Kuhn-Tucker-Lagrange conditions

General non-linear optimisation problem: let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \boldsymbol{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Namely, $f(\boldsymbol{x})$ is an objective function, and the notation $\boldsymbol{g}(\boldsymbol{x})=\left(g_{1}(\boldsymbol{x}), \ldots, g_{m}(\boldsymbol{x})\right)$ embraces the constraint functions, with $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$. All the functions are smooth. Consider the problem

$$
\begin{equation*}
\text { Min } f(\boldsymbol{x}) \text { such that } \boldsymbol{g}(\boldsymbol{x}) \geq 0 \tag{1}
\end{equation*}
$$

Let

$$
F=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{g}(\boldsymbol{x}) \geq 0\right\}
$$

be the feasible set for (1). Some of $g_{i}^{\prime} s$ may have a particular simple form $x_{j}=0$ for some components of \boldsymbol{x}.
The problem is handled via the Lagrange multipliers method. The key difference will be now that due to the fact that the constraints are formulated as inequalities, Lagrange multipliers will be non-negative. Plus, there will be some difference between the min and max problems. Kuhn-Tucker/Largange conditions, henceforth KTL or KT, are the necessary conditions for some feasible \boldsymbol{x} to be a local minimum for the optimisation problem (1). Just like with the standard Lagrange multipliers, there will be a non-degeneracy assumption.

In general, one can proclaim the following alternative: either \boldsymbol{x} is a local minimum or it is not. Let's call the former side of the alternative (\boldsymbol{x} is a local minimum) positive, and the latter side (it is not local minimum) negative. If the positive side of the alternative is true, then the following scenario cannot happen.

There cannot exist a curve γ, emanating from \boldsymbol{x} and contained in the feasible set F - let us refer to γ as a feasible curve beginning at \boldsymbol{x} - such that $f(\boldsymbol{x})$ decreases along this curve. In particular, if \boldsymbol{v} is the tangent vector to the curve γ at its initial point \boldsymbol{x}, then the directional derivative of f in the direction \boldsymbol{v} cannot be negative. Indeed, otherwise, arbitrarily closely to \boldsymbol{x} in F there will be points \boldsymbol{x}^{\prime}, where $f\left(\boldsymbol{x}^{\prime}\right)$ is smaller than $f(\boldsymbol{x})$.

Given \boldsymbol{x}, let us introduce the set of True Feasible Directions at \boldsymbol{x} as the set of all vectors \boldsymbol{v}, such that there exists a feasible curve γ, beginning at \boldsymbol{x}, and such that \boldsymbol{v} is the tangent to γ at \boldsymbol{x}. Denote this set $T F D(\boldsymbol{x})$. So the set $T F D(\boldsymbol{x})$ is just the set of tangent vectors at \boldsymbol{x} to all feasible curves beginning at \boldsymbol{x}. The difference with the equality constraints here is that as the feasible set is described in terms of inequalities, not equations, the easiest inequality being, say, $\boldsymbol{x} \geq 0$, then if \boldsymbol{x} is on the boundary of the feasible set and \boldsymbol{v} is a TFD, then $-\boldsymbol{v}$ may not be a TFD.

Also, given \boldsymbol{x}, let us say that the i th constraint matters at \boldsymbol{x} if it is tight at \boldsymbol{x}, i.e $g_{i}(\boldsymbol{x})=0$. Otherwise, the constraint will not have impact on the set of true feasible directions at \boldsymbol{x}.

OK, here is the macro theorem: if \boldsymbol{x} is a local minimum (maximum), then for any $\boldsymbol{v} \in T F D(\boldsymbol{x})$ the directional derivative $\nabla f(\boldsymbol{x}) \cdot \boldsymbol{v}$ cannot be negative (positive. For otherwise there is a feasible point \boldsymbol{x}^{\prime} near x where the value of f is smaller (greater) than at \boldsymbol{x}.

