
Convex functions

This handout contains a fairly broad overview of matters regarding convex functions. It contains a lot of optional
material in a series of Remarks: the mandatory part is formulas (1-3), the second (easy, as it follows directly from
(3)) bullet of Theorem 1, Theorems 2,3, and the inequalities of Jensen, Cauchy and Cauchy-Schwartz.

Definitions and representations of convexity condition.

Definition 1: A function f : Rn → R is called convex if for any pair of non-equal x1,x2 in the domain of f
(which is assumed to be a closed convex set) and any pair of real positive numbers θ1, θ2, such that θ1 + θ2 = 1,
one has

f(θ1x1 + θ2x2) ≤ θ1f(x1) + θ2f(x2). (1)

If the inequality is always strict, f is called strictly convex; f is called (strictly) concave iff −f is (strictly) convex.

Geometrically, it means that on the graph {(x, y) ∈ Rn+1 : y = f(x)} of f , for any x lying on the line segment,
connecting a pair of chosen points x1 and x2 in the domain of f , the point (x, f(x)) lies below a chord, connecting the
pair of points (x1, f(x1)) and (x2, f(x2)), for all the possible choices of the pair x1,x2 (the height being measured
in terms of the y-coordinate). This makes the majority of the convexity issues essentially one-dimensional: for
instance f(x) is convex if and only if for any chosen pair of points x1 and x2 in the domain of f , the function
f̃(t) = f(tx1 + (1− t)x2) of one variable t ∈ R is convex.

Unless specified, let’s deal with the one-dimensional case, assuming that f is defined and bounded on some closed
interval [a, b]. If in (1) one sets x2 > x1 and x = θ1x1 + θ2x2, then using θ2 = 1− θ1, (1) can be rewritten as

f(x) ≤ x2 − x
x2 − x1

f(x1) +
x− x1

x2 − x1
f(x2) ≡ l(x). (2)

Namely, the right hand side is a linear function l(x) of x (given x1, x2, f(x1), f(x2)), the geometric description above
thus having been made precise.

Remark – optional: Note that (2) can be further rewritten as

(x2 − x)f(x1)− (x2 − x1)f(x) + (x− x1)f(x2) =

∣∣∣∣∣∣
1 1 1
x1 x x2

f(x1) f(x) f(x2)

∣∣∣∣∣∣ ≥ 0.

The latter determinant is twice the signed area of the triangle with vertices A1 = (x1, f(x1)), A = (x, f(x)), A2 =
(x2, f(x2)), which is positive iff going around the triangle A1AA2 along the itinerary A1 → A → A2 → A1 occurs
counterclockwise.

One proceeds further by multiplying f(x) in the left hand side of (2) by 1 =
(x2 − x) + (x− x1)

x2 − x1
, which results

in
f(x)− f(x1)

x− x1
≤ f(x2)− f(x)

x2 − x
. (3)

Analysis of this representation results in the following Theorem 1.
Namely, assuming differentiability of f , letting x → x+

1 (x approaches x1 on the right) one gets

f ′(x1) ≤ f(x2)− f(x1)
x2 − x1

; letting x → x−2 (x approaches x2 on the left), one gets f ′(x2) ≥ f(x2)− f(x1)
x2 − x1

. Thus

f ′(x2) ≥ f ′(x1), which implies that the derivative f ′(x) is a non-decreasing function of x, and hence the second
derivative f ′′(x), if it exists, is non-negative.

Conversely, if one assumes differentiability of f(x) and the fact that f ′(x) is a non-decreasing function of x,
for any three points x1 < x < x2 and some ξ1 ∈ (x1, x) and ξ2 ∈ (x, x2), by the Mean value theorem one has
f(x)− f(x1)

x− x1
= f ′(ξ1),

f(x2)− f(x)
x2 − x

= f ′(ξ2). Then (3) follows, as it has been assumed that f ′(ξ2) ≥ f ′(ξ1), so

the function f is convex.

