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Abstract The paper considers the problem of nonparametric regression with

emphasis on controlling the number of local extremes and on resistance against

patches of outliers. The robust taut string method is introduced and robustness

properties are discussed. An automatic procedure is described.

1 Non-parametric regression and modality

Non-parametric regression is a topic of much current interest in statistics. The

usual description of this problem is to estimate a function
�

on the basis of obser-

vations � ����������� �
	 at time points � ����������� ��	 where

���� ��� ��������� (1)

and the � ����������� ��	 are noise. We describe our task somewhat differently and aim

to specify a simple function �� such that the residuals ������������  look like noise.
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Fig. 1 Application of two classical smoothing methods to simulated data. The left panel

shows Gibbs effects that occur often when wavelet thresholding is applied to functions

with discontinuities. In the right panel a kernel estimator does not adapt locally to different

degrees of smoothness.

Throughout this paper simplicity will be measured by the number of local extreme

values whereas noise will be characterised by sums of the signs of the residuals ��
on different scales and positions.

Numerous methods have been suggested including kernel estimators (Nada-

raya, 1964, Watson, 1964), spline smoothing (Silverman, 1985), local polynomial

fitting (Fan and Gijbels, 1996) and wavelet thresholding (Donoho et al., 1995).

However, none of these methods controls the number of local extremes, and as a

result they all tend to produce superfluous extremes or exhibit artifacts like Gibbs

effects near discontinuities (see Figure 1). Several procedures have been proposed
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Balloon data with taut string approximation

Fig. 2 Radiation measurements of a weather balloon. The large outlier patches were caused

by a rope which cut the measuring device occasionally from the direct sun light. The left

panel shows the data set, the right panel the data set and the usual taut string approximation.

to decide for each local extreme whether it comes from the data or is an artifact

(Chaudhuri and Marron, 1997).

Davies (1995) and Mammen and van de Geer (1997) introduce another method

which employs a taut string constrained to lie in a tube centered around the inte-

grated data. Its derivative is used as a piecewise constant approximation for the

given data and the value on each constant interval between local extrema is the

mean of the observations that fall in this interval.

Davies and Kovac (2001b) developed the taut string method further by using

an automatic procedure to determine a locally adaptive tube width. They show

that their procedure attains asymptotically the correct modality and a similar result
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holds for the related problem of density estimation (Davies and Kovac, 2001a).

The taut string approximation to the data can be regarded as the solution of the

minimization problem

	�
�� �

� ���� ��� ���� ��� �
	�
�� �

� �� � � ������ � � ��	� � �
� ������ � (2)

with data-driven
�  .

2 Robust smoothing under control of modality

2.1 The taut string method and robustness

Figure 2 shows in its left panel a data set where all the methods discussed so

far fail. The data are described by Davies and Gather (1993) and they are taken

from a balloon which took measurements of radiation from the sun. It happened

occasionally that the measurement device was cut off from the sun causing large

outlier patches, the longest ranging over nearly 40 observations. The right panel

shows the taut string approximation which is very sensitive to the outliers in the

data. The taut string method is able to detect and retain very small sharp peaks

which is a useful property for certain kind of data, for example data from NMR

spectroscopy. In other settings like the radiation data a greater resistance against

outliers is desirable.

2.2 A robust taut string version

We consider and discuss below a method similar to the taut string method, but

where the � � -norm in (2) is replaced by the � � -norm and where we restrict our-
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selves to a global parameter
�

:

	�
�� �

� �
�� ��� ����
� � � 	�
�� �

� � � ������ ��� �� � � �
�
���  � � (3)

Solutions of this minimization problem are again piecewise constant. On in-

tervals which are not local extremes the value of the function is the median of the

observations in that interval. If a solution takes a local extremum on an interval

� ��� � ����� with �
	��	���	�� , then it is the ����� ��� ��� � ��� � � ��� ��� � � � � -quantile in

case of a local maximum and the �  � ��� ��� � ��� � ������� � � � � � -quantile in the case of

a local minimum. At the left and right edges of the data set the solutions take either

the ���!� ��� ��� � ���#" � � �$� �%� � � � � -quantile or the ���� ��� �&� � ���#" � ���'� �(� � � � � -
quantile, depending again on whether it is a local maximum or minimum.

Theoretically a solution of the minimization problem could be computed us-

ing � � -programming. However, using standard routines (Barrodale and Roberts,

1973). we were not able to calculate a � � -solution for data sets larger than � " �)�

because of large memory consumptions.

