
Curves and Modality

Arne Kovac

Given noisy bivariate observations (xi, yi), i = 1, . . . , n at n different time points
t1, . . . , tn we consider the problem of specifying a smooth curve f = (fX , fY ) such
that f approximates the data and is simple in the sense that the number of local
extreme values in the curvature function is as small as possible. In Figure 1 the
top left panel shows a spiral with added bivariate Gaussian noise and the right
panel a reconstruction obtained from a kernel estimator. The curve is smooth,
but does not approximate the data very well as can be seen in the bottom panel
where the residuals in x- and y-direction are plotted.

We adopt a bivariate version of the multiresolution criterion by Davies and
Kovac (2001) and require the sums of the residuals in x- and y-direction over
stretches of different sizes and locations all to be smaller than what would be
expected from white noise. More specifically we require an approximation to
satisfy simultaneously
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with wI =
√

|I | · 2 log(2n) for all intervals I of some family I of subintervals of
{1, . . . , n}.
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Figure 1. Noisy spiral and kernel estimator. Top left: Origi-
nal spiral, Top right: Kernel estimator, Bottom left and right:
Residuals in x- and y-direction
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Figure 2. Noisy spiral and two approximations that just sat-
isfy the multiresolution criterion. Left: Kernel estimator, Right:
Total variation penalty

One choice for I is to take all possible subintervals

I1 = { {j, j + 1, . . . , k} for all 1 ≤ j ≤ k ≤ n}.
Computational complexity can be reduced by considering a smaller collection like
all intervals with dyadic end points

I2 = { {2jk + 1, . . . , 2j(k + 1)} for all 0 ≤ j ≤ blog2(n)c, k = 0, 1, . . . , d n

2j
e}.

This collection has been used for the examples below. The multiresolution criterion
requires the true value of σ. This may be estimated from the data by putting

σ =
1.4826√

2
median (|y2 − y1|, |x2 − x1|, . . . , |xn − xn−1|)

(Davies and Kovac, 2001; Donoho et al, 1995)
We aim to find a curve f that satisfies this multiresolution criterion and is

at the same time as simple as possible. Figure 2 shows in its left panel another
approximation from an kernel estimator, but this time choosing the largest band-
width such that the kernel estimate satisfies the multiresolution criterion above.
Although this estimate approximates the data much better it contains a large
number of spurious local extreme values.

In the univariate setting of non-parametric regression regularisation techniques
based on total variation like the taut string method (Mammen and van de Geer,
1997; Davies and Kovac, 2001) and its generalisations (Dümbgen and Kovac, 2005)
or quantile regression using total variation penalties (Koenker et al, 1994) have
been shown to produce simple estimates.

We consider a two-dimensional total variation penalty and consider minimising
the functional
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Figure 3. Circular noisy versions of Donoho and Johnstone’s
Doppler and Bumps signals and approximations using total vari-
ation penalties and the multiresolution criterion.

The smooth taut string functional by Kovac (2006) can be regarded as a special
case of this functional in one dimension.

In order to obtain approximations that are as smooth and simple as possible
we start with a large global penalty λ1 = · · · = λn−1 and successively reduce
λ on intervals where the multiresolution criterion is not yet satisfied. This local
squeezing technique has been described by Davies and Kovac (2001) and Dümbgen
and Kovac (2005) in more detail. The application of this technique to the spiral
data can be seen in the right panel of Figure 2. The approximation is much
smoother than the kernel estimate.

Finally, Figure 3 shows approximations obtained from circular versions of the
well known Doppler and Blocks functions by Donoho and Johnstone (1994). These
were generated as xj = cos(2πj/n)rj and yj = sin(2πj/n)rj where rj = f(j/n) −
mini(f(i/n), i = 1, . . . , n) + 1 and where f was successively the Doppler and the
Blocks signal. The bivariate total variation penalties generate sharp discontinuities
for the Blocks signal while the functions look smooth and simple elsewhere and
approximate the data very well.
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