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Abstract

We consider the standard non-parametric regression model with Gaus-

sian errors but where the data consist of different samples. The question

to be answered is whether the samples can be adequately represented by

the same regression function. To do this we define for each sample a

universal, honest and non-asymptotic confidence region for the regression

function. Any subset of the samples can be represented by the same func-

tion if and only if the intersection of the corresponding confidence regions

is non-empty. If the empirical supports of the samples are disjoint then the

intersection of the confidence regions is always non–empty and a negative

answer can only be obtained by placing shape or quantitative smooth-

ness conditions on the joint approximation. Alternatively a simplest joint

approximation function can be calculated which gives a measure of the

cost of the joint approximation, for example, the number of extra peaks

required.
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1 Introduction

We consider the non-parametric regression model for k samples

Yi(t) = fi(t) + σiZi(t), i = 1, . . . , k, t ∈ [0, 1] (1)

where the Zi are independent standard Gaussian white noise processes. The

problem is that of deciding whether k samples

yini
= {(tij , yij) : j = 1, . . . , ni}, i = 1, . . . , k (2)

with supports

Si = {ti1 < ti2 < . . . < tini
}, i = 1, . . . , k. (3)

can be simultaneously represented by the same function f . In the following we

restrict attention to the case k = 2; the extention to more samples poses no

problems. The standard approach is to consider the null hypothesis

H0 : f1 = f2 H1 : f1 6= f2 (4)

and then to construct a test which is asymptotically consistent and can detect

alternatives which converge to the null hypothesis at certain rates f1(t)−f2(t) =

∆(t)/γ(n). The best result seems to be that of Neumeyer and Dette (2003)

who construct a test which can detect alternatives which converge to the null

hypothesis at the optimal rate γ(n) = n1/2. If the supports Si , i = 1, 2, are equal

then it is not difficult to construct such a test as the differences Y1(tj)− Y2(tj)

do not depend on f (see for example Delgado (1992) and Fan and Lin (1998)).

The result of Neumeyer and Dette (2003) holds however even if the supports are

disjoint, S1 ∩S2 = ∅. We point out that in this case there are certain difficulties

which can be most clearly seen in the case of exact data

yij = fi(tij), tij ∈ Si, i = 1, 2.

If we denote the supremum norm on [0, 1] by ‖ ‖∞ then the null and alternative

hypotheses of (4) may be rewritten as

H0 : ‖f1 − f2‖∞ = 0, H1 : ‖f1 − f2‖∞ > 0. (5)
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If the values of f1 and f2 are known only on disjoint sets S1 and S2 respec-

tively then it is not possible to decide between H0 and H1. This continues to

hold even if f1 and f2 are subject to qualitative smoothness conditions such

as infinite differentiability. Even in this case a function can be found which

simply interpolates the data. All conditions imposed in the literature are of

this form: Hall and Hart (1990), a bounded first derivative; Härdle and Marron

(1990), Hölder continuity; King, Hart and Wehrly (1990), ‘at least uniform con-

tinuity; Kukasekera (1995), Kukasekera and Wang (1997), a continuous second

derivative; Munk and Dette (1998), Hölder continuity of order γ > 1/2; Dette

and Neumeyer (2001), a continuous rth derivative: Lavergne (2001), a second

derivative which is uniformly Lipschitz of order γ, 0 ≤ γ < 1; Neumeyer and

Dette (2003), continuous derivatives of order d ≥ 2. In order to distinguish

between H0 and H1 it is necessary to place either quantitative conditions on

f1 and f2 such as first derivatives bounded by a specified value, for example

‖f (1)
1 ‖∞ ≤ 1, ‖f (1)

2 ‖∞ ≤ 1, or shape restrictions such as f1 and f2 being mono-

tone.