Davies and Kovac (2001b) give an algorithm of order * � � � that calculates the

solution of the minimization problem (2). Their algorithm can be adapted to the

� � -functional (3). The necessary calculations can be carried out in a way such that

the computational complexity of the method is of order * � �,+.-)/ � � � � � .

For residuals � related to some approximation �� and �
0��01� we investigate

the sum of the signs of the first � residuals

232 � �54 � � �
��
�� �76

./ � � ���� �
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Fig. 3 The robust taut string method and the cumulative sums of the signs of the residuals.

The left panel shows 30 points of a sine curve disturbed by normal noise and the robust taut

string approximation with ����� . The right panel shows the cumulative sums of the signs

of the residuals.

Maximizing � 232 � �54 � �
� over � yields a distance measure that may be used to define

a
�

-neighborhood � � �54 � � of the data:

� � �54 � � ���	��
�� 	� ���!���� � � 	 �
2 2 � �54 � ��� �
� 0 ���

The procedure described above can be carried out in a way such that �� satisfies the

following properties:

Theorem 1 For given data � ����������� �
	 and given integer
�

there exists a solution

���� of the minimization problem (3) such that:
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1. For all ��
�� � ��������� � � 

� 232 � �54 � � ���� �
� 0 �

2. If �	1� such that ���� � ���
� 	 ���� � ����� � � , then

232 � �54 � � �� � � � �

3. If �	1� such that ���� � ���
��� ���� � ����� � � , then

232 � � 4�� ���� � � � � �

4. At the right edge of the data

232 � �54 � ���� � � � �

5. �� minimizes the modality among all ��
 � � �54 � � .

We refer to this particular solution as the robust taut string approximation. The

first four statements of Theorem 1 are illustrated in Figure 3 where 30 points of a

sine curve were perturbated with Gaussian white noise. The left panel shows the

data with the robust taut string approximation using
� � " . The cumulative sums

of the signs of the residuals are plotted in the right panel.

2.3 Robustness

Another important property of the robust taut string method is robustness against

outliers. Since nonparametric regression methods have to be able to identify lo-

cal phenomena and structures the usual global concept of breakdown from lin-

ear regression must be replaced by a localized version. The robust taut string
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Fig. 4 Sine curve, outliers and the robust taut string method. The left panel shows 986

points of a sine curve disturbed by 476 outliers that come in patches of 14 outliers each.

The right panel shows the reconstruction with the robust taut string method using � ��� .

method is resistant against outliers in a sense that it can withstand patches of

outliers consisting of up to
" �

measurements. More precisely, consider for given

� � 	 �
� 	

��� 	 ��� the family � � � � of all data sets that are equal to � on
� �	�	
 � ���� �

and
� ����� � ����� � :

� � � 4 � � ��� ��  �������
 for all � 
 � ����
 � ���� ��� � ����� � ����� � � �

Then a simple consequence from Theorem 1 is the following theorem:

Theorem 2 For a given data set
� �  � ���� � � � � ��������� � and a given parameter

�

consider

� � � 4 � � � 6
���

����� ���������� "!$#&% �"'  �( ���
��� � ��������� � � ����
� �
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Then

1. if ��� � �
�
� " � � " �

� � � 4�� � ���

2. if ��� � �
� 0

" � ��� and � �� � � � �
� ��� ��� � ��� � � " � �

� � � 4�� � 	��

Thus, a patch of
" � �(� outliers will always let the robust taut string approximate

breakdown while smaller patches are do not influence the approximation if they

are surrounded by
" � �(� not outlying observations on each side. Figure 4 shows

the robust taut string method applied to ����� points of a sine curve. The data shown

in the left panel were disturbed by �
	 outlier patches each of length ��	 with gaps

of size � � between them, so there were 476 outlier in total. The right panel shows

the approximation using
� ��� .

For another example we return to the balloon data. Since the longest outlier

patch is somewhat smaller than 40, it makes sense to choose
� � " � . The result-

ing robust taut string approximation is indeed not very strongly influenced by the

outliers as can be seen from Figure 5.

