U:=PolynomialRing(Rationals()); R:=RealField(); C:=ComplexField(); pi:=Pi(R); /////////////// Example session on Saturday 11.8.2012 ///////////////////////////////// Dedekind zeta K:=CyclotomicField(7); L:=LSeries(K); Evaluate(L,2); K:=NumberField(x^4-2); L:=LSeries(K)/RiemannZeta(); Evaluate(L,1); h:=ClassNumber(K); h; R:=Regulator(K); D:=Discriminant(IntegerRing(K)); D; 2*h*R*(2*pi)/Sqrt(Abs(D)); /////////////////////////////// Elliptic curves E:=EllipticCurve("37a1"); E; Conductor(E); Discriminant(E); #TorsionSubgroup(E); Rank(E); Generators(E); L:=LSeries(E); Evaluate(L,1); Evaluate(L,1: Derivative:=1); Evaluate(L,1: Derivative:=1)/Regulator(E)/Periods(E)[1]; // Other basic L-functions: Modular forms, Dirichlet characters, // Hecke characters, hyperelliptic curves (+ Hilbert modular forms), K:=NumberField(x^7-7*x-3); G:=GaloisGroup(K); #G; GroupName(G); IsSimple(G); A:=ArtinRepresentations(K);A; L:=LSeries(A[2]); L; Conductor(L); LCfRequired(L); Evaluate(L,1); // Number fields via Artin representations L:=LSeries(SplittingField(x^8-2)); L; Conductor(L); Evaluate(L,2); L`prod; // Tensor products I E:=EllipticCurve("11a1"); E; LE:=LSeries(E); M:=ModularForms(Gamma0(7),4); Newforms(M); f:=Newforms(M)[1][1]; Lf:=LSeries(f); L:=TensorProduct(LE,Lf); Evaluate(L,1); CheckFunctionalEquation(L); // Tensor products II E:=EllipticCurve([0,0,0,-25,0]); E; LE:=LSeries(E); K:=NumberField(x^2-5); LK:=LSeries(K); L:=TensorProduct(LE,LK); CheckFunctionalEquation(L); EulerFactor(LE,2); EulerFactor(L,2); E:=EllipticCurve([GF(5)|0,0,0,-1,0]); EulerFactor(E); L:=TensorProduct(LE,LK,[<5,2,1+2*x+5*x^2>]); CheckFunctionalEquation(L); Evaluate(L,1+3*i); // Sign in the functional equation recognized as an algebraic number K:=CyclotomicField(5); A:=ArtinRepresentations(K); L:=LSeries(A[2]); Evaluate(L,1); sign:=Sign(L); sign; f:=PowerRelation(sign,8); f; // Self-made L-function of a Dirichlet character of conductor 3 L:=LSeries(1,[1],3,func); CheckFunctionalEquation(L);