
Introduction to duality

Consider the manufacturing problem max c ·x, s.t. Ax ≤ b, x,Rn
+, c ∈ Rn, b ∈ Rm, where the variables

xj , j = 1, . . . , n are the amounts (not necessarily integer) of goods j to be produced, out of m raw
materials (resources) i = 1, . . . ,m. (Notation-wise, further instead of dot-products like c · x, y · b one
may use the matrix multiplication notation cT x = xT c, yT b = bT y, always meaning that the vector
notations x, c,y, b are also used for matrices consisting of a single column, while their transposes are
matrices consisting just of a single row.)

The inequalities in the manufacturing problem reflect the fact that there is a maximum of bi units
of the raw material i available, the entry aij of the matrix A is the amount of raw material i it takes to
manufacture a unit of the product j. The component cj of c is the market price, at which a unit of the
good j is to be sold. The manufacturer’s objective is to find the optimal solution x of the above LP, given
(A, b, c). We do not require non-negativity of b, c. In fact, in the stock market, one can have negative
asset amounts by short selling.

The above manufacturing problem is further referred to as primal. To it we will assigned a dual
problem, which is a diet problem, which is obtained from the primal by replacing A with AT and swapping
band c. Here is some “economic” motivation for the dual problem. Consider a market that gives one no
guaranteed opportunity to make money. If the manufacturer is to buy the raw materials at the market
from some seller, at a unit price yi ≥ 0, they may expect that the vector y ∈ Rm

+ will satisfy the following
inequalities: AT y ≥ c, y = (y1, . . . , ym). Indeed, if yi ≥ 0 is the unit price of the raw material i, then the
left-hand-side of the jth inequality of AT y ≥ c, is simply how much it will cost to buy an exact basket
of raw materials (the raw materials are an abstraction, they may include labour, salaries, etc.) in order
to produce a unit of good j. Had the jth inequality gone the other way, it would mean a guaranteed
profit for the manufacturer after manufacturing the “underpriced” jth good and selling it. (Economists
call a guaranteed profit arbitrage and believe that real market prices close arbitrage opportunity fairly
quickly, since as soon as there is an opportunity to make something out of nothing many people discover
it and the opportunity disappears. So if it were a1jy1 + a2jy2 + . . . + amjym < cj , everyone would start
buying the raw materials in the right proportion, in order to manufacture this (underpriced) good and
sell it, this would cause the selling price cj go down and thereby close the arbitrage opportunity. Out
theory though considers c and b as fixed. Practically though, everyone is looking for short-term market
arbitrage opportunity, and the economical aspect of the duality theory is at least that it enables one to
identify such an opportunity.)

Thus, in a market with no arbitrage opportunities, to be able to buy the raw materials, in order
to have at least bi of each (to be able to satisfy any feasible production strategy for the manufacturing
problem above), one should be ready to pay the amount yi per unit of raw material i, which is feasible
for the dual inequalities AT y ≥ c, y ∈ Rm

+ , and target the objective of minimizing b · y. This is a diet
problem. We call it dual to the original manufacturing problem.

Taking the transpose of the above (dual) system of inequalities, as well as the (dual) objective, leads
to the equivalent form min yT b, s.t. yTA ≥ cT , y ∈ Rm

+ . The latter is useful to write some proofs, like
weak duality below, but certainly they can all be written via dot products only, the key to translating one
notation into the other is the identity y · (Ax) = (AT y) ·x. Observe that the constraints above yTA ≥ cT

are written in a row – one after the other – rather than a column – one under the other. The latter
equivalent form is AT y ≥ c, after taking the transpose. Recall that taking transposes reverses the order
of matrix multiplication.

Let us now study the mathematical relation between the two problems. So, we have a problem
max c ·x, s.t. Ax ≤ b and assign to it the dual problem min b · y, s.t. AT y ≥ c by the following rule: b
and c get swapped, the matrix is transposed, the feasibility inequalities get reversed.

