E is a
cyclic subgroup of order N . Two such pairs are said to be equivalent if there exists an isomorphism
f : E → E′ of elliptic curves over C such that f(C) = C ′.

The curve Y0(N) over Q is a coarse moduli space for pairs (E,C), where E is an elliptic curve and C ⊂ E
is a cyclic subgroup of order N . For example, it has the property that for any field extension K/Q, the
set Y0(N)(K) is in bijection with the set of equivalence classes of pairs (E,C), where E is an elliptic curve
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over K and C ⊂ E is a cyclic subgroup of order N . Two such pairs (E,C) and (E′, C ′) are said to be
equivalent if there exists an isomorphism f : EK → E′

K
(defined over an algebraic closure K of K) such

that f(CK) = C ′
K

. The curve X0(N) can be interpreted as a (coarse) moduli space of ‘generalized elliptic
curves’: the cusps correspond to degenerations of elliptic curves to so-called Néron polygons, which have a
toric connected component.

The Jacobian J0(N) = Pic0X0(N) of X0(N) is an abelian variety over Q of dimension equal to the genus
of X0(N). The introduction of J0(N) allows us to define what it means for an elliptic curve to be modular.

Definition 2.2. Let E be an elliptic curve over Q of conductor N = NE. We say that E is modular if there
exists a surjective homomorphism π : J0(N)→ E.

We want to explain the consequences of this definition for the L-function L(E, s). The key is a set of
operators, called the Hecke operators, which act both as endomorphisms of the vector space S2(Γ0(N),C) and
as endomorphisms of the Jacobian J0(N). For every prime p not dividing N , we can define an endomorphism
Tp of J0(N), called the pth Hecke operator. It can be defined using the functorial properties of the Jacobian
as follows. There is a diagram of compact Riemann surfaces:

X0(Np)

π2

%%

π1

yy
X0(N) X0(N),

where these maps are given on H by the formulae π1(τ) = pτ and π2(τ) = τ , respectively. We set Tp =
π2,∗ ◦ π∗1 ∈ End(J0(N)). These maps can be described also in terms of the moduli interpretation of Y0(N)
as follows: let us think of Y0(Np) as parameterizing tuples (E,CN , Cp), where CN ⊂ E is a cyclic subgroup
of order N and Cp is a cyclic subgroup of order p, so CN × Cp is a cyclic subgroup of order Np. Then
π1(E,CN , Cp) = (E/Cp, CN + Cp/Cp), and π2(E,CN , Cp) = (E,CN ).

The Hecke operators Tp allow us to make the link with L-functions. Let E be an elliptic curve over Q, and
suppose that there is a surjective homomorphism π : J0(N)→ E.

Lemma 2.3 (Eichler–Shimura relation). Let p be a prime not dividing N . Then π ◦ Tp = [ap] ◦ π. (Here
[n] ∈ EndQ(E) is the endomorphism ‘multiplication by n’.)

Proof. In the exercises, we discuss how this follows from understanding the action of Tp on the mod p fibre
of J0(N) (an abelian variety over Q which has good reduction at the prime p). This uses the description of
Tp in terms of its action on moduli.

Let ωE ∈ H0(E,Ω1
E) be a non-zero differential. The lemma implies that ω = i∗π∗ωE ∈ H0(X0(N),Ω1

X0(N))
is a simultaneous eigenvector for all of the operators Tp, with eigenvalue ap ∈ Z. The differential form ω can
be represented as a holomorphic differential F (τ)dτ on H, which is invariant under the action of Γ0(N). In
particular, it is invariant under the transformation τ 7→ τ + 1, which corresponds to the action of the matrix(

1 1
0 1

)
∈ Γ0(N).

We find that F (τ)dτ descends to a differential f(q)dqq on the unit disc {q ∈ C | |q| < 1}, where q = e2πiτ .

This differential can be represented by its Taylor expansion f(q)dqq =
∑
n≥1 bnq

n dq
q .

The following is a consequence of the explicit theory of Hecke operators on S2(Γ0(N),C):
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Theorem 2.4. We have b1 ∈ Q×. After rescaling ωE so that b1 = 1, we have an = bn for all n ≥ 1, where
L(E, s) =

∑
n≥1 ann

−s.

Proof. See [DS05, Ch. 5]. The easiest case is the equality ap = bp when p - N : the action of Tp on f(q)dqq is
given by the formula

Tp

∑
n≥1

bnq
n dq

q

 =

∑
n≥1

(bnp + pbn/p)q
n

 dq

q
.

Thus the equality Tpf(q)dqq = apf(q)dqq implies, after looking at the first coefficient, that ap = bp.

Corollary 2.5. If E is modular, then L(E, s) has an analytic continuation to the whole complex plane and
satisfies the expected functional equation.

Proof. Let i∗π∗ωE = F (τ)dτ = f(q)dqq . The Mellin transform of F (τ) is defined to be the integral∫∞
t=0

F (it)ts dtt . We have ∫ ∞
t=0

F (it)ts
dt

t
=

∫ ∞
t=0

∑
n≥1

bne
−2πntts

dt

t
,

and this double integral/sum is absolutely convergent when Re s is sufficiently large. We can therefore reverse
the order of integration to get∑

n≥1

bn

∫ ∞
t=0

e−2πntts
dt

t
=
∑
n≥1

bnn
−s(2π)−sΓ(s).

Since Λ(E, s) = (2π)−sΓ(s)Ns/2L(E, s), we can rewrite this as

Λ(E, s) =

∫ ∞
t=0

F (it/
√
N)ts

dt

t
,

an identity valid whenever Re s is sufficiently large. We will prove the analytic continuation and functional
equation of Λ(E, s) at the same time. Consider the matrix

wN =

(
0 −1
N 0

)
∈ GL2(Q).