The rest is finding a suitable mathematical form for this statement.
If $\boldsymbol{v} \in T F D(\boldsymbol{x})$ and the i th constraint matters at \boldsymbol{x}, one must have

$$
\begin{equation*}
\boldsymbol{v} \cdot \nabla g_{i}(\boldsymbol{x}) \geq 0 \tag{2}
\end{equation*}
$$

Otherwise, if it were <0, there will be points in F - on any feasible curve γ, to which \boldsymbol{v} is tangent at \boldsymbol{x} - where $g_{i}<0$, which contradicts the notion of feasibility.

The definition of the set of True Feasible Directions is geometrically clear, but it is not at all clear how it can be put into formulae. One would like to use (2) instead. So let us call the set of all \boldsymbol{v}, such that for all constraints that matter in \boldsymbol{x}, they satisfy (2) the set of Feasible Directions at \boldsymbol{x}, denote this set $F D(\boldsymbol{x})$. (2) means that $T F D(\boldsymbol{x}) \subseteq F D(\boldsymbol{x})$: a true feasible direction is always a feasible direction.

Just like the Lagrange multipliers' under equality constraints theorem, KT conditions will work only under the non-degeneracy assumption. This assumption is $T F D(\boldsymbol{x})=F D(\boldsymbol{x})$, rather than \subset. This assumption is called Constraint Qualification, in short CQ. So, if CQ is satisfied, the method below will work. If CQ is not satisfied then it may fail. Speaking freely, the set of feasible directions at \boldsymbol{x} is generally the union of true feasible directions and some junk feasible directions. CQ is the assumption that the set of junk directions is empty.

In the equality constraints case, CQ, or non-degeneracy, is equivalent to linear independence of constraints' gradients. Here, as we are talking about inequalities, and many constraints can be tight at some point, let us say, that CQ may fail at a point if the set of gradients of tight constraints at that point contains linearly dependent vectors.

Let us now formulate the theorem and elaborate on it.

Theorem (Kuhn-Tucker) If \boldsymbol{x} is a local minimum for the optimisation problem (1) and CQ is satisfied at \boldsymbol{x}, then the gradient $\nabla f(\boldsymbol{x})$ must be represented as a linear combination of the gradients of the constraints $g_{i}(\boldsymbol{x})$ that matter (are tight) at \boldsymbol{x}, with non-negative coefficients.

These coefficients are called, once again, Lagrange multipliers. To eliminate "constraints that matter" notion from the formulation, observe that if we can just set $\boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}$ (assign a non-negative Lagrange multiplier to each constraint) and then require

$$
\boldsymbol{\lambda} \cdot \boldsymbol{g}(\boldsymbol{x})=0, \text { i.e. } \quad \lambda_{1} g_{1}(\boldsymbol{x})+\ldots+\lambda_{m} g_{m}(\boldsymbol{x})=0
$$

Which means, as both $\boldsymbol{\lambda}, \boldsymbol{g} \geq 0$ that each term in the above sum must be zero. So we can only have $\lambda_{i} \neq 0$ when $g_{i}(\boldsymbol{x})=0$ (tight), while as soon as $g_{i}(x)>0$ we may not have $\lambda_{i}>0$, because this will never give us zero in the right-hand side above. Therefore, we can reformulate the theorem as follows.

Theorem (Kuhn-Tucker, reformulated) If \boldsymbol{x} is a local minimum for the optimisation problem (1) and CQ is satisfied at \boldsymbol{x}, then \boldsymbol{x} must satisfy the following system of equations-inequalities:

$$
\begin{align*}
\nabla f(\boldsymbol{x}) & =\lambda_{1} \nabla g_{1}(\boldsymbol{x})+\ldots+\lambda_{m} \nabla g_{m}(\boldsymbol{x}) \\
0 & =\lambda_{1} g_{1}(\boldsymbol{x})+\ldots+\lambda_{m} g_{m}(\boldsymbol{x}) \tag{3}\\
& \geq 0 \\
\boldsymbol{g}(\boldsymbol{x}) & \geq 0 \\
\boldsymbol{\lambda} & \geq 0
\end{align*}
$$

This is a practical formulation - the system (3) is referred to as Kuhn-Tucker (Lagrange) conditions. Practically, one can solve it, find all \boldsymbol{x} that satisfy it - and these will be suitable candidates for local minima, provided that CQ is satisfied.