Remark –optional: The characterisation (3) can be further dug into as follows. For any strictly increasing se-

quence {xi}i≥1 of points within the interval (a, b), the ratios
f(xi)− f(xi−1)

xi − xi−1
for i ≥ 2 are non-decreasing
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and bounded from above, as long as all xi < b − ε for any ε > 0. Thus, at every point x ∈ (a, b) there

exists the left derivative f ′−(x) = lim
h→0+

f(x− h)− f(x)
h

<∞ (although one can have limx→b− f
′
−(x) = ∞, e.g.

take a “lower semicircle” f(x) = −
√

1− x2 on [−1, 1]). In the same fashion, there exists the right derivative

f ′+(x) = lim
h→0+

f(x+ h)− f(x)
h

> −∞ for any x ∈ (a, b). Then by (3), f ′+(x) ≥ f ′−(x). Thus, as f ′+(x) is finite,

any convex function f(x), defined on a closed interval [a, b] must be continuous in its interior (a, b) (but not nec-
essarily at the end points a, b themselves: take again f(x) = −

√
1− x2, but only for x ∈ (−1, 1), and define

f(−1) = f(1) = 100.) Moreover, there can be no more than a countable number of points x ∈ (a, b), where
f ′−(x) < f ′+(x), namely where the first derivative has a jump discontinuity.

Theorem 1:

• Any convex function f(x) on [a, b] is continuous on (a, b) and has a finite right derivative f ′+(x) and a
left derivative f ′−(x) at each point x ∈ (a, b). Moreover, for all x ∈ (a, b), f ′+(x) ≥ f ′−(x), the equality
occurring and yielding the derivative f ′(x) everywhere, except possibly a countable number of points inside
(a, b). Wherever it exists, f ′(x) is a non-decreasing function of x. If f(x) is strictly convex, f ′(x) is strictly
increasing. If a convex f(x) has the second derivative at x ∈ (a, b), then f ′(x) ≥ 0.

• If a differentiable function f(x) on [a, b] has a non-decreasing (increasing) derivative f ′(x) everywhere on [a, b],
then f(x) is (strictly) convex. If f(x) has a (positive, except maybe a finite number of points, where it’s zero)
non-negative second derivative f ′′(x) everywhere on (a, b), then f(x) is (strictly) convex on [a, b].

Remark: The second bullet is what one should use to check whether a given function is (strictly) convex. For
functions of many variables f(x), one should look at the Hessian D2f(x) and see whether it is non-negative
(positive) definite. Indeed, assuming the existence and continuity of D2f(x), the (strict) convexity will follow if the
derivative ∇f(x) · d in any direction d ∈ Rn is non-decreasing (increasing), which would be guaranteed if for all x
in the domain of f , d ·D2f(x)d ≥ 0 (d ·D2f(x)d > 0) except maybe a finite number of points, where it’s zero).

Some easy properties of convex functions:

1. If f is convex and c is a constant, then the function cf is convex.

2. If a pair of functions f and g are convex, then the function f + g is convex.

3. Optional: If a function f(u) is convex and increasing, and a function u(x) is convex, then the composition
f [u(x)] is convex.

Proof: f [u(θ1x1 + θ2x2)] ≤ f [θ1u(x1) + θ2u(x2)] ≤ θ1f [u(x1)] + θ2f [u(x2)].

4. Optional: If f(x) is convex on [a, b] and is not a constant, then it cannot have a local maximum inside (a, b).

Proof: Suppose x0 ∈ (a, b) is a local maximum. Then there exists a pair of points x1, x2 ∈ (a, b) such that
x1 < x0, x2 > x0, thus x0 = θ1x1 + θ2x2 for some θ1, θ2 > 0, θ1 + θ2 = 1. Moreover, f(x1) ≤ f(x0), f(x2) ≤
f(x0), with at least one of the two inequalities being strict. Multiply the first inequality by θ1 and the second
one by θ2, then add them, getting f(x0) > θ1f(x1) + θ2f(x2). Contradiction with the convexity of f !

5. Optional: Given a function f(x), convex on x ∈ [a, b], fix a pair of points x1, x2 ∈ [a, b] with x2 > x1. Then
the defining inequality (1), for the above x1 and x2 and for all x ∈ (x1, x2) is either always an equality or is
always strict.