It normalises Γ0(N) and induces an involution wN : X0(N)→ X0(N), τ 7→ −1/Nτ . It is a fact that we have
w∗NF (τ)dτ = −wEF (τ)dτ , where wE ∈ {±1} is a sign which is called the root number of the elliptic curve
E.

This implies that we have F (τ) = wEF (−1/Nτ)/Nτ2. A simple manipulation gives

Λ(E, s) =

∫ ∞
t=1

F (it/
√
N)ts

dt

t
+

∫ 1

t=0

F (it/
√
N)ts

dt

t
=

∫ ∞
t=1

F (it/
√
N)ts

dt

t
+ wE

∫ ∞
t=1

F (it/
√
N)t2−s

dt

t
.

Since F (it/
√
N) decays very rapidly as t → ∞, these integrals converge for any value of s. The functional

equation Λ(E, 2− s) = wEΛ(E, s) is obvious from this expression.

Of course, the point of all this is the following theorem:

Theorem 2.6 (Wiles, Taylor–Wiles, Breuil–Conrad–Diamond–Taylor). Every elliptic curve E over Q is
modular.

Corollary 2.7. For any elliptic curve E over Q, L(E, s) admits an analytic continuation to the complex
plane and satisfies a functional equation there.
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References

An excellent introductory source, which contains all the material discussed in this lecture, is Diamond and
Shurman’s textbook [DS05]. In particular, it includes a proof of the fundamental Eichler–Shimura relation.
The fundamental reference describing the model X0(N) over Q (and over Zp, when p - N) is Deligne–
Rapoport [DR73]; it is based on sophisticated algebro-geometric techniques.

The modularity Theorem 2.6 began life as the Taniyama–Shimura–Weil conjecture. The first serious progress
was made by Wiles and Taylor [Wil95, TW95], who proved the modularity of all semistable elliptic curves
over Q by proving the first modularity lifting theorems. The proof of the theorem for all elliptic curves over
Q was completed by Breuil, Conrad, Diamond, and Taylor [BCDT01]. An excellent introduction to the
techniques involved in the proof is the article of Darmon, Diamond, and Taylor [DDT94].

2.2 Lecture 2

Let K be a number field. We associate to K the following notation:

• OK is the ring of integers of K.

• MK is the set of places of K (i.e. equivalence classes of non-trivial absolute values).

• If v ∈MK , then Kv is the completion of K at v.

• If v ∈ MK is a finite (i.e. non-archimedean) place, corresponding to a prime ideal pv ⊂ OK , then
OKv ⊂ Kv is the ring of integers of Kv, k(v) = OKv/(pv) is the residue field of OKv , and qv = #k(v)
is the cardinality of k(v).

• AK =
∏′
vKv is the adele ring of K, and A∞K =

∏′
v-∞Kv is its finite part. By definition, we have (as

a ring)

A∞K = {(xv)v ∈
∏
v-∞

Kv | for all but finitely many v, xv ∈ OKv}.

A∞K contains the ring ÔK =
∏
v-∞OKv (profinite completion of the ring of integers of K) as an open

subring.

We would like to define what it means for an elliptic curve E over K to be modular, in a way extending the
definition given last time in the case K = Q. We defined an elliptic curve E over Q to be modular if there
was a surjective homomorphism π : J0(N) → E. It’s not clear how to generalize this statement to other
number fields since in general there is no analogue of J0(N)!

We first explain what the analogue of a modular curve is over a general number field K. Fix an isomorphism
K ⊗Q R ∼= Rr1 ×Cr2 . We let X = GL2(K ⊗Q R)/(O(2)r1 ×U(2)r2)R×. Then GL2(K ⊗Q R) acts transitively
on X. If K ⊗Q R = R, then we have X = H, the complex upper half plane; if K ×Q R = C, then X = H3 is
the hyperbolic upper half space (see the exercises).

For any open compact subgroup U ⊂ GL2(A∞K ), we set

YU = GL2(K)\GL2(A∞K )×X/U ∼= tg∈GL2(K)\GL2(A∞K )/UΓg,U\X.

It is a fact that the set GL2(K)\GL2(A∞K )/U is finite, and if g ∈ GL2(A∞K ), then Γg,U = GL2(K)∩ gUg−1 is
a congruence subgroup of GL2(K), so that YU is a disjoint union of finitely many copies of X quotiented by
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a congruence subgroup of GL2(K). In special cases, YU can be simpler. For example, if K has class number

1 and U = GL2(ÔK), then YU = GL2(OK)\X.

If n ⊂ OK is a non-zero ideal, then we can define a congruence subgroup

U0(n) =

{(
a b
c d

)
∈ GL2(ÔK) | c ≡ 0 mod n

}
.

We write Y0(n) = YU0(n). If K = Q and n = (N), then Y0(N) is just the open modular curve considered in
the previous lecture. More generally, if K is a totally real field, then Y0(n) is a circle bundle over a Hilbert
modular variety. However, when K has a complex place, then Y0(n) admits no natural complex structure,
so a fortiori no structure of an algebraic variety. In particular, it doesn’t make sense to form its Jacobian (or
Albanese variety, or Picard variety, etc.). This is what we mean when we say there is no analogue of J0(N).

We therefore need to formulate the notion of modularity in a different way. We saw last time that given
a modular parameterization J0(N) → E, the pullback i∗π∗ωE ∈ H0(X0(N),Ω1

X0(N)) is an eigenvector for

all the Hecke operators Tp. The Hecke operators also act on the singular cohomology of X0(N), and the

isomorphism H1(X0(N),C) ∼= H0(X0(N),Ω1
X0(N)) ⊕ H0(X0(N),Ω1

X0(N)) is compatible with the action of

Hecke operators. It follows that the differential form ω = i∗π∗ωE determines a class in singular cohomology
which is an eigenvector for all Hecke operators Tp, p - N . We therefore make the following revised definition.

