
Kuhn-Tucker-Lagrange conditions

General non-linear optimisation problem: let f : Rn → R, g : Rn → Rm. Namely, f(x) is an objective function,
and the notation g(x) = (g1(x), . . . , gm(x)) embraces the constraint functions, with x = (x1, . . . , xn). All the
functions are smooth. Consider the problem

Min f(x) such that g(x) ≥ 0. (1)

Let
F = {x ∈ Rn : g(x) ≥ 0}

be the feasible set for (1). Some of g′
is may have a particular simple form xj = 0 for some components of x.

The problem is handled via the Lagrange multipliers method. The key difference will be now that due to the
fact that the constraints are formulated as inequalities, Lagrange multipliers will be non-negative. Plus, there will
be some difference between the min and max problems. Kuhn-Tucker/Largange conditions, henceforth KTL or
KT, are the necessary conditions for some feasible x to be a local minimum for the optimisation problem (1). Just
like with the standard Lagrange multipliers, there will be a non-degeneracy assumption.

In general, one can proclaim the following alternative: either x is a local minimum or it is not. Let’s call
the former side of the alternative (x is a local minimum) positive, and the latter side (it is not local minimum)
negative. If the positive side of the alternative is true, then the following scenario cannot happen.

There cannot exist a curve γ, emanating from x and contained in the feasible set F – let us refer to γ as a
feasible curve beginning at x – such that f(x) decreases along this curve. In particular, if v is the tangent vector
to the curve γ at its initial point x, then the directional derivative of f in the direction v cannot be negative.
Indeed, otherwise, arbitrarily closely to x in F there will be points x′, where f(x′) is smaller than f(x).

Given x, let us introduce the set of True Feasible Directions at x as the set of all vectors v, such that there
exists a feasible curve γ, beginning at x, and such that v is the tangent to γ at x. Denote this set TFD(x). So the
set TFD(x) is just the set of tangent vectors at x to all feasible curves beginning at x. The difference with the
equality constraints here is that as the feasible set is described in terms of inequalities, not equations, the easiest
inequality being, say, x ≥ 0, then if x is on the boundary of the feasible set and v is a TFD, then −v may not be
a TFD.

Also, given x, let us say that the ith constraint matters at x if it is tight at x, i.e gi(x) = 0. Otherwise, the
constraint will not have impact on the set of true feasible directions at x.

OK, here is the macro theorem: if x is a local minimum (maximum), then for any v ∈ TFD(x) the directional
derivative ∇f(x) · v cannot be negative (positive. For otherwise there is a feasible point x′ near x where the value
of f is smaller (greater) than at x.

The rest is finding a suitable mathematical form for this statement.
If v ∈ TFD(x) and the ith constraint matters at x, one must have

v · ∇gi(x) ≥ 0. (2)

Otherwise, if it were < 0, there will be points in F – on any feasible curve γ, to which v is tangent at x – where
gi < 0, which contradicts the notion of feasibility.

The definition of the set of True Feasible Directions is geometrically clear, but it is not at all clear how it can
be put into formulae. One would like to use (2) instead. So let us call the set of all v, such that for all constraints
that matter in x, they satisfy (2) the set of Feasible Directions at x, denote this set FD(x). (2) means that
TFD(x) ⊆ FD(x): a true feasible direction is always a feasible direction.

Just like the Lagrange multipliers’ under equality constraints theorem, KT conditions will work only under
the non-degeneracy assumption. This assumption is TFD(x) = FD(x), rather than ⊂. This assumption is called
Constraint Qualification, in short CQ. So, if CQ is satisfied, the method below will work. If CQ is not satisfied –
then it may fail. Speaking freely, the set of feasible directions at x is generally the union of true feasible directions
and some junk feasible directions. CQ is the assumption that the set of junk directions is empty.

In the equality constraints case, CQ, or non-degeneracy, is equivalent to linear independence of constraints’
gradients. Here, as we are talking about inequalities, and many constraints can be tight at some point, let us say,
that CQ may fail at a point if the set of gradients of tight constraints at that point contains linearly dependent
vectors.

Let us now formulate the theorem and elaborate on it.
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Theorem (Kuhn-Tucker) If x is a local minimum for the optimisation problem (1) and CQ is satisfied at x,
then the gradient ∇f(x) must be represented as a linear combination of the gradients of the constraints gi(x) that
matter (are tight) at x, with non-negative coefficients.

These coefficients are called, once again, Lagrange multipliers. To eliminate “constraints that matter” notion
from the formulation, observe that if we can just set λ ∈ Rm

+ (assign a non-negative Lagrange multiplier to each
constraint) and then require

λ · g(x) = 0, i.e. λ1g1(x) + . . .+ λmgm(x) = 0.

Which means, as both λ, g ≥ 0 that each term in the above sum must be zero. So we can only have λi 6= 0 when
gi(x) = 0 (tight), while as soon as gi(x) > 0 we may not have λi > 0, because this will never give us zero in the
right-hand side above. Therefore, we can reformulate the theorem as follows.

Theorem (Kuhn-Tucker, reformulated) If x is a local minimum for the optimisation problem (1) and CQ is
satisfied at x, then x must satisfy the following system of equations-inequalities:

∇f(x) = λ1∇g1(x) + . . .+ λm∇gm(x),

0 = λ1g1(x) + . . .+ λmgm(x),

g(x) ≥ 0,
λ ≥ 0.

