
Open and closed sets – elementary topology in Rn

Definitions and facts, a bit in excess of what needs to be known for Opt 2.

• An open ball Br(x0) in Rn (centered at x0, of radius r) is a set {x : ‖x − x0‖ < r}, where from
now on ‖x‖ =

√
x2

1 + . . .+ x2
n is the Euclidean distance. The case r = 0 corresponds to the empty

set, which is also open. By default, Br (without specifying the center) means a ball centered at the
origin.

• An open set in Rn is any union of open balls, in particular Rn itself. Therefore if X is open, then
for any x ∈ X, there exists a ball Br(x) ⊂ X, for some r. So, the union of any family of open sets
is open. Also, the intersection of a finite number of open sets is open. (E.g. the family of open
intervals (−1− 1/n, 1 + 1/n), n = 1, 2, . . . , 100 is finite; if n = 1, 2, . . ., this family is countable; the
family of open sets (−1− α, 1 + α), α ∈ (0, 1) is uncountable.)

• A set X ⊂ Rn is closed if its complement Xc = Rn \X is open. Hence, both Rn and ∅ are at the
same time open and closed, these are the only sets of this type. Furthermore, the intersection of
any family or union of finitely many closed sets is closed.

Note: there are many sets which are neither open, nor closed.

• For any set X, its closure X̄ is the smallest closed set containing X. Its interior X is the largest
open set contained in X. Its boundary ∂X is by definition X̄ \ X. Clearly, if X is closed, then
X = X̄ and if X is open, then X = X. Also, if X = {p}, a single point, then X = X̄ = ∂X.

• A set X is bounded if there exists a ball BR such that X ⊂ BR for some R. A set, which is closed
and bounded is called compact.

• A sequence in Rn is a countable collection of points {xn}n=1,2,... = {x1,x2, . . .} (countable collection
means an infinite array which can be put in one-to one correspondence with positive integers; however
x1,x2, . . . are not necessarily distinct). A sequence {xn} converges to x (i.e. x = limn→∞ xn,
the subscript n→∞ often being omitted) if for any ball Bε(x) centered at x, all members of the
sequence, starting from some n = N(ε) find themselves inside the ball Bε(x). A subsequence {xnk

}
of a sequence {xn} is a countable sub-colleciton of {xn}.

• x is a limit point of a sequence {xn} if there is a subsequence {xnk
} of {xn}, converging to x.

E.g. for the sequence {1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, . . .} ⊂ R every integer is a limit point. If
a sequence converges, then any subsequence converges to the same limit, which is the limit of the
sequence. For a set X ⊆ Rn, x is a limit point if it is a limit point for some sequence {xn} ⊆ X.
So, for any r > 0, there are infinitely many xn ∈ Br(x).

• The closure X̄ of a set X is the union of all the limit points of X. Above, we’ve defined closure as
the smallest closed set containing X. To prove equivalence of the two definitions, let us first show
that the set X̂ of all the limit points of X is closed and contains X, and then that it is the smallest
such set, so X̂ = X̄. First off, if x ∈ X, then take a sequence {x,x,x, . . .}, it clearly converges to x,
so x is a limit point of X. So X ⊆ X̂. Furthermore, X̂ is closed, because its complement X̂c is open.
Indeed, if it’s not, there is some x′ ∈ X̂c such that any ball centered at x′ would intersect X̂. This
means that any ball centered at x′ will contain points of X, too. But then there is a sequence {xn}
of points of X, converging to x′, which is a contradiction. So X̂ is closed. Let us show that X̄ = X̂
(so far it follows only that X̄ ⊆ X̂, because X̄ is the smallest closed set containing X). Consider
an open set X̄c, let us show that it has no elements of X̂. Indeed, if it does contain some x′ ∈ X̂,
then it contains come ball centered therein alongside. This ball does not intersect X (because it
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lies outside X̄) and therefore its center x′, although it belongs to X̂ cannot be a limit point of X.
Contradiction, unless X̄ = X̂.

• This enables one to easily prove that some sets are closed, e.g. level sets f(x) = c of continuous
functions or their sublevel sets {x : f(x) ≤ c}. Indeed, if f is continuous, and f(xn) = c, then
f(x) = c for x = limxn. Same for the sublevel set case and would not be true if there was < instead
of ≤.