Definition 2.8. Let E be an elliptic curve over K of conductor n with EndK(E) = Z.2 We say that
E is modular if there exists a non-zero class cE ∈ H∗(Y0(n),C) such that for all places v not dividing n,
TvcE = avcE (where av = qv + 1−#E(k(v))).

Theorem 2.9. When K = Q, Definition 2.8 is equivalent to Definition 2.2.

Proof (sketch). We note that the condition EndK(E) = Z is automatic for an elliptic curve defined over
K = Q. We have seen that the Eichler–Shimura relation implies that our previous definition implies this
one. In the other direction, one can use the Eichler–Shimura relation to show that if E is modular in this
new sense, then there exists a surjective homomorphism π′ : J0(N) → E′, where E′ is an elliptic curve of
conductor dividing N such that for all primes p not dividing N , ap(E) = ap(E

′). Faltings’ theorem implies
that there is an isogeny f : E′ → E, and we can take π = f ◦ π′.

For this definition to make sense, we need to define the Hecke operators Tv. The definition is the same as
before: for any place v - n, there is a diagram

Y0(npv)

π2

$$

π1

zz
Y0(n) Y0(n),

where the maps have finite fibres. We define the operator Tv on H∗(Y0(n),C) by the formula Tv = π2,∗ ◦ π∗1 .

Conjecture 2.10. Let E be an elliptic curve over the number field K, and suppose that EndK(E) = Z.
Then E is modular.

Just as in the case K = Q, the modularity of an elliptic curve E over K has consequences for its L-function.

Theorem 2.11. Let E be a modular elliptic curve of conductor n. Then there exists an L-function L(π, s) =∏
v Lv(πv, s) such that:

2The elliptic curves with complex multiplication defined over K have to be treated separately; this is related to the fact that
their `-adic representations are reducible.
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1. For all places v - n, Lv(πv, s) = Lv(E, s).

2. L(π, s) converges absolutely in a right half-plane, has an analytic continuation to the complex plane,
and satisfies a functional equation there.

Proof (sketch). The cohomology class cE ∈ H∗(Y0(n),C) determines a function f : GL2(K)\GL2(AK)→ C,
an automorphic form which generates an automorphic representation π of GL2(AK). Applying a generalized
Mellin transform to f , we obtain a completed L-function Λ(π, s) which has an Euler product which agrees
with Λ(E, s) at all v - n, and which can be proved to have an analytic continuation to C and a functional
equation.

[We note that one can state a more refined version of the modularity conjecture under which we have
L(E, s) = L(π, s). We sketch this now. Let v be a finite place of K. The local Langlands conjecture
for GL2(Kv), now a theorem, gives a bijection between two sets:

• The set of isomorphism classes of irreducible admissible C[GL2(Kv)]-modules πv.

• The set of 2-dimensional Frobenius–semisimple Weil–Deligne representations (rv, Nv).

If πv is an irreducible admissible C[GL2(Kv)]-module, then we write rec(πv) for the associated Weil–Deligne
representation. One knows how to associate to the elliptic curve E for every finite place v of K a Weil–
Deligne representation (rv, Nv), which is Frobenius–semisimple. This allows us to associate to every finite
place v of K the irreducible admissible representation πv(E) of GL2(Kv) such that rec(πv) = (rv, Nv). The
refined modularity conjecture is as follows:

Conjecture 2.12. Let A = lim−→
U

H∗(YU ,C), an admissible C[GL2(A∞K )]-module, and let E be an elliptic

curve over K with EndK(E) = Z. Then the representation π(E) = ⊗′vπv(E) is a subquotient of A.

It is an exercise in the representation theory of GL2(Kv) to show that this conjecture implies the previous
one. One can show that if E satisfies the conclusion of this conjecture, then indeed L(E, s) admits an analytic
continuation to C and satisfies the expected functional equation.]

What is known about the modularity conjecture? The best-studied case is when K is totally real. For
example, we have the following result.

Theorem 2.13. Let K be a totally real field satisfying one of the following conditions:

1. K = Q.

2. K/Q is quadratic.

3. There exists a prime p such that K/Q is a cyclic p-power extension unramified outside p.

Then every elliptic curve E over K is modular.

Very little is known beyond this. The case where K is a CM field (i.e. a totally imaginary extension of a
totally real field) is a topic of current research. Beyond this case, we know essentially nothing.

We end with an important observation: the condition for E to be modular depends only on its `-adic Galois
representations ρE,` : GK → GL2(Q`). (We use the following notation: GK = Gal(K/K) is the absolute
Galois group of K with respect to a fixed choice of algebraic closure. If v if a place of K, then an embedding
K ↪→ Kv determines a choice of decomposition group GKv ↪→ GK .) In fact, there is no reason to restrict to
elliptic curves in the definition of modularity:
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Definition 2.14. Let ` be a prime, and let ρ` : GK → GL2(Q`) be a continuous, irreducible representation
which is unramified at all but finitely many places of K. We say that ρ` is modular of weight 2 if there exists
a non-zero ideal n ⊂ OK and a non-zero class cρ` ∈ H∗(Y1(n),Q`) such that for all places v not dividing n,
ρ`|GKv is unramified and TvcE = (tr ρ`(Frobv))cE.

This wider context is essential for actually proving positive modularity results. In this definition, we set
Y1(n) = YU1(n), where

U1(n) =

{(
a b
c d

)
∈ GL2(ÔK) | c ≡ 0 mod n, d ≡ 1 mod n

}
.

Conjecture 2.15. Let ` be a prime, and let ρ` : GK → GL2(Q`) be a continuous, irreducible representation
which is unramified at all but finitely many places of K. Suppose that for each place v|` of K, ρ`|GKv is of
weight 2. Then ρ` is modular of weight 2.

