
Basic solutions

Consider the canonical LP

max c · x, s.t. Ax = b, x ∈ Rn
+, b ∈ Rm

+ , n ≥ m.

Assume that the rows of the m×n matrix A are linearly independent, for otherwise the system of equations
Ax = b is either redundant, that is the number of rows can be reduced, or it is inconsistent, i.e. the
problem is unfeasible.

Suppose, x is a feasible solution. Then if aj , j = 1, . . . , n are the columns of A, i.e. vectors in Rm,
the fact that Ax = b means

x1a
1 + x2a

2 + . . .+ xna
n = b,

i.e. b is a linear combination of the columns of A with non-negative coefficients xj . Equivalently, b is
spanned by these columns, with the array of non-negative coefficients x.

Some components xj may be zero and therefore aj does not really belong to the spanning set of
vectors. So, the set of those j′s, a subset of {1, . . . , n}, where xj > 0 is called basis, the corresponding
components xj > 0 – basic components, and the corresponding columns aj of A – basic columns. This is
all relative to the feasible solution x.

Definition: A feasible solution solution x is called basic if either x = 0, or the columns
of A, corresponding to nonzero components of x in the above linear combination are linearly
independent.

It follows that a basic solution cannot have more than m nonzero components. Indeed, columns of A are
vectors in Rm. The dimension of space is the maximum number of linearly independent vectors the space
can host. So, in general, a basic solution will have no more than m positive components, and as a very

crude estimate, there can never be more than
∑m

k=0

(
n
k

)
basic solutions. (We consider the cases when

a basic feasible solution has k = 0, 1, . . . ,m positive components and sum over them.)
Of course, x = 0 only if b = 0. Otherwise, intuitively, for a “typical” b, a “typical” basic solution

would haves exactly m positive components.
The next theorem is of key importance: it tells one that in order to seek feasible or optimal solutions

of an LP, it suffices to confine oneself to basic ones (whose number is finite) only. Then the way of solving
LPs would be simply a clever inspection of one basic solution after another; this is exactly what the
simplex method does.

Theorem on basic solutions: (i) If the problem is feasible, there exists a basic feasible solution
(BFS). (ii) If the problem is optimizable (has optimal solution), there exists a basic optimal
solution (BOS).

Proof of (i): Of all the feasible solutions, take one with the smallest possible number of nonzero (positive)
components: such a solution x always exists. Then if x = 0, it is by definition basic, and there’s nothing
left to prove. So suppose, x 6= 0,, that is

xαa
α + xβa

β + . . . = b,

for some columns aα,aβ, . . . of A.
Now the claim is that either the columns aα,aβ, . . . are linearly independent (which makes x a BFS),

or the total number of nonzero components of x can be reduced, which contradicts the choice of x as a
feasible solution, having the smallest number of nonzero components.
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Indeed, suppose
λαa

α + λβa
β + . . . = 0,

where at least one of the λs, say λα is positive. (This can always be achieved by multiplying the last
equation by −1 if necessary. In fact, the equation can be multiplied by any real number and will still
retain zero in the right-hand side, so the array of λ’s is defined up to a real multiple). So, having λ’s
fixed, with without loss of generality λα > 0, we can find a small positive number θ, such that

(xα − θλα)aα + (xβ − θλβ)aβ + . . . = b,

- which results from subtraction of the last quoted equation multiplied by θ from the penultimate one - is
another feasible solution xθ, i.e al the coefficients in brackets are still non-negative. This is one step away
from getting a contradiction: we shall now increase θ until one (or more) of the coefficients in brackets
become zero. As soon as it happens we stop. This provides a feasible solution that has fewer positive
components than x – contradiction.

To express the above argument rigorously, the array of λ’s can be extended to all j = 1, . . . , n by
making extra assignments λj = 0 (whenever xj = 0). Letting then λ = (λ1, . . . λn), we have xθ = x− θλ.

Clearly, choosing
θ = min

j=1,...,n:xj ,λj>0

xj
λj

does the job. Namely, xθ is feasible and has one nonzero component less than x, which is the contradiction
to how x has been chosen. And what has led to the contradiction was the assumption that the basic
columns of A, defined relative to x were linearly dependent. So they are not, i.e. x is a basic feasible
solutions.

Proof of (ii): Goes in the same way. Of all the optimal solutions, take any with the smallest possible
number of nonzero components, call it x. If x = 0, it’s basic. Otherwise, suppose it has non-zero
components xα,β,..., i.e

xαa
α + xβa

β + . . . = b.

If the columns aα,β,... are linearly independent, x is a BOS. If they are not, then

λαa
α + λβa

β + . . . = 0.

Once again, consider an n-vector λ by augmenting the array λαaα, λβ, . . . by defining λj = 0 if xj = 0. a
Now, for θ ∈ R, with a small enough absolute value, the solution xθ = x− θλ is still feasible.
Looking at the value V (xθ) = c · xθ = V (x) + θc · λ, one concludes that it has to be c · λ = 0.

Indeed, otherwise x cannot be optimal: by choosing the sign of θ (plus or minus) we could achieve both
V (xθ) > V (x) and V (xθ) < V (x).

Hence, we conclude that V (xθ) = V (x), i.e. as long as xθ is feasible, it is optimal as well.
If so, we repeat precisely the same trick as in part (i). One can choose θ such that the number of

positive components of the optimal xθ becomes less than that of x, by choosing θ equal to the minimum
positive ratio xj/λj (needless to say, over those λj > 0).

This contradicts the choice of x, so the columns aα,β,... have to be linearly independent, which means
x is a BOS.�
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