These conclusions are in a sense trivial but as far as we are aware they have

never been explicitly mentioned in the literature. The addition of noise does not

alter anything. However different the functions f1 and f2, whatever the sample

sizes and whatever the value of the test statistic there will always be a single

common function which is not excluded by the smoothness conditions and which

is consistent with both samples. All that can be said is that if the functions

f1 and f2 are different then any common function g equal to fi on Si, i = 1, 2

becomes more complicated as the sample sizes increase. It is this increase in

complexity which we call the cost of the simultaneous approximation. In the

remainder of the paper we show how this can be quantified. Our approach can

be split into two parts.

(1) Firstly for each sample yini
= {(tij , yij) : j = 1, . . . , ni} we specify a

so called approximation region Aini
which specifies those functions fi for

which the model (1) is an adequate approximation for the sample. The

intersection of the approximation regions A1,n1
∩A2,n2

contains all those

functions which simultaneously approximate both samples. It is also the

approximation region for the simultaneous approximation. A similar idea

in the context of the one-way table in the analysis of variance is expounded

in Davies (2004).

(2) Secondly using some measure of complexity we regularize within each
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approximation region by choosing the simplest function.

The idea of approximation followed by regularization may be found in Davies

and Kovac (2001, 2004) but it is made much more explicit here. In particular if

the data are generated under the model (1) then we show that the approximation

regions are universal, honest and non-asymptotic confidence regions. We use the

word ‘approximation’ as we are not trying to estimate the ‘true’ function f but

are rather concerned with calculating a simplest function consistent with the

data (see Donoho (1988) and Davies (1995)).

In Section 2 we define the approximation or confidence regions and consider

the problem of regularization in Section 3. Finally in Section 4 we apply the

ideas and concepts to the problem of comparing regression functions.

2 Approximation regions

We consider a single sample of data Y n = (ti, Y (ti))
n
1 generated under the

model

Y (t) = f(t) + σZ(t) (6)

where we take the ti to be ordered. For any function g and interval I ⊂ [0, 1]

we put

w(g, Y n, I) =
1
√

|I |
∑

ti∈I

(Y (ti) − g(ti)) (7)

where |I | denotes the number of points ti ∈ I. The approximation or confidence

region An is defined by

An(Y n, In, σ, τn) = {g : max
I∈In

|w(g, Y n, I)| ≤ σ
√

τn log(n) }. (8)

where In is a collection of intervals of [0, 1] and typically τn > 2. Very often

it is sufficient for In ∩ {t1, . . . , tn} to correspond to a wavelet multiresolution

scheme as follows. It contains all singletons {ti}, the pairs {t1, t2}, {t3, t4}, . . .,
quadruples {t1, t2, t3, t4}, {t5, t6, t7, t8} etc. with any set left over at the end also

being included. To simplify calculations however we take In to be the set of all

intervals. As

w(f, Y n, I) =
1

√

|I |
∑

ti∈I

Z(ti)
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does not depend on f we see that

P (f ∈ An(Y n, In, σ, τn))

also does not depend on f . For any given α and collections of intervals In we

may choose τn so that

P

(

max
I∈In

1
√

|I |

∣

∣

∣

∑

i∈I

Z(ti)
∣

∣

∣
≤
√

τn log n

)

= 1 − α.

For this choice of τn we have

P (f ∈ An(Y n, In, σ, τn)) = α. (9)

so that An is an exact confidence region of size 1 − α for f with no restric-

tions on f. The confidence region (8) treats all intervals equally but we may

define a second one which downweights the importance of small intervals as fol-

lows. Dümbgen and Spokoiny (2001) have extended Lèvy’s uniform modulus of

continuity of the Brownian motion and shown that

sup
0<s<t<1

(B(t)−B(s))2

t−s − 2 log(1/(t − s))

log(log(ee/(t − s)))
< ∞ a.s. (10)

If we embed the partial sums
∑j

i∈I Z(ti)/
√

|I |, I ∈ In in a standard Brownian

motion it follows that

sup
IıIn

(
∑

tj∈I Z(tj))
2/|I | − 2 log(n/|I |)

log(log(een/|I |))) = Γ < ∞ a.s.. (11)

This implies that for any α we can find a γn = γn(α) such that

ABM
n (Y n, In, σ, γn) = {g : |w(g, Y n, I)| (12)

≤ σ
√

2 log(n/|I |) + γn log(log(een/|I |)) for all I ∈ In) }.

is a (1 − α) confidence region as for An.. The values of γn may be determined

by simulation. The index BM stands for the Brownian modulus of continuity

from which the confidence region derives.