Unfortunately we do not have time here to explain what it means for ρ`|GKv to be of weight 2 when v|`; it
is essentially a condition in p-adic Hodge theory, which is satisfied by the Galois representations attached
to elliptic curves. The reason for switching to Y1(n) in the statement of Conjecture 2.15 is that the Hecke
eigenvalue systems appearing in H∗(Y0(n),C) are supposed to be attached to Galois representations with

determinant of the form ε`ψ, where ε` is the `-adic cyclotomic character and ψ : GK → Q×` is an everywhere
unramified character of finite order (in other words, a character of the narrow ideal class group of K). In order
to allow Galois representations without restriction on the determinant, we must pass to H∗(Y1(n),C). The
reasons for this are once more tied up with the local Langlands conjectures for GL2 and the representation
theory of the group GL2(Kv).

References

The cohomology of the spaces YU is an important topic in the theory of automorphic forms, in particular
because it is possible, in principle, to program a computer to compute the cohomology groups H∗(YU ,C),
together with the action of the Hecke operators. See for example [Cre84], which contains computations in
the case where K is an imaginary quadratic field, or [RcS13] for a more recent reference. For a concise
statement of the modularity conjecture, together with its extension to abelian varieties of GL2-type, see
Taylor’s ICM article [Tay95], which also includes the definition of what it means for a Galois representation
to be of weight 2.

For an excellent introduction to the representation theory of GL2(Kv), where v is a finite place of the
number field K, see [BH06]. The properties of L-functions of automorphic representations of GL2(AK)
were established in the landmark work of Jacquet–Langlands [JL70]. The proof of the analytic continuation
and functional equation of L(π, s) is a far-reaching generalization of the technique of applied to a classical
holomorphic modular form in the first lecture. A more approachable reference, which treats the same
material, is the book of Gelbart [Gel75].

The modularity of elliptic curves over real quadratic fields is due to Freitas, Le Hung, and Siksek [FLHS15].
The modularity of elliptic curves over real abelian p-extensions ramified only at p is proved in [Tho].

2.3 Lecture 3

We now know what it means for an elliptic curve over an arbitrary number field to be modular, and that
this implies that the L-function of the corresponding elliptic curve has all desired properties. However, this
is only useful if elliptic curves can be proved to be modular!
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It is often possible to prove that a given elliptic curve is modular by using computer calculation, provided
one is a context where the Galois representations attached to automorphic forms have been proved to exist.
Indeed, let K be a number field, let ` be a prime, and let S be a finite set of finite places of K, containing
the non-archimedean ones. The Faltings–Serre method gives an effective constant C(K,S, `) satisfying the
following condition: let ρ, ρ′ : GK → GL2(Q`) be two continuous semisimple representations which are
unramified outside S, and suppose that that tr ρ(Frobv) = tr ρ′(Frobv) for all finite places v of K such that
v 6∈ S and qv < C. Then ρ ∼= ρ′.

This can be used to prove the modularity of a given elliptic curve E over K, provided one knows that for any
Hecke eigenclass c ∈ H∗(Y0(n),C) and prime `, there exists a continuous representation ρc,` : GK → GL2(Q`)
unramified outside n` such that for each finite place v - n` of K, tr ρc,`(Frobv) is equal to the eigenvalue of
Tv on c. Indeed, one then need only find a suitable eigenclass cE and check agreement of sufficiently many
Frobenius traces with Hecke eigenvalues. For example, the elliptic curve

y2 + xy = x3 +
3 +
√
−3

2
x2 +

1 +
√
−3

2
x

over K = Q(
√
−3) has been proved to be modular by applying this technique. The repersentations ρc,` have

been proved to exist for any (totally real or totally imaginary) CM field K [HLTT16].

However, it is desirable to have more general results. To this end, the notion of potential modularity was
introduced by Taylor. Its effectiveness is based on a fundamental property of the L-functions attached to
Galois representations, namely their compatibility with induction, which we refer to as “Artin formalism”
(the original reference is [Art24], which is also the paper where Artin defined the L-function of a non-abelian
Galois representation for the first time).

Proposition 2.16. Let ι : Q` ∼= C be an isomorphism. Let E/K be an extension of number fields, and let
ρ` : GE → GL2(Q`) be a continuous representation which is unramified at all but finitely places of K. Then
L(ιρ`, s) = L(ι IndGKGE ρ`, s).3

Proof. It suffices to show the equality one Euler factor at a time, i.e. for every place v of K,

Lv(IndGKGE ρ`, s) =
∏
w|v

Lw(ρ`, s),

the product running over the set of places w of E lying above K. By Mackey’s formula, we have

ResGKGKv IndGKGE ρ`
∼= ⊕w|v Ind

GKv
GEw

ResGEGEw ρ`.

It is therefore enough to show that for each any place w of E lying above the place v of K, we have

Lv(Ind
GKv
GEw

ρ`|GEw ) = Lw(ρ`|GEw ).

Let us just treat the case where ρ`|GEw is unramified and Ew/Kv is unramified, leaving the general case
to the exercises. (This proves the result already at all but finitely many places of K.) In this case we
can reformulate the result as follows: let Γ = Z, with generator φ, and let ∆ = nZ for some n 6= 0. Let
χ : ∆→ C× be a character. Then we must show that

det(1−Xφ | Ind∆
Γ χ) = det(1−Xnφn | χ).

This can be checked directly.
3We are brushing under the rug here the issue of defining the L-factors of ρ`|GKv at the `-adic places v of K. This is possible

when ρ` is assumed to be de Rham, in the sense of p-adic Hodge theory. Indeed, in this case, Fontaine showed how to attach
a Weil–Deligne representation to ρ`|GKv , and one should define the L-factor of ρ` at v to be the L-factor of this Weil–Deligne
representation. One can avoid such difficult results by assuming that ρ` lives in a compatible system of Galois representations,
for example those arising from an elliptic curve.
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Definition 2.17. Let K be a number field and let ` be a prime. Let ρ` : GK → GL2(Q`) be a continuous
irreducible representation. We say that ρ` is potentially modular of weight 2 if there exists a finite Galois
extension E/K such that ρ`|GE is irreducible and modular of weight 2.

