
Farkas alternative and Duality Theorem

There are theorems, called alternatives. They say that there are two and only two possibilities for
something, one of these possibilities must take place, and they can’t happen together. An example of an
alternative is, assuming that there is no state between life and death: a human being is alive or dead.
One side of the alternative, say alive, is called the obverse, and the other, in this case dead, the reverse.
In computer science, they use the word xor for exclusive or. Namely Mary xor Jane means Mary or
Jane, but not the two of them.

This set of notes proves one such theorem, called the Farkas alternative and shows that, in fact, it
underpins all the duality theory of linear programming. It underlies, in fact, most of optimisaiton, itself
being a particular case of the Separating Hyperplane Theorem.

First, some definitions (strictly speaking unnecessary, but de bon ton).
Cones. A set C ⊆ Rn is called a cone if for any x ∈ C, one has λx ∈ C for all λ ≥ 0. This means that

the origin O is in C and, geometrically, if any x ̸= 0 is in C, then the whole ray Ox is in C. With such a
general definition, a cone is not necessarily a closed or convex set.

Exercise: Later we shall deal with the notion of the dual cone. Namely, if C is any cone in Rn, it dual
cone C∗ is defined as C∗ = {y ∈ Rn : y · x ≥ 0, ∀x ∈ C}. Geometrically C∗ contains all vectors y, such
that the angle between y and any vector x ∈ C is ninety degrees or less. From this point of view, it is
clear that (C∗)∗ = C, so the dual of the dual is primal. Show this by definition.

If A is an m× n matrix, consider the set

CA = {y ∈ Rm : y = Ax, x ∈ Rn
+}.

Recall that Rn
+ means x ≥ 0. This set represents a closed convex cone, which is built on the columns

a1, . . .an ∈ Rm of A. The reason it is closed and convex is simply because Rn
+ is a closed and convex

set, and CA is obtain from it via a linear transformation.

Now let A be a m× n matrix and b ∈ Rm.
Theorem (Farkas alternative): One and only one of the following two cases is always true: Ax = b has

a solution x ∈ Rn, x ≥ 0, xor there exists y ∈ Rm, such that ATy ≥ 0 and y · b < 0.

Proof: Either b ∈ CA or not. If yes, then b = Ax for some x ≥ 0, by definition of CA.
If not, then we can apply the Separating Hyperplane Theorem. The two sets CA and {b} are closed

and convex and the latter set is bounded. Then there exists a hyperplane that strictly separates these
two sets. I.e. for some y ∈ Rm, β ∈ R, the equation of the hyperplane itself is y · z + β = 0, and for all
z ∈ CA, one has y · z + β > 0, while y · b+ β < 0. Note that y is the normal vector to the hyperplane,
and z ∈ Rm is a variable.

To get more info about y and β, let us try now some special points z from CA. First off, 0 ∈ CA, so
try z = 0. This implies, y · 0+ β > 0, hence β > 0. Therefore, y · b < 0. Now try z = Maj , where aj

is the jth column of A, and M > 0 is a huge real. (For what x ≥ 0 do we have Maj = Ax?) It follows
that for all j:

y · aj ≥ − β

M
, for any M > 0.

Passing to the limit M → ∞, we have that for all j, y · aj ≥ 0, which is the matrix notation is written
exactly as ATy ≥ 0. �
What if one replaces Ax = b in the obverse of the Farkas alternative by Ax ≤ b? The answer is easy:
add the slack variables. This augments the matrix A to [A I], where I is the m × m identity matrix.
On the reverse side ATy ≥ 0 should now apply to the augmented matrix, so it becomes ATy ≥ 0 and
Iy ≥ 0. In other words, here is one more formulation.

Farkas alternative, inequality formulation: One and only one of the following two cases is always true:
Ax ≤ b has a solution x ∈ Rn

+, xor there exists y ∈ Rm
+ , such that ATy ≥ 0 and y · b < 0.

There is yet another interesting formulation that we’ll meet later speaking about Lagrange multipliers.
It bears a name of its own, the Fredholm alternative. It is obtained by changing the obverse of Farkas,
removing the non-negativity claim on x.
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Corollary (Fredholm alternative): Ax = b has a solution x ∈ Rn, xor there exists y ∈ Rm, such that
ATy = 0 and y · b ̸= 0.

Motivation. Suppose A is a square matrix, so m = n. If detA ̸= 0, then Ax = b has a solution for any
b. But otherwise the set {y = Ax, x ∈ Rn} is a sub-space L of Rn of dimension less than n, called the
Rank of A. Fredholm now tells us that either b lies in the subspace L, or we can find a vector y such
that it is orthogonal to every element of L, but not orthogonal to b.