The confidence regions An(Y n, In, σ, τn) and ABM
n (Y n, In, σ, γn) both re-
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quire the true value of σ. This may be estimated from the data by putting

σn =
1.4826√

2
median (|Y (t2) − Y (t1)|, . . . , |Y (tn) − Y (tn−1)|) (13)

which will be our default value in this paper. If f is constant then σn is a

consistent estimator of σ. If f is not constant then σn will have a positive bias

whatever f and the effect of this is to make the confidence region and the

inclusion probability larger. More precisely if we put

σ̃n =
1.4826√

2
median(|Z(t2) − Z(t1)|, . . . , |Z(tn) − Z(tn−1)|) (14)

and then choose τn so that

P

(

max
I∈In

1
√

|I |

∣

∣

∣

∑

ti∈I

Z(ti)
∣

∣

∣
≤ σ̃n

√

τn log(n)

)

= 1 − α (15)

then

P (f ∈ An(Y n, In, σn, τn)) ≥ 1 − α. (16)

with σn given by (13). There is a corresponding result for ABM
n (Y n, In, σn, γn).

The confidence region (16) is again universal and non-asymptotic but is now hon-

est rather than exact as 1−α is now a lower bound for the inclusion probability.

In practice we simply choose a default value of τn, for example τn = 2.3.

It may be objected that the confidence region An(Y n, In, σ, τn) is so large

that any reasonable estimate of f belongs to it. This is not the case. Because

the intervals In form a multiresolution scheme as described above any function

g ∈ An(Y n, In, σ, τn) is forced to adapt at all levels to the data. Many standard

methods of estimating the function f are in fact not sufficiently adaptive to

produce estimates which lie in An(Y n, In, σ, τn). Suppose we take In to be the

set of all intervals and put α = 0.01. Simulations give τn = 3.62. for n = 512

and τn = 3.45 for n = 1024. Table 1 gives the results of a small simulation study.

The methods used were the taut string (TS), wavelets, a kernel estimator with a

global bandwidth determined by cross validation and finally a smoothing spline

with penalty parameter determined by cross validation. The reason that the

taut string did not always produce an estimate in An(Y n, In, σ, τn) is that a

version was used which only tested the condition
Table 1 about here

max
I∈I∗

n

|w(g, Y n, I)| ≥ σn

√

2.3 log(n)
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on the dyadic family of intervals I∗
n described above. This does not check all

intervals and consequently the bound 0.4
√

3.45 log1024 = 1.96 can be exceeded.

3 Regularization

The confidence regionAn(Y n, In, σn, τn) includes many functions g which would

not be regarded as an adequate representation of the data. In particular any

function which interpolates the data belongs to the confidence region as all

residuals are zero. Of interest are not such functions but those which minimize

some measure of complexity C subject to the function being adequate:

minimize C(g) subject to g ∈ An(Y n, In, σn, τn). (17)

Examples are

C(g) = number of local extreme values (18)

C(g) =

∫ 1

0

g(2)(t)2 dt. (19)

and

C(g) = TV (g(k)) (20)

where TV denotes total variation. The example (18) was considered by Davies

and Kovac (2001) who proposed the taut string algorithm to solve the regu-

larization problem. The example (19) leads to a quadratic programming prob-

lem which is often numerically unstable. Davies and Meise (2005) proposed a

weighted smoothing spline technique to get approximate solutions. Finally (20)

leads to a linear programming problem. In general shape constraints such as

(18) are much easier to interpret than smoothness constraints such as (19) and

(20) and so in the remainder of the paper we restrict attention to (18).