Theorem 2.18. Suppose that ρ` is potentially modular of weight 2. Then L(ιρ`, s) admits a meromorphic
continuation to the whole complex plane and satisfies a functional equation.

Note that if ρ` arises from an elliptic curve over K, then the meromorphic continuation of L(ιρ`, s) is enough
to be able to formulate BSD unconditionally!

Proof (Sketch). Let G = Gal(E/K). By Brauer’s theorem, we can find soluble subgroups Hi ⊂ G, integers

ni ∈ Z, and characters χi : Hi → Q×` such that 1 =
∑
i ni IndGHi χi (identity in the Grothendieck group of

representations of G). Let Ki = EHi . Taking the tensor product with ρ`, we get an identity

ρ` =
∑
i

ni IndGKGKi
(χi ⊗ ρ`|GKi ).

This implies a corresponding identity of L-functions

L(ιρ`, s) =
∏
i

L(ι IndGKGKi
ρ`|GKi ⊗ χi, s)

ni =
∏
i

L(ιρ`|GKi ⊗ χi, s)
ni .

We now need to use two critical pieces of information. The first is that modularity can be descended along
a soluble extension of number fields. (This is a hard theorem which is due in general to Langlands for GL2

[Lan80]; the proof is reduced by induction to the case of a cyclic extension.) The second is that modularity
is preserved under character twist. (This is much easier.) It follows that each of the Galois representations
ρ`|GKi ⊗χi is modular, and hence that each of the L-functions L(ιρ`|GKi ⊗χi, s) has an analytic continuation
to C and satisfies a functional equation relating s and 2 − s. It follows that L(ιρ`, s) has a meromorphic
continuation to C (some of the ni may be negative!) and satisfies a functional equation relating s and
2− s.

Theorem 2.19 (Taylor). Let E be an elliptic curve over a totally real field. Then E is potentially modular.
Consequently, the L-function L(E, s) admits a meromorphic continutation to C and satisfies the expected
functional equation.

Another application of potential modularity is the proof of the Sato–Tate conjecture. We recall that if E is
an elliptic curve over a number field K without complex multiplication, then the Sato–Tate conjecture for
E predicts that the quantities av/2

√
qv ∈ [−1, 1] are equidistributed with respect to the Sato–Tate measure

2

π

√
1− t2 dt

as v varies through all finite places of the number field K at which E has good reduction. Serre had observed
already in the 60’s [Ser98, Ch. I, Appendix] that this conjecture would follow if one could show that for each
n ≥ 1, the symmetric power L-function

L(ιSymn ρE,`, s)

had a meromorphic continuation to C which was holomorphic and non-vanishing on the line Re s = 1 +n/2.
This property is known for the L-functions of modular Galois representations (once we have defined what it
means for an (n+1)-dimensional Galois representation to be modular). In fact, the same argument as above
shows that it is enough to prove that the symmetric power Galois representations are merely potentially
modular. In this way, one can prove the following theorem:

Theorem 2.20 (Clozel–Harris–Shepherd-Barron–Taylor–Barnet-Lamb–Gee–Geraghty). Let E be an elliptic
curve over a totally real field K without complex multiplication. Then the Sato–Tate conjecture holds for E.
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References

For a recent paper illustrating the Faltings–Serre method, see [DGP10]. The technique of potential modu-
larity was introduced in the paper [Tay02]. It is very flexible and powerful, and can be applied to much more
general 2-dimensional Galois representations over totally real fields than ones arising from elliptic curves. See
[BLGGT14] for the most general results currently available (and also results for some Galois representations
in dimension n ≥ 2).

The Sato–Tate conjecture can be formulated for any motive (or indeed, for its attached Galois representa-
tions). See [Ser12, Ch. 8] for a nice discussion of this. The general conjecture can also be shown to follow
from properties of L-functions, but establishing these in general seems an impossibly hard problem. The
best results available for 2-dimensional Galois representations can be found in [BLGG11].

2.4 Lecture 4

So far we have discussed only what it means for 2-dimensional Galois representations of weight 2 to be
modular. However, this is clearly not the only case of interest! For example, we may be interested in:

• Galois representations Symn ρE,` : GQ → GLn+1(Q`), where E is an elliptic curve over Q. We have
seen that these are relevant for the Sato–Tate conjecture.

• Galois representations ρA,` : GQ → GSp2g(Q`), where A is an abelian variety over Q of dimension
g > 1. These include the Galois representations attached to hyperelliptic curves of genus g.

In this lecture we aim to put these questions in a more general context, namely that of the Langlands
program. The punchline is that using ideas of the Langlands program, it is possible to make a completely
precise conjecture which generalizes the Shimura–Taniyama–Weil conjecture to abelian varieties of higher
dimension, and which can be tested by computer (see [BK14, Gro16]). In order to explain where this comes
from, we have to introduce a number of new concepts.

Let K be a number field, and let G be a connected reductive group over K. For reasons of simplicity of
exposition, we are going to assume that G is split (i.e. that G contains a split maximal torus), although
everything we say here generalizes to the case of an arbitrary reductive group. For example, we could take
G to be one of the following:

• G = GLn.

• G = Sp2n.

• G = SOn, the split orthogonal group defined by the symmetric bilinear form 〈x, y〉 =
∑n
i=1 xiyn+1 on

Kn.

Let Z ⊂ G denote the centre of G, and ω : Z(K)\Z(AK) → C× be a continuous character. The quotient
G(K)Z(AK)\G(AK) has finite volume, and we can define L2

ω,0(G(K)\G(AK)) to be the Hilbert space of
functions f : G(K)\G(AK)→ C satisfying the following conditions:

• f has central character ω: for all g ∈ G(AK), z ∈ Z(AK), γ ∈ G(K), we have f(γzg) = ω(z)f(g).