(3)

This is a practical formulation – the system (3) is referred to as Kuhn-Tucker (Lagrange) conditions. Practically,
one can solve it, find all x that satisfy it – and these will be suitable candidates for local minima, provided that
CQ is satisfied.

Note that the first equation in (3) is, in fact, n equations, and is equivalent to obtaining critical points with
respect to x of the Lagrangian

L(x,λ) = f(x)− λ · g(x),

with λ ≥ 0 and the minus sign being therefore important! Observe that for the MAXIMUM problem, all one
needs to do is to change the minus sign in the Lagrangian to plus, because finding a maximum for f is the same
as finding a minimum for −f .

Proof of KT theorem: Follows immediately from the Farkas alternative. Given x, let A be a matrix, whose
columns are the vectors ∇gi(x) for the constraints that matter at x. Let b = ∇f(x). By the Farkas alternative,
one of the two occurs: either Aλ = b for some λ ≥ 0, or there exists some v, such that ATv ≥ 0 and v ·b < 0. I.e.,
there exists a feasible direction v, such that the directional derivative of f in the direction v is negative. Under
the non-degeneracy assumption, v is a true feasible direction. So, if x is a local minimum, the latter side of the
Farkas alternative cannot occur. Then the former must occur. But the former side of Farkas is (3).�

This is really it. Let us make some final remarks addressing the longer handout.

1. Often it happens that among the constraints one has x1, . . . , xn ≥ 0. These have a particularly simple form
for the constraints, because their gradients are just the coordinate unit vectors (1, 0, . . . , 0), . . . , (0, . . . , 0, 1)
respectively, often denoted as ej . These constraints can be singled out from the rest, g(x) = 0 then describing
the rest of “more difficult” constraints. In literature the Lagrange multipliers, corresponding to the “easy”
constraints x ≥ 0 are often denoted as µ, while λ stand for the Lagrange multipliers corresponding to the
rest of the constraints. The Lagrangian is then L(x,λ,µ), with x,λ,µ ≥ 0, the extra term −µ · x, and the
second relation in (3) then adds to itself x ·µ = 0. (Besides, many books use the letter Ψ for the Lagrangian,
rather than L.)

2. The second line in (3) is often referred to as complementary slackness. Indeed, if λi is the i the constraint’s
shadow price, then it can only be nonzero when the constraint is tight. In exactly the same way as with the
equality constraints, the Lagrange multipliers λ are the constraints’ shadow prices.

3. If there is an equality constraint h(x) = 0 involved, by rewriting it as h(x) ≥ 0 and −h(x) ≥ 0, assigning
the Lagrange multiplier λ1 to the first one and λ2 to the second one, one gets the term (λ1 − λ2)h(x) in the
lagrangian, and then lets λ = λ1 − λ2. I.e., the Largange multiplier for an equality constraint – as we know
– is unsigned.

2



4. Finally let us see how KT implies the duality theory for LP. Consider the manufacturing problem Max c ·x,
such that x ≥ 0 and Ax ≤ b, x ∈ Rn

+, b ∈ Rm.

Denote f(x) = c · x and g(x) = b − Ax. From linearity of the constraints, CQ are always satisfied: the
gradients of the constraints are the rows of A, which are linearly independent vectors. Also, in fact, all the
functions involved are both convex and concave, and so KT are necessary and sufficient, because when one
has convexity, as we know, a local extremum is the global one. As LP singles out the constraints x ≥ 0
from the rest, let us introduce Lagrange multipliers λ ∈ Rm

+ for the constraints Ax ≤ b and µ ∈ Rn
+ for the

constraints x ≥ 0.

The Lagrangian (note: there are plus signs, due to Max) is

L(x,λ,µ) = (c+ µ) · x+ λ · (b−Ax) = (c+ µ−ATλ) · x+ λ · b,

and by KT, x is the maximum production strategy if and only if together with some λµ ≥ 0, it satisfies the
inequalities/equations:

ATλ = c+ µ, µ · x = 0,
Ax ≤ b, λ · (b−Ax) = 0, x,λ,µ ≥ 0.

In other words, λ is an optimal solution for the dual problem min λ ·b for λ ≥ 0, such that ATλ ≥ c, reached
when λ · b = c · x. Indeed, to get it – the strong duality – take the first equation and dot-multiply it by x,
using µ · x = 0, as well as λ · b = λ ·Ax from the fourth equation.

Recall that for a pair (x,λ) of feasible solutions of the primal Ax ≤ b and the dual ATλ ≥ c problems, one
always has λ · b ≥ c · x by the so-called weak duality theorem: to get it just dot-multiply the primal from
the left by λ, the dual from the right by x and compare, using that both x,λ ≥ 0).

Complementary slackness theorem is also there: by definition of λ, a component λ̂i may be positive only if
the ith constraint for the primal is satisfied as an equality. In the same fashion, the jth feasibility inequality
for the dual optimal solution (shadow price) λ may not be an equality only if the corresponding component
of x̂ is zero, that is the decision variable xj is free (the dual inequalities for the basic components of x are
satisfied as the equalities). The vector µ = ATλ− c, whose components µ̂j may be strictly positive only for
non-basic j, shows the amount by which the market price cj should increase, so that j becomes basic, that
is the optimal pair (x,λ) should change, as µj < 0 is not allowed. So it gives a reduced cost of the non-basic
decision variable xj .

Of course, the same can be done when the primal problem is not the MP, but Canonical form, which involves
equalities. Then the Lagrange multipliers λ, or the shadow prices, will be unsigned and solve the dual
problem.
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