4 Comparing regression functions

4.1 A one-way table for regression functions

We turn to the problem of comparing regression functions for samples Y ini
=

(tij , Yi(tij))
ni

j=1 generated under (1). As a first step we replace the 1−α in (15)
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by (1 − α)1/k where k is the number of samples. This adjusts the size of each

confidence region to take into account the number of samples. The confidence

region for the ith sample is given by

Aini
= Aini

(Y ini
, Iini

, σini
, τini

) = (21)
{

g : max
I∈Iini

|w(g, Y ini
, I)| ≤ σini

√

τini
log(ni)

}

.

All questions concerning the relationships between the functions fi can now

be answered by using the confidence regions. For example the question as to

whether the fi are all equal, the null hypothesis H0 of (4) translates into the

question as to whether the intersection Ak = ∩k
i=1Aini

is empty or not. If the

supports Si of the samples are pairwise disjoint then An is not empty and so

there always is a joint approximation function. In order to obtain a negative

answer the questions posed must be specific in terms of shape or, if formulated in

terms of smoothness, quantitative. A quantitative smoothness constraint that

the first derivatives be bounded by 2.35. These considerations are consistent

with the arguments in Section 1. As argued there, asymptotics cannot overcome

the lack of precision of the questions.
Figure 1 about here

An alternative to asking precise questions is to determine a simplest function

which lies in the intersection of the approximation regions. This can be seen in

Figure 1 where the measure of complexity is the number of local extreme values.

The data sets were generated under the model (1) with the same sample sizes

n1 = n2 = 400 and with f1(t) = exp(1.5t), f2(t) = exp(1.5t) + 2. The standard

deviation of the noise was put to 0.25 in both samples and the support points

tij were taken to be uniformly and independently distributed on [0, 1]. The

upper panel shows the two data sets, the centre panel shows the individual

approximating functions which are both non-decreasing. The lower panel shows

the joint approximating function with 347 local extreme values. The cost of the

joint approximation is thus an additional 347 peaks. One can ask how close

the two data sets must be before the joint approximating function is also non-

decreasing. This is the case if we reduce the values of Y2 by 1.8841 so that f1

and f2 are 0.1159 apart. Figure 2 shows the results in this case.
Figure 2 about here

If the supports Si of the samples are not disjoint then it may happen that

the linear inequalities which define the confidence regions are inconsistent. In

this case Ak = ∩k
i=1Aini

= ∅ and there is no joint approximating function. As

there are many such linear inequalities this can lead to numerical problems. We
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therefore adopt the following simplified procedure. For a point t ∈ ∪k
i=1Si we

put

f̃(t) =

∑ki

j=1 Yij
(t)/σ2

ijnij

∑ki

j=1 1/σ2
ijnij

, t ∈ ∩ki

j=1Sij
, (22)

and we check whether f̃ ∈ Ak = ∩k
i=1Aini

. We illustrate this using the data

of Figure 1. We keep the same values for the noise and for the support S1 of

Y 1n1
but set S2 = S1. It turns out that there now exists a joint approximating

function for a difference f2 − f1 = 0.0915 but not for f2 − f1 = 0.0916. If one

took the differences of the two samples and tested for a zero mean a difference of

0.071 could be detected. The performance of our method is in fact better than

this would suggest. If one tests only for a zero mean then any function whose

g with
∫ 1

0
g(t) dt could be added to f1 to give f2 = f1 + g and this would not

be detected by differences in the means. It would however be detected by our

method for a sufficiently large g as we use a multiresolution scheme to analyse

the residuals. The size of g required is the topic of the next section.

4.2 Analysing the procedure

As mentioned in Section 1 the Neumeyer and Dette (2003) procedure can de-

tect differences of the order of n−1/2. We now consider the size of detectable

differences for our procedure in the case of equal supports. For simplicity we

consider only the case k = 2 and assume that the supports S1 and S2 are given

by t1i = t2i = i/n. We take In to be the set of all subsets and suppose that

σ1 = σ2 = σ. If a joint approximating function f̃n exists then for any interval I

of [0, 1] we have

1
√

|I |

∣

∣

∣

∣

∣

∑

ti∈I

(Yj(ti) − fn(ti))

∣

∣

∣

∣

∣

≤ σin

√

τn log(n), j = 1, 2.