Proof. In the obverse side of Farkas, let x = u− v, where both u,v ≥ 0. This augments the matrix to
Ã = [A − A], and the unknown to x̃ = (u,v). So the obverse side of the alternative is Ãx̃ = b has a

solution x̃ ≥ 0. The reverse side then is: there exists y ∈ Rm, such that y · b < 0, and ÃTy ≥ 0. But
the latter means ATy ≥ 0 and ATy ≤ 0, which means ATy = 0. For the latter −y is just as good as y,
and to embrace it y · b < 0 gets “generalised” to y · b ̸= 0. �
Farkas alternative implies strong duality theorem. We have seen two different interpretations of
duality: one as the manufacturing-diet pair, the other via the canonical form. Both are equivalent and
can be transformed into one another by augmenting. The Canonical form was introduced specifically to
enable the Simplex Method to run, and one cannot do without it there. But to develop general duality
theory the two formulations are equally good. As a matter of fact the ”old” MP/DP formulation in
“nicer” to produce a general result, because there is more symmetry built into it.

Strong duality theorem: Consider the primal problem

max c · x, Ax ≤ b, x ≥ 0

and its dual
min b · y, ATy ≥ c, y ≥ 0,

where A is an m× n matrix. Then exactly one of the following cases occurs:

(i) Both the primal and the dual have optimal solutions x and y with equal values c · x = b · y.
(ii) The dual is unfeasible, and the primal is unbounded, i.e. there are feasible x with c · x → +∞.
(iii) The primal is unfeasible, and the dual is unbounded, i.e. there are feasible y with b · y → −∞.
(iv) Both primal and dual are unfeasible.

Proof. The proof will use two things: weak duality1 and Farkas. It follows from a single application of
the Farkas alternative to the following system of inequalities as its obverse:

(1)


Ax ≤ b,

−ATy ≤ −c,

−cTx +bTy ≤ 0.

Indeed, the first two lines are constraints on feasibility of x,y. The third inequality, by weak duality,
can only be satisfied when x,y are optimal (in which case it is satisfied tightly).

So (i) is the obverse. Suppose, it does not take place. Then it’s the reverse. Let Ã be the whole
augmented matrix

Ã =

 A 0
0 −AT

−cT bT


in (1). Note that the transposes of c, b appear in the last row imply to testify that this is just a single

iequality. The right-hand side is b̃ = (b,−c, 0) ∈ Rm+n+1.

The reverse side: there exists ỹ ∈ Rm+n+1
+ , such that ÃT ỹ ≥ 0, and ỹ · b̃ < 0. Let ỹ = (p, q, r), with

p ∈ Rm
+ , q ∈ Rn

+, r ∈ R+.

Then ỹ · b̃ < 0 reads

(2) c · q > b · p.

1Recall: if x,y are feasible for, respectively, the prima and dual, then c · x ≤ b · y. This is proven just by, say, taking
the dot product of the primal inequalities with y, and this procedure will be repeated explicitly in the forthcoming proof a
few times, without being referred to as weak duality.
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Besides, ÃT ỹ ≥ 0 reads now Aq ≤ rb and ATp ≤ rc. Let us use weak duality. Namely, take the dot
product of the first one of the latter two inequalities with p ≥ 0:

rb · p ≥ p ·Aq = ATp · q ≥ rc · q.
This, to come to terms with (2), implies r = 0.

Hence, we have (2) together with

(3)

{
Aq ≤ 0,

ATp ≥ 0.

Let us see what possibilities for the primal/dual pair

(4)

{
Ax ≤ b,

ATy ≥ c.

this leaves.
First off, both the primal and the dual cannot be feasible. For if there were feasible x,y, then we

could take any huge real M > 0, add to (4) the M -multiple of (3) and get{
A(x+Mq) ≤ b,

AT (y +Mp) ≥ c.

In other words, xM = x + Mq and yM = y + Mp would also be feasible solutions. By weak duality
then b · yM ≥ c · xM . This means

b · p− c · q ≥ 1

M
(c · x− b · y).

Taking the limit M → ∞ implies b · p− c · q ≥ 0, in contradiction with (2).
So, if (i) in the Theorem’s formulation does not occur, both primal and dual cannot be feasible. One

possibility, of course, is (iv) – both unfeasible.
Let us now show that if the primal is feasible (in which case. as we already know, the dual is unfeasible)

the primal is in fact, unbounded. Suppose Ax ≤ b for some x. Take a dot product with p ≥ 0:

p · b ≥ p ·Ax = x ·ATp ≥ x · 0 = 0.

Then, by (2) one has c ·q > 0. So, xM = x+Mq is feasible for the primal, with c ·xM = c ·x+Mc ·q →
+∞. Unbounded.

Finally, suppose ATy ≥ c for some y. Then, as we already know, the primal is unfeasible. Let us
show that the dual is, in fact, unbounded. Take a dot product with q ≥ 0:

q · c ≤ q ·ATy = y ·Aq ≤ y · 0 = 0.

Then, by (2) one has b·p < 0. Thus yM = y+Mp is feasible for the dual, with b·yM = b·y+Mb·p → −∞.
Unbounded.
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