• A (vector-) function f : Rn → Rm is continuous if the pre-image X ⊆ Rn of any open set Y ⊆ Rm

in the range of f (i.e. X = {x : f(x) = y, for some y ∈ Y }) is open. Equivalently, for any y in
the range of f and any ball Bε(y) ⊂ Rm there exists a ball Bδ(x) ⊂ Rn, such that any x ∈ Bδ(x) is
taken into the ball Bε(y) by f . Equivalently, if x = limxn, then f(x) = lim f(xn) (provided that x
is also in the domain of f ; this can always be achieved by assuming that the domain of f is a closed
set). Note that if n = m = 1, then balls are intervals, e.g. Bε(y) = (y − ε,y + ε), and the above
reduces to usual ε− δ definitions.

• Finally, Bolzano-Weierstrass theorem, which is routinely applied in non-linear optimisation to ensure
existence of optimisers. A continuous real-valued (m = 1 in the above definition) function f on a
compact set X reaches on X is supremum and infimum. Recall that supX f is the least upper
bound of the set of values {f(x), x ∈ X}. And infX f is the greatest lower bound. Let’s prove the
theorem for the supremum (as inf f = − sup−f.) First off, if M = supX f , then there is a sequence
{xk} ⊆ X such that M = lim f(xk). Then, as long as there is a limit point x for the sequence {xk}
(if x exists, it is in ∈ X, as X is closed), then M is finite, equal to f(x). I.e. by continuity of f,
M = lim f(xk) = f(x) < ∞. We can also assume that all the members of the sequence {xk} are
different. Otherwise, if any x is repeated in the sequence infinitely many times, then M = f(x),
and there is nothing left to prove.

So, what is left to prove is that any sequence {xk} in a compact (closed and bounded) set X has
a limit point, i.e. a convergent subsequence. To do this, a bit heuristically, enclose X in some
n-dimensional cube (a cube in two dimensions is a square) Q0, this is OK since X is bounded. Now
divide Q0 into 2n congruent cubes by dissecting every edge. Let Q1 be one of those, which (together
with its boundary) contains infinitely many members of the sequence.

Do the same thing now with Q1, and so on. We obtain a sequence Q0, Q1, Q2, . . . of nested cubes with
edge length vanishing geometrically, so that each of these cubes contains infinitely many members
of the sequence {xk}. The real space is complete: there is a unique point x which belongs to all
these cubes. And for every ball Br(x) centered in x there will be infinitely many xk ∈ Br(x). So x
is a limit point of the sequence {xk}. Since X is a closed set, x ∈ X.

And once again, since f is continuous, now f(x) = M <∞.

• For optimisation, this theorem has an important corollary. An optimisation problem Maxf(x),
on a compact feasible set F , with a continuous objective function f always has a solution (alias
optimizer). In particular, in unbounded LPs the feasible set ought to be unbounded, so Bolzano-
Weierstrass theorem does not apply. When the feasible set is given in terms of constraints gi(x) ≤
bi, i = 1, . . . ,m, where all gi are continuous functions, the feasible set is closed, yet not necessarily
bounded.
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Convex sets

Definitions and facts.

• A set X ⊆ Rn is convex if for any distinct x1,x2 ∈ X, the whole line segment xθ = θx1 + (1 −
θ)x2, 0 ≤ θ ≤ 1 between x1 and x2 is contained in X. Note that changing the condition 0 ≤ θ ≤ 1
to θ ∈ R would result in xθ describing the straight line passing through the points x1 and x2. The
empty set and a set containing a single point are also regarded as convex.

• The intersection of any family Xi of convex sets is convex. Indeed, if points x1,2 ∈
⋂
iXi, they

belong to each set Xi, then so does the line segment xθ, so it belongs to the intersection
⋂
iXi as

well.

• A unit vector d ∈ Rn, ‖d‖ = 1 is a direction for a convex set X at a point x0, if for some small
t > 0, the point xt = x0 + td lies in X as well. A point x0 ∈ X is an extreme point of the convex set
X is there is no d ∈ Rn, ‖d‖ = 1, such that both d and −d are directions at x0. Equivalently, x0

is an extreme point, if there is no line segment with endpoints x1,2 6= x0, contained in X, such that
x0 lies inside this line segment. Note: open convex sets have no extreme points, as for any x ∈ X
there would be a small ball Br(x) ⊂ X, in which case any d is a direction, at any x.

• A hyperplane Hc,α in Rn is a set {x : cTx+ α = 0}. It’s easy to verify (using the definitions only)
that a hyperplane is a closed convex set. A halfspace H+

c,α in Rn is a set {x : cTx + α ≥ 0}; it is
also a closed convex set.