If the estimates σin are close to the σ then

1
√

|I |

∣

∣

∣

∣

∣

∑

ti∈I

(Y1(ti) − Y2(ti))

∣

∣

∣

∣

∣

≤ 2σ
√

τn log(n).

For the noise we have

1
√

|I |

∣

∣

∣

∣

∣

∑

ti∈I

(Z1(ti) − Z2(ti))

∣

∣

∣

∣

∣

≤
√

2σ
√

τn log(n)
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and hence
1
√

|I |

∣

∣

∣

∣

∣

∑

ti∈I

(f1(ti) − f2(ti))

∣

∣

∣

∣

∣

≤ 3.414σ
√

τn log(n).

Suppose now that f1 and f2 differ by an amount γn on an interval I ⊂ [0, 1],

that is f1(t) − f2(t) > γn, t ∈ I and that the length of I is δn. As I contains

about nδn support points points we see that

1√
nδn

nδnγn ≤ 3.414σ
√

τn log(n)

which implies that no joint approximation will exist if

√

δn γn > 3.414σ
√

τn log(n)/n. (23)

We consider the data of Figure 1 and use the same errors and the same support

S1 for the first data set. We put S2 = S1 and f2(t) = f1(t) except for the

observations 201, . . . , 210 where we put f2(t) = f1(t) + γn. For this interval

δn = 10/400 and so with τn = 2.5 so we expect to be able to detect deviations

γn of the order

γn = 3.414 · 0.25 ·
√

2.5 log 400
/
√

10 = 1.045. (24)

In fact our method detects for this particular data a difference of 0.5812 and

fails to detect a difference of 0.5811. If we put δn = 1 in (23) so that the two

functions deviate over the whole interval then

γn > 3.414σ
√

τn log(n)/n . (25)

so that deviations of order
√

log(n)/n can be detected. We compare this and

(23) with other procedures in the next section.

4.3 Comparison with other procedures

As the approach developed in this paper differs from others in the case where

the supports are disjoint we restrict attention in this section to the case of equal

supports. For simplicity we take k = 2. For such data Delgado (1992) proposed
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the test statistic

Tn =
√

n max
1≤j≤n

|R(j)|/s∗n = max
1≤j≤n

∣

∣

∣

∣

∣

j
∑

i=1

(Y1(ti) − Y2(ti))

∣

∣

∣

∣

∣

/(σn

√
n) (26)

where σn is some quantifier of the noise. Under the null hypothesis f1 = f2 = f

the distribution of Tn does not depend on f . In this special case the test

statistic of Neumeyer and Dette also reduces to (26). If the data were generated

under (1) with then under H0 the distribution of Tn converges weakly to that

of max0≤t≤1 |B(t)| where B is a standard Brownian motion. The 0.95-quantile

is approximately 2.24 which leads to rejection of H0 if

Tn ≥ 2.24. (27)

Suppose now that the data are generated as in (1) with f1(t) = f2(t) apart from

t in an interval I of length δn where f1(t)−f2(t) ≥ γn. It follows from (27) that

H0 will be rejected with high probability if

δnγn ≥ 4.48σ/
√

n (28)

where σ2 = σ2
1 + σ2

2 . If δn = 1 deviations of the order of σ/
√

n can be picked

up which contrasts with the O(σ
√

log(n)/n of (25). The difference is explained

by our use of the maximal difference over all intervals whereas the statistic Tn

of (26) considers only intervals of the form I = [0, t]. If however δn = 1/
√

n it

follows from (28) that the test statistic Tn will pick up deviations of the order

of σ whereas it follows from (25) that out method will pick up deviations of the

order of σ
√

log(n)/
√

n . Figure 3 shows the result of applying the test (26) to

the data of Figure 1 with f1 = f2 apart from the interval [0.5025, 0.525] where

f2(t) = f1(t) + γn. The test based on (26) requires a difference of γn > 1.56

if it is to be detected. As mentioned above the joint approximation detects a

difference of γn = 0.5812.
Figure 3 about here

Another test which is applicable in this situation is due to Fan and Lin

(1998). If we denote the Fourier transform of the data sets by Ỹ1(i) and Ỹ2(i), i =