• f is cuspidal: for all proper parabolic subgroups P ⊂ G of unipotent radical N , and for all g ∈ G(AK),
we have ∫

n∈N(K)\N(AK)

f(ng) dn = 0.

11



Then L2
ω,0(G(K)\G(AK)) is a continuous representation of the locally compact topological group G(AK),

which acts by right translation. It is a unitary representation if the character ω is unitary.

Definition 2.21. A cuspidal automorphic representation of G(AK) is a closed irreducible subrepresentation
π ⊂ L2

ω,0(G(K)\G(AK)) (for some choice of ω).

Conjecturally, automorphic representations of the group G(AK) are related to Galois representations valued

in another group Ĝ, the so-called dual group. The dual group Ĝ is a connected reductive group over C which
is defined in terms of G using the classification of reductive groups in terms of roots and weights. It is a
simple matter to write it down in any of the above cases. For example, in the above examples we have

• If G = GLn, then Ĝ = GLn.

• If G = Sp2n, then Ĝ = SO2n+1.

• If G = SO2n+1, then Ĝ = Sp2n.

Conjecture 2.22. Let ` be a prime, and fix an isomorphism ι : Q` ∼= C. Then there is a correspondence{
ρ : GK → Ĝ(Q`)

algebraic, irreducible

}
↔
{
π algebraic cuspidal automorphic

representation of G(AK)

}
.

In order for this conjecture to make sense, we need to explain some of the terms.4 A Galois representation
ρ : GK → Ĝ(Q`) is said to be algebraic if it satisfies the following conditions:

• ρ is continuous and is unramified at all but finitely many primes.

• For each place v|` of K, ρ|GKv is de Rham in the sense of p-adic Hodge theory.

It is irreducible if the image of ρ is contained in no proper parabolic subgroup of Ĝ; if Ĝ = GLn, this is
equivalent to the usual notion of irreducibility.

A cuspidal automorphic representation π of G(AK) admits a factorization π = ⊗′v∈MK
πv as a restricted

tensor product, where each πv is an irreducible representation of G(Kv). For all but finitely many finite
places v, the unramified local Langlands correspondence attaches to πv an unramified homomorphism φπv :

WKv → Ĝ(C). If v is an archimedean place, then the local Langlands correspondence for G(Kv) associates

to πv a continuous homomorphism φπv : WKv → Ĝ(C). If Kv = C, then WKv = C×. If Kv = R, then
WKv = C× ∪ jC×, otherwise known as the units in the Hamiltonian quaternions. In either case we can
consider the restriction φπv |C× , and we say that πv is algebraic if it satisfies the following condition:

• The restriction φπv |C× : C× → Ĝ(C) arises from a homomorphism Gm → Ĝ of algebraic groups over
C.

We say that π is algebraic if πv is algebraic for each place v|∞ of K.

If ρ and π are related under the correspondence of Conjecture 2.22, then for all but finitely many finite places
v, ιρ|WKv

should be Ĝ(C)-conjugate to φπv .

4To get a conjecture that is close to being true, we should also ask that π is everywhere tempered. We avoid going into
further details here.
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Even with the above desiderata in place, the above conjecture is so imprecise that it hardly deserves to be
called a conjecture. For example, what is a ‘correspondence’?5 When G = GLn, we can be more precise:

Conjecture 2.23. Let ` be a prime, and fix an isomorphism ι : Q` ∼= C. Then there is a bijection{
ρ : GK → GLn(Q`)

algebraic, irreducible

}
↔
{
π cuspidal algebraic automorphic

representation of GLn(AK)

}
,

which is uniquely characterized by the following property: if ρ and π are related under this correspondence,
then for all but finitely many finite places v, ιρ|WKv

and φπv are GLn(C)-conjugate.

In light of this more precise conjecture, one may ask why it is worthwhile to consider automorphic represen-
tations of groups other than GLn. For example, suppose that A is an abelian variety of dimension g over Q
and ` is a prime such that the associated `-adic representation ρA,` has image equal to GSp2g(Z`). We see
that ρA,` should determine automorphic representations both of the group SO2g+1 and of the group GL2g.
What is the benefit of considering SO2g+1?6

The point is that, depending on the behaviour of the infinite component π∞, we may be able to access the
finite part π∞ in other ways. In order to simplify the discussion, we now assume that G is semisimple (i.e.
that its centre is finite; this is the case if G = Sp2n or G = SOn). If U ⊂ G(A∞K ) is an open compact
subgroup, we define a space

YU = G(K)\G(A∞K )×X/U,

where X = G(K ⊗Q R)/U∞ and U∞ is a maximal compact subgroup of G(K ⊗Q R). The space YU is
what we call an arithmetic locally symmetric space; it is a disjoint union of finitely many quotients of X, a
Riemannian symmetric space, by arithmetic subgroups Γ ⊂ G(K). This is the analogue for a general group
G of the space YU defined in the second lecture for GL2. In general there is an injection

⊕π(π∞)U ⊗C H
∗(g, U∞;π∞) ↪→ H∗(YU ,C),

where g = (LieG(K⊗QR))⊗RC and H∗(g, U∞;π∞) is the (finite-dimensional) so-called (g, U∞)-cohomology
of π∞, and the sum runs over the set of cuspidal automorphic representations π of G(AK). Thus the
automorphic representations π such that π∞ has non-trivial (g, U∞)-cohomology can be studied through the
(singular) cohomology of the spaces YU . If G = GL2 then the automorphic representations which should
correspond to elliptic curves are among these, and the automorphic representations which contribute are
uniquely determined by their corresponding systems of Hecke eigenvalues, which is why we were able to
define modularity of elliptic curves in the way we did.