2.4 Modality

We now turn to the connection between the robust taut string method and local

extreme values. Let � � �54 � � denote the number of local extreme values of the robust

taut string approximation using the tradeoff parameter
�

. We have already seen

in Theorem 1 that �� � �54 � � minimizes the modality among all vectors in � � �54 � � .
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Fig. 5 Radiation measurements of a weather balloon and the robust taut string approxima-

tion with � � �����

Thus, if the data �
 are generated from the model (1) and we choose
�

large enough

such that
� 
 � � �54 � � we will end up with at most as many local extreme values

as the function
�

and avoid possible artifacts. Consequently, we require that with

high probability

� �!���� � � 	 �
��
 � � 6

./ � � ����
� 0 � �

If the �� have median
�
, then

�� 	 � ��� � 6 ./ �
� ���� is a random a walk which will

converge to a Brownian motion as � tends to � . In this case on choosing
� �

� ��� �
	 � where
� ��� � is the

�
-quantile of the distribution of the maximum of a

Brownian motion on
� � � � � we conclude that



Robust nonparametric regression and modality 11

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10

Blocks Data and robust taut string (n=10000)

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10

Blocks Data and robust taut string (n=40000)

Fig. 6 Blocks data with Cauchy noise. The left panel shows 10000 points of the Blocks

signal disturbed by Cauchy noise and an approximation using the robust taut string method

and � ���������	� 
 . The dashed line is the original Blocks signal. The same procedure was

repeated in the right panel with 
 ������ � � .

+ ��	����
� � � � �54 � ��� � 	 � � 0�� � � �

(4)

Unfortunately, the inequality (4) is not sharp. For practical purposes the value

� ��� �
	 � for the tradeoff parameter
�

turns out to be much too large. This is il-

lustrated in Figure 6 where 10000 points from the Blocks signal from Donoho et

al. (1995) were disturbed by Cauchy noise and where some features are missing

in the reconstruction using
� � � ��� �&� � 	 � . The sample size must be increased

to 35000 to achieve the correct modality with come confidence. We introduce an
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automatic data-driven choice for
�

in the section that improves the detection rate

considerably.

2.5 Multiresolution of signs

We now give an approximation of white noise which adapts on the local behaviour

of the observations. Our goal is to decide whether residuals related to some approx-

imation of the data look like noise or not. Davies and Kovac (2001b) characterize

Gaussian white noise by considering a multiresolution scheme of the residuals. We

adapt their method, but consider sums of the signs of the residuals rather than the

residuals themselves. This definition has previously been used by Dümbgen and

Johns (2000) and Dümbgen (2001) to construct confidence bands for isotonic and

convex median curves.

Assume for the moment that � is a power of two:

� � "�� �

For � 
 � 	 ��� 
 � � ����������� � and � 
 � � � 	��� �(�
�

we define multiresolution

sums of signs

�
	 � � � � � � �" 	�� �

% ��� � ( � ��
�� � � � � � 6

 / � � ���� �

If � ��������� � ��	 are independent noise with
� � � � � � � � � � 	 � � � �

� , then

�"
% � � � ( � ��
�� � ��� � � 6

./ � � ����

will follow a binomial  � " 	 � � �&� � -distribution. Therefore we regard the residuals as

noise if the corresponding multiresolution sums of sign satisfy for all � and � the
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Fig. 7 Blocks data with Cauchy noise. The upper left panel shows 2048 points of the Blocks

signal disturbed by Cauchy noise. The upper right and the lower left panel show reconstruc-

tions using a median filter with two different window widthes. The lower right panel shows

the reconstruction with the robust taut string method using the multiresolution criterion to

choose the tradeoff-parameter � .
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conditions

� � 	 � � � � �
� 0 � " +.-)/ � � � � (5)

This leads to

Problem 1 (The multiresolution problem) Determine the smallest integer � for

which there exists a function �� on
� � � � � with � local extreme values such that the

residuals � satisfy the multiresolution condition (5).

Since there is no obvious connection between the modality and the multires-

olution sums � 	 � � we adapt a similar technique as in Davies and Kovac (2001b)

and use the robust taut string method to produce candidate functions with increas-

ing modality and choose the first function that satisfies the conditions (5) as an

approximation to the data.

This approach is illustrated in Figure 7 where 2048 points from the Blocks

signal from Donoho et al. (1995) were disturbed by Cauchy noise and where the

multiresolution method was able to retain the correct modality. Also shown are

two approximations from a median filter using two different window widthes � �
�
�

and � � �
�
. The median filter tends to oversmooth the discontinuities and

introduces spurious local extreme values while the automatic robust taut string

method nearly attains the original Blocks signal.
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