Proof: Consider a function g(x) = f(x) − l(x) = f(x) + (−l(x)) for x ∈ [x1, x2], where l(x) is a chord,
defined by the right hand side of (2). Then g(x) is convex as a sum of two convex functions; in addition
g(x1) = g(x2) = 0. Then, according to the previous item, g(x) is either a constant or it cannot have a local
minimum for x ∈ (x1, x2), which corresponds to the two alternatives in question.

Finally, there is an important for the case of several variables characterisation of convex functions.

Theorem 2: A function f(x) is convex if and only if the sublevel set Fc ≡ {x : f(x) ≤ c} for any c ∈ R is convex.

Proof -- Necessity: If f is convex, then one should prove that if x1,x2 ∈ Fc for some c, then their convex
combination θ1x1 + θ2x2 is also in Fc. Indeed, f(θ1x1 + θ2x2) ≤ θ1f(x1) + θ2f(x2) ≤ (θ1 + θ2)c = c.
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Proof -- Sufficiency, optional): Take two points x1,x2 in the domain of f . First, suppose, f(x1) = f(x2) =
c. Then, as Fc is convex, a convex combination x = θ1x1 + θ2x2 ∈ Fc, and then by definition of Fc, one has
f(θ1x1 + θ2x2) ≤ c = θ1f(x1) + θ2f(x2).

If f(x1) 6= f(x2), then instead of f consider a function g(x), obtained by subtracting from f a linear function
l(x), such that l(x1) = f(x1) and l(x2) = f(x2), analogous to the one, defined by the right hand side of the
equation (2). It’s easy to check that the sublevel sets of the resulting function g are also going to be convex, and the
points x1,x2 will now belong to the same sublevel set of g, corresponding to c = 0. Therefore, as has been shown
in the preceding passage, one should have g(θ1x1 + θ2x2) ≤ 0, which means f(θ1x1 + θ2x2) ≤ θ1f(x1) + θ2f(x2),
by definition of g. But the latter statement means that f is convex.

Convex functions and optimisation

Convex functions are important for (non-linear) optimisation1, because they make it easy and essentially similar to
linear programming. Consider the optimisation problem (OP) Min f(x), such that x ∈ F for some feasible set F .
Clearly, a Min problem for f is a Max problem for −f .

Definition 2: A point x = x0 ∈ F is a local (strict) minimizer for the above OP if there exists an open
neighbourhood U of x0 such that ∀x ∈ U ∩ F, f(x) ≥ (>) f(x0).
A point x = x0 ∈ F is a global (strict) minimizer if the above inequalities hold for all x ∈ F .

In the same way one can define a local or global (strict) maximizer and a local or global (strict) extremizer which
is either a local or global (strict) minimizer or a maximizer.

Theorem 3: If the objective function f(x) is (strictly) convex and the set F is convex, then a local (strict) minimizer
is a global one. If f(x) is (strictly) concave and F is convex, then a local (strict) maximizer is a global one.

Proof: Prove it for the (strict) minimizer, for a maximizer it should be modified in an obvious way. Suppose the
contrary, namely x0 is a local (strict) minimizer, but there exists some x1 ∈ F , such that f(x1) < (≤) f(x0). The
line segment x0x1 is contained in F , as the latter set is convex. Then by convexity of the function f , for any x
inside the line segment x0x1, which will be a convex combination of x0 and x1 with the coefficients θ0 and θ1, one
has f(x) ≤ θ0f(x0) + θ1f(x1) < (≤) f(x0). This contradicts the fact that x0 is a (strict) local minimizer, as x
can get arbitrarily close to x0, thus entering any neighbourhood U of x0 and violating Definition 2.

Combining this result with the preceding theorem on the convexity of sublevel sets of convex functions, suppose the
feasible set F for the OP is described in terms of the inequalities gi(x) ≤ bi, for i = 1, . . . ,m and possibly the sign
constraints x ≥ 0. Suppose, all the functions gi are convex. Then the feasible set F for such an OP is convex, and
Theorem 3 applies. Hence, to find the global minimizer (maximizer), one should only find a local one. This can be
done using the methods for local extrema.