If A is an abelian variety over Q of dimension g > 1 with EndQ(A) = Z, then the representations ρA,` : GQ →
GSp2g(Q`) should give rise to an algebraic cuspidal automorphic representation πA of GL2g(AQ). However,
the infinite component πA,∞ should have vanishing (g, U∞)-cohomology, so we cannot define modularity of
an abelian variety in the same way as we did for elliptic curves by using an explicit realization inside the
singular cohomology of an arithmetic locally symmetric space.

If A is an abelian variety of dimension g = 2 and EndQ(A) = Z, then calculations due to Gross using a more
refined version of the Langlands conjectures [Gro16] imply that the representations ρA,` : GQ → GSp4(Q`)
should correspond to automorphic representations π of G(AQ) = SO5(AQ) which can be realized inside spaces

5In the best possible situation, we hope to divide each side of the correspondence into ‘packets’. The packets should be in
bijective correspondence, and we hope to be able to describe the packets explicitly. The conjecture for GLn is simpler because
in this case all the packets should be singletons.

6We note in passing that the group G with dual group GSp2g is the general spin group GSpin2g+1, which is an extension of
SO2g+1 by Gm. However, the automorphic representations of GSpin2g+1(AQ) corresponding to abelian varieties should have
character twists which descend to automorphic representations by SO2g+1. Compare [Gro16, §5]. This is already the case when
g = 1: we can associate to an elliptic curve E over Q an automorphic representation of GL2 of trivial central character, which
therefore descends to PGL2

∼= SO3.

13



of holomorphic modular forms on the spaces YU , which admit a complex structure. Under the exceptional
isomorphism SO5

∼= PSp4, these correspond to Siegel modular forms of genus 2 and weight 2, which are
exactly the forms appearing in the conjectures of Brumer and Kramer [BK14], and which have been the
subject of computer calculation by Poor and Yuen [PY15]. It follows that in order to study these Galois
representations ρA,` by computer calculation, it is necessary to make use of the framework of the Langlands
program on the intermediate group SO2g+1! We refer the reader again to [Gro16] for a beautiful exposition of
a precise generalization of the Shimura–Weil–Taniyama conjecture to abelian varieties of arbitrary dimension
g > 1.

References

An excellent reference for the basic theory of automorphic representations is the Corvallis conference pro-
ceedings [BC79]. In particular, we mention the articles of Springer (which gives an introduction to the theory
of reductive groups), Flath (which describes the decomposition of a representation of G(AK) as a restricted
tensor product) and Borel (which describes the dual group of a reductive group, as well as a large part of
the Langlands conjectures in the local case). Conjecture 2.23 was first stated in [Clo90]. The reciprocity
conjecture for a general reductive group was first stated by Buzzard and Gee [BG14], although special cases
were considered earlier by Gross (see e.g. [Gro99]).
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3 Exercises

3.1 Exercises to lecture 1

1. In this exercise we describe the complex structure on X0(N). We begin with a useful fact: let

D = {τ ∈ H | |Re(τ) ≤ 1

2
, |τ | ≥ 1.}

Then D is a fundamental domain for the action of Γ on H: any element of H is conjugate to an element
of D, and if τ1, τ2 ∈ D are distinct points such that γτ1 = τ2 for some γ ∈ Γ, then either τ1, τ2 both
lie on the vertical boundary components and τ1 = τ2 ± 1, or τ1, τ2 both lie on the horizontal boundary
component and τ1 = −1/τ2.

(a) Use this to show that Γ acts properly discontinuously on H.

(b) Show that Γ acts properly discontinuously on H∞. Deduce that X0(N) is a compact Hausdorff
topological space.

(c) Let f : H∞ → X0(N) denote the tautological map. If τ ∈ H, show that Cτ = StabΓ0(N)(τ)/{±1}
is cyclic of order eτ ∈ {1, 2, 3}. We define a complex chart around f(τ) as follows. Let Uτ ⊂ H
be an open neighbourhood stable under the action of Cτ , and such that for all γ ∈ Γ0(N), if
γUτ ∩ Uτ 6= ∅ then γ ∈ Cτ . Let m : P1(C) → P1(C) be a Möbius transformation which sends
τ to 0 and τ to ∞. Then mCτm

−1 acts by rotations around 0, and z 7→ m(z)eτ is a chart on
Cτ\Uτ ⊂ X0(N).

(d) We define a chart around ∞ ∈ H∞ as follows. Show that C∞ = StabΓ0(N)(∞)/{±1} is generated
by the transformation τ 7→ τ + 1. Show that we can find an open neighbourhood U∞ of ∞ in
H∞, stable under τ 7→ τ + 1, such that for all γ ∈ Γ, γU∞ ∩ U∞ 6= ∅ ⇒ γ ∈ C∞. Let q = e2πiτ .
Show that q extends to a homeomorphism from C∞\U∞ to an open subset of the unit disc, which
sends ∞ to 0. We take q to be a chart on C∞\U∞. Explain how to extend this construction to
give charts around each point of X0(N)− Y0(N).

(e) Show that the above collection of charts makes X0(N) into a compact, connected Riemann surface.

(f) (*) Show that if p is a prime such that p ≡ −1 mod 12, then Γ0(p)/{±1} contains no non-trivial
elements of finite order. Apply the Riemann–Hurwitz theorem to the map X0(p) → X0(1) to
calculate the genus of X0(p). (It may be helpful to note that the natural map SL2(Z)→ SL2(Fp)
is surjective.)

(g) (*) Visit the L-functions and modular forms database, and find out how many isogeny classes
there are of elliptic curves over Q of conductor 11. In light of the modularity theorem, how is this
related to the previous exercise?

2. In this exercise we discuss Lemma 2.3. Suppose that E is an elliptic curve over Q of conductor N , and
that π : J0(N)→ E is a surjective homomorphism. Let p be a prime not dividing N .