1, . . . , n ordered as described in Fan and Lin (1998) their test statistic reduces

to

T ∗
n =

∑

1≤m≤n

1√
m

m
∑

i=1

((Ỹ2(i) − Ỹ1(i))
2/σ2

n − 1) (29)

where σn is some estimate of the standard deviation of the Ỹ2(i) − Ỹ1(i). For
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data generated under the model (1) the critical value of T ∗
n can be obtained

by simulations. It is not as simple to determine the size of the deviations

which can be detected by the test (29) as the test statistic is a function of the

Fourier transforms and the differences in the functions must be translated into

differences in the Fourier transforms. We do not pursue this.
Table 2 and Table 3 about here

Tables 2 and 3 show the results of a small simulation study. We generated

samples

Y1(i/n) = Z1(i/n), i = 1, . . . , n = 1000 (30)

Y2(i/n) = γ(i/n) + Z2(i/n), i = 1, . . . , n = 1000 (31)

where the Zj(i/n) are i.i.d N(0, 1) random variables. In Table 2 we put γ(i/n) ≡
γ for various values of γ. The first line shows the percentage of cases in which

a joint approximation was found using the confidence region (8). The other

lines show the corresponding results for the confidence region (12), Delgado–

Neumeyer–Dette test statistic (26) and the the Fan-Lin statistic (29) respec-

tively. The results are consistent with the quantitative considerations in the

last section. This form of deviation is most easily detected by the test statistics

(26) and (29) (the first member of the sum in (29) is the difference of the means

and this is given the largest weight) whereas the confidence regions (8) and (12)

take into account differences over all the intervals I . As was to be expected

the results for the confidence region (12) are better than those for (8) as the

deviation is over the whole interval which is given more weight under (12) than

under (8). Table 3 shows the results with but now with γ(i/n) = γ only for the

observations i = 201, . . . , 210. For deviations of this kind it is to be expected

that the decision based on the confidence region (8) will perform best followed

by (12). This is confirmed by the results.
Figure 4 about here

4.4 An application

We give an example with some real data from the area of thin-film physics. They

were kindly supplied by Professor Dieter Mergel of the University of Duisburg-

Essen. Each data set is composed of 4806 measurements and the design points

are the same. The samples differ in the manner in which the thin film was

prepared and one of the questions to be answered is whether the results of

the two methods are substantially different. The data give the intensity of

reflected X-rays as a function of the angle of deflection. They are shown in
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Figure 4 together with the differences y1(ti) − y2(ti). The noise level for both

data sets is quantified as 8.317 which is due to the fact that the data are counts

of photons and hence integer valued. The differences between the two data

sets are concentrated on intervals each containing about 40 observations. The

estimate (28) suggests that the differences will have to be of the order of 92 to

be detected with a degree of certainty by the Delgado–Neumeyer–Dette test.

The actual differences are of about this order and in fact the test fails to reject

the null hypothesis at the 0.1 level. The realized value of the test statistic is

1.734 as against the critical value of 1.90 given in (27). The cumulative sums

of (26) are shown in Figure 5. The Fan-Lin test (29) rejects the null hypothesis

at the 0.01 level. The realized value of the test statistic is 111.7 as against the

critical value of 12.44 for a test of size α = 0.01. Finally the BM test also rejects

the null hypothesis at the 0.01 level. The realized value of Γ of (11) is 53.27 as

against the critical value of 0.287.

References

Davies, P. L. and Meise, M. (2005). Approximating data with weighted

smoothing splines. Technical Report, University of Duisburg-Essen, Ger-

many.

Davies, P. L. (1995). Data features. Statistica Neerlandica, 49:185–245.

Davies, P. L. (2004). The one-way table: In honour of John Tukey 1915-2000.