Generalisation of convexity definition

The purpose is to generalise the formula (1) for a convex function f(x) to

f

(
s∑

i=1

θixi

)
≤

s∑
i=1

θif(xi), where θi ≥ 0, ∀ i = 1, . . . , s and
s∑

i=1

θi = 1. (4)

This is easily done by induction on s as follows. For s = 2 it’s true. Assume, it is true for some s− 1 ≥ 2. Then if
θs < 1 (otherwise, there’s nothing to prove if θs = 1)

f

(
s∑

i=1

θixi

)
= f

(
θsxs + (1− θs)

s−1∑
i=1

θi

1− θs
xi

)
≤ θsf(xs) + (1− θs)f

(
s−1∑
i=1

θi

1− θs
xi

)
,

by definition (1). To the second term, one can apply the induction assumption, as

s−1∑
i=1

θi

1− θs
=

1
1− θs

s−1∑
i=1

θi =
1− θs

1− θs
= 1.

1For linear optimisation, all the functions involved are linear, hence convex.
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Hence,

(1− θs)f

(
s−1∑
i=1

θi

1− θs
xi

)
≤ (1− θs)

s−1∑
i=1

θi

1− θs
f(xi) =

s−1∑
i=1

θif(xi),

which proves (4).

Remark: The formula (4) reads geometrically as follows: given s points x1, . . . ,xs ∈ Rn in the domain of f , for
x is in the convex hull of the points x1, . . . ,xs ∈ Rn, the point (x, f(x)) ∈ Rn+1 on the graph of a convex function
f(x), lies below the convex hull of s points (x1, f(x1)), . . . (xs, f(xs)) ∈ Rn+1.

The formula (4) is often rewritten as follows: to dispense with the requirement
∑
θi = 1 (in the sequel let’s skip

the range if i in the sums, unless it is necessary), one sets θi =
pi∑
pi

for some collection of positive numbers pi.

Clearly, this guarantees
∑
θi = 1. Then (4) can be rewritten as Jensen’s inequality:

f

(∑
pixi∑
pi

)
≤
∑
pif(xi)∑
pi

, (5)

for a convex f .

Remark: This inequality is non-trivial if and only if there is a pair of two different points amongst xi’s. Otherwise
it is a trivial statement f(x) = f(x). In the former non-trivial case, the inequality is strict for a strictly convex f .
It gets reversed for a concave f .

Classical inequalities

Jensen’s inequality (5) in one dimension enables one to prove a variety of useful inequalities, simply by applying
it to some concrete convex or concave functions, such as powers, exponentials and logarithms. The wealth of such
inequalities comes form the fact that (5) is true for any convex f and any arrays of x’s and p′s (of the same size).
Besides, sums can be substituted by integrals.

For instance, let x1 = a, xs = b and take the rest of xi’s ordered within the interval [a, b] with xi+1 > xi. Let
pi = ∆xi = xi+1 − xi for 1 < i ≤ s − 1, ps = 0, with

∑
pi = b − a > 0. Then as the number of terms s → ∞, in

the numerator of the right-hand side of (5) one simply has the integral
∫ b

a

f(x)dx, while in the left-hand side one

gets f
(∑

xi∆xi

b− a

)
. Thus, as

∑
xi∆xi →

∫ b

a

xdx =
b2 − a2

2
, one gets

f

(
b+ a

2

)
≤
∫ b

a
f(x)dx
b− a

. (6)

In the same fashion, suppose, g(x) is an integrable function of x. Then one can use (5) in the same way as above
by letting pi = ∆xi, but rather having g(xi) instead of xi. Then

f

(∫ b

a
g(x)dx
b− a

)
≤
∫ b

a
f [g(x)]dx
b− a

. (7)

Furthermore, let f(x) = lnx, x > 0. Its second derivative is strictly negative for x > 0, so the function is concave,
hence the converse of (5) must hold for it, namely

ln
(

1∑
pi

∑
pixi

)
≥
∑
pi lnxi∑
pi

.

Putting everything under the log sign on both sides yields Young’s inequality: for all xi > 0,(∏
xpi

i

) 1∑
pi ≤

∑
pixi∑
pi

. (8)
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Letting all pi = 1, using n for the number of terms, yields

n

√√√√ n∏
i=1

xi ≤
∑n

i=1 xi

n
. (9)

Namely, the geometric mean of a finite collection of positive numbers is always less than the arithmetic mean, unless
all the numbers are equal, when the two means coincide. This inequality bears the name of Cauchy.