• Involution property of the duality relation: The dual of the dual is the primal: verify this by rewriting
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the dual as max −b · y, s.t. − AT y ≤ −c, y ∈ Rm
+ , (a manufacturing problem) and then looking

at its dual by the above rule. Indeed, writing the dual (of the dual) as the diet problem form, we
replace −AT with its transpose, and swap −c and −b. This yields −Ax ≥ −b, min −c · x, which
is equivalent to the original manufacturing problem.

• Weak duality – by the dual inequalities, while making each individual good the manufacturer will at best
break even: If x is feasible for the primal and y is feasible for the dual, then y · b ≥ c · x. That is
a haphazard pair of feasible strategies (x,y) of manufacturing goods/buying resources would most
likely lead to a loss. Indeed, one can multiply the primal inequalities by yT on the left, getting
yTAx ≤ yT b. This preserves the inequality sign, because y ≥ 0. Then, as yTA ≥ cT (y is feasible
for the dual) and x ≥ 0, one has cT x ≤ yTAx ≤ yT b, and it does the job. In the sequel, let
V (x) ≡ cT x, V (y) = yT b be referred to as values of x and y.

Here is the above proof of Weak duality with the dot product notation: y · Ax ≤ y · b, now
y ·Ax = x ·AT y ≥ c · x.

An immediate consequence of week duality is that if one of the manufacturing/diet problems pair is
unbounded – either there are feasible y’s so that V (y)→ −∞ or feasible x’s so that V (x)→ +∞,
then the other is unfeasible.

• Strong duality – if both problems are feasible, then whatever b and c the manufacturer always has the
best strategy to break even: If x is optimal for the primal (a maximizer; ‘a’, because there can be
more than one in the alternative solutions case) and y is optimal for the dual (a minimizer), then
the manufacturer breaks even: y · b = c · x ≡ V, the value of the LP. This, although intuitively
clear, takes quite a bit of work to prove and will be done later in the course. For now, we assume
the Strong Duality Theorem.

Strong duality, paraphrase: Suppose, x is feasible for the primal, y is feasible for the dual, and
V (y) = V (x). Then (x,y) are optimal for the primal/dual.

Complementary slackness

It turns out that the dual problem provides an optimality test enabling one to conclude whether a given
x (a manufacturer hires a consultant who recommends the manufacturing strategy x ... is he right?) is
optimal for the primal problem or not. This follows from so-called Complementary Slackness theorem
which is a practical equivalent of the Strong Duality theorem.

Its formulation is as follows. Let x,y be optimal for the primal and dual, respectively. Then if xj > 0,
then y satisfies the jth dual constraint tightly, i.e as equation, not inequality. And if yi > 0, then x
satisfies the ith primal constraint tightly, i.e as equation, not inequality.

This makes it practical: we know how to solve systems of linear equations with any number of
unknowns!

Next come the proof of Complementary slackness, using Weak duality and assuming Strong duality,
as well as a number of equivalent formulations, with more LP slang.

Let x,y be optimal solutions for the primal/dual, respectively.

1. Suppose, the component xj of the optimizer x is not zero (that is some positive amount of the
good j is to be manufactured). Then the good is not underpriced, that is the corresponding dual
inequality is tight: one has y1a1j + y2a2j + . . .+ ymamj = cj (rather than > cj). We further say that
a non-strict (≤ or ≥) inequality is tight if it is satisfied as an equation = and slack if it is satisfied
as a strict inequality (< or >).
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Proof: Suppose this is not the case, that is xj > 0 and y1a1j + y2a2j + . . . + ymamj − cj = rj > 0.
Then y is still feasible for the problem min y · b, s.t. AT y ≥ c̃, where c̃ is the same as c, except
that its jth component has been increased to cj + rj . Modify the primal problem accordingly, by
changing cj to cj + rj in its objective function. Clearly, x is still feasible for this modified primal.
So if before modifying c to c̃ we had y · b = x · c, now we have y · b < x · c̃, which contradicts weak
duality for the modified primal-dual pair.

