Multiresolution and model choice
ARNE Kovac

We consider various settings of the nonparametric regression problem where
for given data y1,...,y, at time points t1,...,t, we require an approximation f
that is simple and close to the data. Most approaches develop first an algorithm
that takes the data and some additional parameters like bandwidth and kernel
function for kernel estimators. In a second step another method is developed for
choosing the additional parameters, very often based on minimizing error criteria
on test beds like cross-validation. Typically these methods do not produce simple
approximations for complex data sets.

In this talk we study approaches that work the other way round and define
first a criterion for approximation, giving rise to a set of functions each being an
adequate model for the data. In a second step we aim to find a particular simple
function among them and try to minimize measures such as the number of local
extreme values.

The multiresolution criterion has turned out to be useful for defining approxi-
mation. Given noisy data y1, ..., ¥y, we require a function f to satisfy
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with w; = /|I| - 2log(n) for all intervals I of some family Z of subintervals of
{1,...,n} (Davies and Kovac, 2001; Davies, Kovac and Meise, 2007). This crite-
rion is very strict in the sense that approximations from most popular smoothing
methods like smoothing splines with cross validation, adaptive weights smoothing
or kernel estimators using local plug-in bandwidths do not usually satisfy this cri-
terion for complex data sets. Wavelet thresholding equipped with the universal
T = y/2log(n) threshold (Donoho et al, 1995) have residuals that satisfy simi-
lar multiresolution conditions, but usually still hurt some of the multiresolution
conditions in (1).

By replacing y; — f; with terms such as sign(y; — fi;) (Kovac, 2002) or, more
generally, R( ;) with data-dependent functions R; (Diimbgen and Kovac, 2005)
the multiresolution criterion can be adapted to situations with outliers, quantile
regression or Poisson regression. An extension to inverse problems is also straight-
forward: Assume that K is some linear operator and that we want to use K f
instead of f to approximate the data. Then we require a function to satisfy
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The multiresolution criterion can also be used in the context of estimating
parameters of an ordinary differential equation. Here we model the data y as
noisy observations from an ODE

i(t) = f(z,u,t|0)
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and want to estimate 6. Again it makes sense to only allow values for # such that
the residuals of x satisfy the multiresolution criterion.

Extending the multiresolution criterion to two or more dimensions is not straight-
forward, one possibility is to use a decomposition of the residuals using wedgelets
(Polzehl and Spokoiny, 2003).

There are several possible ways for maximizing simplicity among all adequate
functions. One way consists in minimising total variation (Davies, Kovac and
Meise, 2007):
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This leads to a linear program which can be computationally relatively expensive
for some data sets. The computational complexity of problems like
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is considerably smaller and is for common choices of R; not larger than O(nlog(n))
using a generalization of the taut string algorithm (Diimbgen and Kovac, 2005).
The local penalty parameters can be chosen by the local squeezing technique
(Davies and Kovac, 2001) to make sure that the solution satisfies the multires-
olution criterion. Finally by using quick update steps it is possible to calculate
the solution for the first n data from the solution for the first n — 1 data without
recalculating most of the solution. This allows an extension to online processing
(Kovac and Wei, 2007).
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