Replacing in (9) xi with 1
xi

yields

n

√√√√ n∏
i=1

xi ≥
n∑n

i=1
1
xi

. (10)

Namely, the geometric mean of a finite collection of positive numbers is always greater than their harmonic mean,
unless all the numbers are equal when the two means coincide.

Applying Jensen’s inequality to a convex function f(x) = xk, x > 0, k > 1 gives(∑
pixi

)k

≤
(∑

pix
k
i

)(∑
pi

)k−1

. (11)

Let k = 2. For arrays of numbers ai, bi Denote pi = b2i , xi = ai

bi
and substitute in the above. This yields the

well-known Cauchy-Schwartz (et. al.) inequality:∑
aibi ≤

√∑
a2

i

√∑
b2i . (12)

The rest is optional – the inequalities I require you to know are Jensen, Cauchy, and Cauchy-Schwartz:

Remark: If one denotes k′ a conjugate exponent to k by the rule k′ = k
k−1 or 1

k + 1
k′ = 1 (if k = 2, then k′ = 2)

and then in (11) sets pi = bk
′

i , xi = ai

bk−1
i

for some positive numbers ai, bi, the previous inequality (11) turns into
the Hölder inequality: ∑

aibi ≤
(∑

ak
i

) 1
k
(∑

bk
′

i

) 1
k′
. (13)

Both Cauchy-Schwartz and Hölder inequalities are quite useful in a particular case when all bi = 1, which
implies, in the case of Cauchy-Schwartz that (

n∑
i=1

ai

)2

≤ n
n∑

i=1

a2
i .

Remark: The Hölder inequality (13) is often derived from the Young inequality (8) for two numbers. In the
latter inequality one first lets p1 = p, p2 = 1− p as well as α = xp1

1 , β = xp2
2 , thus reducing it to αβ ≤ pα

1
p + p′β

1
p′ .

Then one lets k = 1
p , k

′ = 1
p′ , and they are conjugate exponents. Thus

αβ ≤ 1
k
αk +

1
k′
βk′ .

Finally, one takes two arrays ai, bi of positive numbers and applies the last inequality to each pair

αi =
ai(∑
ak

i

) 1
k

, βi =
bi(∑
bk
′

i

) 1
k′
.

Summing it for all the pairs αi, βi yields simply∑
aibi(∑

ak
i

) 1
k
(∑

bk
′

i

) 1
k′
≤ 1
k

+
1
k′

= 1,

which is equivalent to (13).
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Besides, the Hölder inequality (13) is used to produce another important inequality, bearing the name of
Minkowski and indicating that for a vector a ∈ Rn with components ai, the expression

‖a‖k =
(∑

ak
i

) 1
k

,

for any k > 1 is a norm, equivalent to the Euclidean one, corresponding to the case k = 2. The Minkowski inequality
is the triangle inequality for the norm ‖ · ‖k, namely

‖a + b‖k ≤ ‖a‖k + ‖b‖k or

(
n∑

i=1

(ai + bi)k

) 1
k

≤

(
n∑

i=1

ak
i

) 1
k

+

(
n∑

i=1

bki

) 1
k

. (14)

Indeed,
n∑

i=1

(ai + bi)k =
n∑

i=1

ai(ai + bi)k−1 +
n∑

i=1

bi(ai + bi)k−1.

Applying the Hölder inequality (13) to the first term with ai for ai and (ai + bi)k−1 for bi one gets

n∑
i=1

ai(ai + bi)k−1 ≤

(
n∑

i=1

ak
i

) 1
k
(

n∑
i=1

(ai + bi)k

) k−1
k

.

In the same fashion, applying the Hölder inequality (13) to the second term with bi for ai and (ai + bi)k−1 for bi
yields

n∑
i=1

bi(ai + bi)k−1 ≤

(
n∑

i=1

bki

) 1
k
(

n∑
i=1

(ai + bi)k

) k−1
k

.

Then, adding the two together and dividing by

(
n∑

i=1

(ai + bi)k

) k−1
k

yields the desired result (14).
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