Equivalently – just logic – if a good j is underpriced, that is y1a1j +y2a2j +. . .+ymamj−cj = rj > 0,
then it is not manufactured, that is xj = 0.

2. In the same fashion, suppose, the component yi of the optimizer y is not zero (that is the material
i actually costs some money). Then one cannot afford to buy the excess amount of this material
(everything that is bought must be used up): the corresponding primal inequality must be tight:
ai1x1 + ai2x2 + . . .+ ainxn = bi (rather than <).

The proof repeats the previous one word by word (as there is no preference in the primal/dual
relation as to which problem – the manufacturing or diet – comes first). Indeed, assume to the
contrary that yi > 0 and bi − (ai1x1 + ai2x2 + . . . + ainxn) = ei > 0. Then x is still feasible for
the modified primal problem max c · x, s.t. Ax ≤ b̃, where b̃ is the same as b, except that its ith
component is reduced to bi − ei. Modify the dual problem, just by changing bi to bi − ei in its
objective function. Clearly, y is still feasible for the modified dual. Look at the objective values,
delivered by x and y for the modified primal-dual pair. While x delivers the same objective value
V = c · x for the modified primal problem, y delivers the value y · b̃ for the dual, which is smaller
than c · x = b · y by yiei > 0. This contradicts weak duality for the modified primal-dual pair.

Conversely, if a material i is bought in excess, that is bi − (ai1x1 + ai2x2 + . . . + ainxn) = ei > 0,
then it is available for free, that is yi = 0.

To this effect, there is some terminology.

1. In the primal optimal strategy x a component j is called basic if xj > 0. In the dual optimal strategy
y, a component i is called basic if yi > 0. Non-basic components are called free.

2. The quantity y1a1j + y2a2j + . . . + ymamj − cj = rj is called the reduced cost of the good j. If j is
basic, then by complementary slackness, rj = 0. Conversely, if rj > 0, then j is free.

If j is not basic, one can only say that rj ≥ 0 (although it is most likely going to be strictly positive).
The meaning of the reduced cost rj is simple. It is by how much the good is underpriced, that is by
how much its market price should increase, so that it would make sense to manufacture it. Indeed,
suppose rj > 0. Suppose, the price of the good j is increasing from its original value cj to cj + rj .
Then x is always feasible for the (modified) primal, while y is always feasible for the (modified) dual.
Moreover, the objective values Ṽ (x) and Ṽ (y) that x and y deliver respectively for the modified
primal and dual problems remain the same (because xj = 0, so the change of cj does not matter
for the objective value in the primal), equal to V = cT x = yT b. This means, by strong duality,
that the strategies (x,y) all this time remain optimal. But this is no longer true if cj is increased
by more than rj : indeed, y will no longer be feasible for the modified dual. Thus, one will have to
change the optimal strategies and most likely start manufacturing the good j.

Complementary slackness: basic goods have zero reduced cost. Or, nonzero reduced cost ⇒ the
good is non-basic.

3. In the same fashion, the quantity bi − (ai1x1 + ai2x2 + . . . + ainxn) = ei ≥ 0 is called the excess
amount of the material i. Repeating the last block of reasoning, ei is the maximum amount of the
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material i, which can be thrown away without affecting the optimal strategy or the value of the
problem.

Complementary slackness: basic resources come in zero excess amount. Or, positive excess amount
⇒ the resource is free.

4. The quantity yi is called the shadow price of the constraint i. The reason is the above economical
interpretation: yi is the price the manufacturer might be ready to pay for a unit of the resource i,
in order to break even.

Suppose, the available amount of the raw material i decreases by a (small) quantity εi. Clearly,
y remains feasible for the (modified) dual, with its objective value having decreased by εiyi. This
means (by weak duality) that the value of the primal problem will decrease by at least the same
amount εiyi. It will be exactly the same amount, provided that y remains optimal for the modified
dual (which is usually the case for a small εi: in this case, having lost εi units of the raw material i,
the manufacturer shall be able to adjust the production strategy x in order to ensure that the sales
do not decrease by more than εiyi (which is just yi if εi is 1, thus the term “shadow price”).