J. Statist. Plann. Inference, 122:3–13.

Davies, P. L. and Kovac, A. (2001). Local extremes, runs, strings and mul-

tiresolution (with discussion). Ann. Statist., 29(1):1–65.

Davies, P. L. and Kovac, A. (2004). Densities, spectral densities and modality.

Ann. Statist., 32(3):1093–1136.

Delgado, M. A. (1992). Testing the equality of nonparametric regression

curves. Statist. Probab. Lett., 17:199–204.

Dette, H. and Neumeyer, N. (2001). Nonparametric analysis of covariance.

Ann. Statist., 29:1361–1400.

Donoho, D. L. (1988). One-sided inference about functionals of a density.

Ann. Statist., 16:1390–1420.



P. L. DAVIES AND A. KOVAC 14
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Figure 1: The upper panel shows two different samples generated by y1(t) =
exp(1.5t) + 0.25Z(t) and Y2(t) = exp(1.5t) + 2 + 0.25Z(t) together with the ap-
proximating monotonic curves. The lower panel shows the joint approximating
function with 347 local extreme values.
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Figure 2: The upper panel shows the data of Figure 1 but with the values of
Y2 now given by Y2(t) = exp(1.5t) + 0.1159 + 0.25Z(t). There is now a joint
monotonic approximating function which is shown in the lower panel.
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Figure 3: The upper panel shows the data of Figure 1 but with the support T2

of Y2 set equal to T1 and with f2(t) = f1(t) = exp(1.5t) except on the interval
[0.5025, 0.525] where f2(t) = exp(1.5t) + 1.56. The cumulative sums of (26) are
shown in the lower panel. The test (26) just fails to detect the difference.
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Figure 4: The top and center panels show two data sets each of 4806 observations
with the same design points. The lower panel shows the differences of the two
samples.
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Figure 5: The cumulative sums for the test statistic (26) calculated for the
thin–film data of Figure 4. The test just fails to detect any difference in the two
samples. The maximum absolute value is 1.734 against a critical values of 1.90
for a test of size 0.1.
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n = 1024 Bumps Blocks Heavisine Doppler Sine
TS 96 98 100 88 100

Wavelets 0 0 0 0 100
Kernel CV 0 7 92 100 100
Splines CV 0 4 87 99 100

Table 1: The percentage of simulations for which the estimate of the function
belonged to the approximation region An(Y n, In, σ, τn) with n = 1024, In being
the set of all intervals, σ = 0.4 and τn = 3.45.
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γ 0.00 0.05 0.10 0.15 0.20 0.25
An 4.7 5.6 5.8 8.4 11.1 23.8
ABM

n 4.3 7.2 19.6 36.3 62.5 82.0
DND 5.0 9.10 29.2 52.4 80.2 94.9
FL 4.4 9.80 29.3 54.1 79.1 94.0

Table 2: The percentage of cases in which the null hypothesis f1 = f2 was
rejected based on 1000 simulations for data generated according to (30) and
(31) with γ(i/n) = γ for all i, 1 ≤ i ≤ n = 1000. The first line refers to the
decision based on the confidence region (8), the second lines that based on the
confidence region (12), the third line shows the results of Delgado–Neumeyer–
Dette test based on (26) and the fourth line shows the results for the Fan-Lin
test based on (29).
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γ 0.5 1.0 1.5 2.0 2.5 3.0
An 5.4 7.2 21.4 61.4 89.4 98.6
ABM

n 5.7 8.5 20.8 52.6 82.7 96.7
DND 4.6 7.0 9.9 15.3 22.8 41.9
FL 4.6 6.7 9.8 13.5 15.8 23.1

Table 3: The percentage of cases in which the null hypothesis f1 = f2 was
rejected based on 1000 simulations for data generated according to (30) and
(31) with γ(i/n) = γ for i = 201 : 210 and with n = 1000. The first line
refers to the decision based on the confidence region (8), the second line that
based on the confidence region (12), the third line shows the results of Delgado–
Neumeyer–Dette test based on (26) and the fourth line shows the results for the
Fan-Lin test based on (29).