(a) It is a fact that both J0(N) and E have good reduction at the prime p, so extend to abelian
schemes J and E over Zp. Use the universal property of the Néron model to show that Tp and π
extend to maps J → J and J → E , respectively.

(b) Let φJ ∈ End(JFp), φE ∈ End(EFp) be the Frobenius endomorphisms of the respective special
fibres. The Eichler–Shimura relation says that

Tp mod p = φJ + φ̂J

in End(JFp), where hat denotes dual isogeny. (It is usually proved using the interpretation of
X0(N) as a moduli space of elliptic curves; see e.g. [DS05, Ch. 8].) On the other hand, we have
the relation

φE + φ̂E = [ap]

in End(EFp). (This is easier.) Use these relations to show that π ◦ Tp = [ap] ◦ π, as claimed in the
lecture.
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3.2 Exercises to lecture 2

1. If K = Q, then a class in H1(X0(N),C) with rational Hecke eigenvalues determines a modular elliptic
curve. This need not be the case in general. If K is a number field and A is an abelian surface
over K such that EndK(A) ⊗Z Q = B is a non-split quaternion algebra, we get for any prime ` a
representation ρA,` : GK → AutB⊗QQ`(V`(A)) ∼= (Bop ⊗Q Q`)×. Show that if B ⊗Q ` is split (so
(Bop⊗Q Q`)× ∼= GL2(Q`)), and v is a place of good reduction for A, then tr ρA,`(Frobv) ∈ Q. Why do
examples of this type not occur over when K = Q?

2. (*) Let K be a number field. The group SL2 satisfies the strong approximation property: the group
SL2(K) is dense in SL(A∞K ) (embedded diagonally). Use this to show that for any open compact
subgroup U ⊂ GL2(A∞K ), the map det : GL2 → GL1 induces a bijection π0(YU ) ∼= K×\A∞K / det(U).
In particular, this set is finite (why?).

3. Recall that the algebra of Hamiltonian quaternions consists of all elements a + bi + cj + dk, where
a, b, c, d ∈ R are central and the elements i, j, k satisfy the relations i2 = j2 = k2 = −1 and ij = −ji =
k, jk = −kj = i, and ki = −ik = j. We can define the hyperbolic upper half-space H3 as follows: it is
the set of Hamiltonian quaternions x+ jy where x ∈ C and y ∈ R>0.

(a) Show that SL2(C) acts on H3 by the formula(
A B
C D

)
· τ = (Aτ +B)(Cτ +D)−1.

Show that we can extend this to an action of GL2(C), by making C× ⊂ GL2(C) act trivially.

(b) Show that there is an isomorphism GL2(C)/U(2)R× ∼= H3 of homogeneous spaces for GL2(C).

Deduce that if K is an imaginary quadratic field of class number one, and U = GL2(ÔK), then
there is an isomorphism YU ∼= GL2(OK)\H3. This is an example of a Bianchi manifold (or
orbifold).

4. Let J denote the set of open compact subgroups of GL2(A∞K ). The group GL2(A∞K ) acts on J
by conjugation. If U ∈ J , g ∈ GL2(A∞K ), then there is a map YgUg−1 → YU given on elements
(h, x) ∈ GL2(A∞K )×X by the formula (h, x) 7→ (hg, x). Use this to construct a structure on

A = lim−→
U

H∗(YU ,C)

of (left) C[GL2(A∞K )]-module.

3.3 Exercises to lecture 3

1. Complete the proof of Artin formalism.

2. Let E be an elliptic curve over Q with complex multiplication. Use Artin formalism and known
properties of Hecke L-functions to show that L(E, s) admits an analytic continuation and satisfies a
functional equation.

3. (*) Brauer’s theorem states that for any finite group G, the Grothendieck group of C[G] is generated
by representations of the form IndGH χ, where χ : H → C× is a character and H ⊂ G is an elementary
subgroup (i.e. of the form H = C × P , where C is cyclic and P is a p-group for some prime p).

By definition, an Artin representation is a continuous representation ρ : GK → GLn(C) of finite image.
Use Brauer’s induction theorem to show that for any such representation, L(ρ, s) admits a meromorphic
continuation to the complex plane and satisfies a functional equation. What is the order of the pole
at s = 1?
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4. Show by example that we cannot use the technique in the previous exercise to show that L(ρ, s) admits
an analytic continuation to the complex plane (except for a possible pole at s = 1). (Hint: visit
groupnames.org and look at groups of order 24.)

3.4 Exercises to lecture 4

1. In this exercise, we show how to get an automorphic representation of GL2(AQ) from a modular
elliptic curve E over Q. Recall that we have associated to E a holomorphic differential F (τ)dτ on
H which is invariant under the action of Γ0(N). We want to lift this to a function φ : GL2(A) → C
which is invariant under left translation by GL2(Q) (and invariant under right translation by U0(N) ⊂
GL2(A∞)).

(a) If (g∞, g∞) ∈ U0(N)×GL2(R)+ ⊂ GL2(A), we define φ(g) = det(g∞)3/2f(g∞i)j(g∞, i)
−2, where

j(g, τ) = cτ + d for g =

(
a b
c d

)
. Show that φ extends uniquely to a function GL2(A) → C

which is invariant under left translation by GL2(Q).

(b) The centre of GL2 is Z = Gm, embedded diagonally. Show that φ transforms under the action of
Z(AQ) according to the norm character ω = ‖ · ‖ : A×Q → R>0.

(c) Show that φ is cuspidal. (Hint: try to interpret this in terms of a property of the function F .)

The automorphic representation corresponding to E is the subrepresentation of L2
ω,0(GL2(Q)\GL2(A))

generated by φ.

2. (*) Classify the conjugacy classes of continuous semisimple representations φ : WR → GL2(C). Which
ones have the property that φ|C× is algebraic?
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