• If x0 is an extreme point of a closed convex set X, a hyperplane Hc,α is called supporting hyperplane
to X at x0 if x0 ∈ Hc,α and X ⊆ H+

c,α. I.e. cTx+α ≥ 0 for any x ∈ X, with the equality if x = x0.

• Important theorem on convex sets. Given two disjoint closed convex sets X1, X2, there exists a
separating hyperplane, namely a hyperplane Hc,α, such that cTx + α ≥ 0 for any x ∈ X1 and
cTx + α < 0 for any x ∈ X2. If besides one of the sets X1,2 is bounded, there exists a hyperplane
Hc,α which strictly separates the sets, cTx+α > 0 for any x ∈ X1 and cTx+α < 0 for any x ∈ X2.
This fact will underlie the proof of the Farkas alternative, to come up soon in the course.

The proof – schematically, only when one of the sets is bounded, details are omitted – is based on the
fact that as the sets are closed, and if one of the sets X1,2 is bounded, then by Bolzano-Weierstrass
theorem, the quantity

inf
x1∈X1,x2∈X2

‖x1 − x2‖

(the minimum Euclidean distance between the sets X1 and X2) is well defined and achieved for some
x1 ∈ X1 and x2 ∈ X2. If so, let c = x1 − x2 and draw a hyperplane through the midpoint of the
segment [x1,x2], with the normal vector c. If this plane intersected X1 or X2, say X1 at some point
x, then by convexity the line segment [xx1] lies in X1. The one can drop a perpendicular from x2

to [xx1] and get the intersection point x′ ∈ X1, which is closer to x2 than x1 – contradiction.

• Theorem regarding linear optimisation. Consider a canonical LP Ax = b, x ≥ 0. Then the feasible
set F for this LP is convex and closed. Besides, basic feasible solutions (BFS) are in one-to-one
correspondence with extreme points (EP) of F .

Proof: First notice that xj ≥ 0 defines a half-space in Rn, while each equation of the system Ax = b
(i.e ai1x1 + ai2x2 + . . . + xinxn = bi, i = 1, . . . ,m) determines a hyperplane. So, the feasible set is
the intersection of a family of closed and convex sets, which itself is closed and convex.
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Now, let us prove that if x0 is a BFS, it is an EP. If x0 is a BFS, either x0 = 0 or

x0
αa

α + x0
βa

β + . . . = b, (1)

for some columns aα,aβ, . . . of A, with x0
α, x

0
β being strictly positive. If x0 = 0, it is an EP. Indeed,

for any nonzero vector d at the origin, both d and −d cannot have all non-negative components. So
suppose (1) holds, x0 is a BFS (so the columns aα,aβ, . . . are linearly independent) and x0 is not
an EP. Then for some x1,x2 ∈ F and some θ ∈ (0, 1), x0 = θx1 + (1− θ)x2. Thus both x1 and x2

cannot have any positive components other than those of x0. And they are feasible solutions. So
equation (1) is satisfied by (x1

α, x
1
β, . . .) as well as by (x2

α, x
2
β, . . .). Subtraction yields

(x1
α − x2

α)aα + (x1
β − x2

β)aβ + . . . = 0,

which implies that the columns aα,aβ, . . . are linearly dependent – in contradiction with the fact
that x0 is a BFS.

Conversely, suppose x0 is an EP, let us show that it is a BFS. If x0 = 0, then it is basic by
definition. Otherwise it satisfies (1), with positive x0

α, x
0
β, . . .. Suppose, x0 is not a BFS, then the

columns aα,aβ, . . . must be linearly dependent. That is for some array of numbers (λα, λβ, . . .),
which are not all zero,

λαa
α + λβa

β + . . . = 0. (2)

Multiply equation (2) by ±δ, for some sufficiently small positive δ and add to equation (1). Get

(x0
α ± δλα)aα + (x0

β ± δλβ)aβ + . . . = b.

That is for a small enough δ (so all the expressions in parentheses remain positive) there is a straight
line segment of feasible solutions, with endpoints x0 ± δλ, (where the array (λα, λβ, . . .) extends to
a vector λ ∈ Rn by rendering its free, i.e. not listed by (α, β, . . .), components as zero) such that x0

is the middle thereof, so x0 is not an extreme point. Contradiction.

Q.E.D.
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