Note: if a constraint (resource) has a zero shadow price (is free), it does not necessarily come in the
excess amount. Just the same, if a good is not basic (not manufactured), it is not always true that it
must have a nonzero reduced cost. However, the situations when the above is not true are exceptional
(degenerate) and correspond to the case of alternative solutions, which will be briefly mentioned later in
the course.

Complementary slackness as optimality test

The easiest way to see this is to consider an example. Take a problem of weekly manufacturing Desks,
Tables and Chairs, selling respectively for £60, 30 and 20, provided that: (i) manufacturing a single Desk
takes 8 square feet of wood, 4 hours of carpentry, and 2 hours of finishing; (ii) manufacturing a single
Table takes 6 square feet of wood, 2 hours of carpentry, and 1.5 hours of finishing; (iii) manufacturing a
single Chair takes 2 square feet of wood, 1.5 hours of carpentry, and .5 hours of finishing. The amounts
of 48 square feet of wood, 20 carpentry hours and 8 finishing hours are available per week. Besides, a
weekly demand for Tables is at most 5.

Suppose, you hire a consultant who says that the optimal strategy is to produce 2 Desks, 0 Tables
and 8 Chairs a week. Shall we trust him? And if yes, what is the minimum increase in the market price
of Tables, sufficient to make one start manufacturing them, the rest of the data remaining unchanged.

Solution:

1. First, the problem itself: if x1 is the number of desks, x2 of tables, and x3 of chairs to be manufac-

tured, then max 60x1 + 30x2 + 20x3, s.t. x ≥ 0 and


8x1 + 6x2 + 2x3 ≤ 48
4x1 + 2x2 + 1.5x3 ≤ 20,
2x1 + 1.5x2 + .5x3 ≤ 8,

x2 ≤ 5.
Equivalently Max c · x, s.t. x ≥ 0, Ax ≤ b.

2. Dual: y = (y1, y2, y3, y4) and Min y · b, s.t. y ≥ 0, AT ≥ c. Write it out explicitly!

3. First, let us see if x = (2, 0, 8) is at all feasible. Plug it into the primal problem. Feasible it is:
32 < 48, 20 = 20, 8 = 8, 0 < 5. The first and the last constraints are slack, having the excess
amount of 16 and 5, respectively. The second and third are tight. Let us now go the complementary
slackness trail, and as long as we do not run into contradiction, x is optimal.
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Namely, if x is optimal, the shadow price of the slack constraints equals zero, by complementary
slackness. I.e. the minimizer y = (y1, y2, y3, y4) for the dual has y1 = y4 = 0. Furthermore, as x1

and x3 are basic (i.e. positive), the first and the third inequalities in the dual must be tight. That
is (y2, y3) are to satisfy {

4y2 + 2y3 = 60,
1.5y2 + .5y3 = 20.

So y2 = y3 = 10.

4. So far so good. And by construction the value b · y of y equals the value c · x of x equals 280. So,
by strong duality x above (as well as y) will be optimal, provided that y is, in fact, feasible for the
dual – we have only verified the dual inequalities that we concluded by looking at x must be tight,
but how about the rest?

Substituting y = (0, 10, 10, 0) into the remaining second dual inequality yields 35 > 30, which is
true. So. x is optimal for the primal, as we have found a feasible solution y of the dual that has
the same value, and this may only hap[pen when both x and y are optimal.

Finally, the reduced cost of Tables is by how much the right hand-side in the second inequality of
the dual problem increases a Table’s market price: r2 = 2 ∗ 10 + 1.5 ∗ 10 − 30 = 5. So, as a Table
price climbs up to £35 or more, one should start manufacturing them. Note: the case when it is
exactly £35 would lead to the alternative solutions situation.

Hence – general strategy for optimality test: x is optimal for the primal if the y computed from x
using complementary slackness is feasible for the dual.
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