Note that the first equation in (3) is, in fact, n equations, and is equivalent to obtaining critical points with respect to \boldsymbol{x} of the Lagrangian

$$
L(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})-\boldsymbol{\lambda} \cdot \boldsymbol{g}(\boldsymbol{x})
$$

with $\boldsymbol{\lambda} \geq 0$ and the minus sign being therefore important! Observe that for the MAXIMUM problem, all one needs to do is to change the minus sign in the Lagrangian to plus, because finding a maximum for f is the same as finding a minimum for $-f$.

Proof of KT theorem: Follows immediately from the Farkas alternative. Given \boldsymbol{x}, let A be a matrix, whose columns are the vectors $\nabla g_{i}(\boldsymbol{x})$ for the constraints that matter at \boldsymbol{x}. Let $\boldsymbol{b}=\nabla f(\boldsymbol{x})$. By the Farkas alternative, one of the two occurs: either $A \boldsymbol{\lambda}=\boldsymbol{b}$ for some $\boldsymbol{\lambda} \geq 0$, or there exists some \boldsymbol{v}, such that $A^{T} \boldsymbol{v} \geq 0$ and $\boldsymbol{v} \cdot \boldsymbol{b}<0$. I.e., there exists a feasible direction \boldsymbol{v}, such that the directional derivative of f in the direction \boldsymbol{v} is negative. Under the non-degeneracy assumption, \boldsymbol{v} is a true feasible direction. So, if \boldsymbol{x} is a local minimum, the latter side of the Farkas alternative cannot occur. Then the former must occur. But the former side of Farkas is (3). \square

This is really it. Let us make some final remarks addressing the longer handout.

1. Often it happens that among the constraints one has $x_{1}, \ldots, x_{n} \geq 0$. These have a particularly simple form for the constraints, because their gradients are just the coordinate unit vectors $(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)$ respectively, often denoted as \boldsymbol{e}^{j}. These constraints can be singled out from the rest, $\boldsymbol{g}(\boldsymbol{x})=0$ then describing the rest of "more difficult" constraints. In literature the Lagrange multipliers, corresponding to the "easy" constraints $\boldsymbol{x} \geq 0$ are often denoted as $\boldsymbol{\mu}$, while $\boldsymbol{\lambda}$ stand for the Lagrange multipliers corresponding to the rest of the constraints. The Lagrangian is then $L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$, with $\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu} \geq 0$, the extra term $-\boldsymbol{\mu} \cdot \boldsymbol{x}$, and the second relation in (3) then adds to itself $\boldsymbol{x} \cdot \boldsymbol{\mu}=0$. (Besides, many books use the letter Ψ for the Lagrangian, rather than L.)
2. The second line in (3) is often referred to as complementary slackness. Indeed, if λ_{i} is the i the constraint's shadow price, then it can only be nonzero when the constraint is tight. In exactly the same way as with the equality constraints, the Lagrange multipliers $\boldsymbol{\lambda}$ are the constraints' shadow prices.
3. If there is an equality constraint $h(\boldsymbol{x})=0$ involved, by rewriting it as $h(\boldsymbol{x}) \geq 0$ and $-h(\boldsymbol{x}) \geq 0$, assigning the Lagrange multiplier λ_{1} to the first one and λ_{2} to the second one, one gets the term $\left(\lambda_{1}-\lambda_{2}\right) h(\boldsymbol{x})$ in the lagrangian, and then lets $\lambda=\lambda_{1}-\lambda_{2}$. I.e., the Largange multiplier for an equality constraint - as we know - is unsigned.
4. Finally let us see how KT implies the duality theory for LP. Consider the manufacturing problem Max $\boldsymbol{c} \cdot \boldsymbol{x}$, such that $\boldsymbol{x} \geq 0$ and $A \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \in \mathbb{R}_{+}^{n}, \boldsymbol{b} \in \mathbb{R}^{m}$.
Denote $f(\boldsymbol{x})=\boldsymbol{c} \cdot \boldsymbol{x}$ and $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{b}-A \boldsymbol{x}$. From linearity of the constraints, CQ are always satisfied: the gradients of the constraints are the rows of A, which are linearly independent vectors. Also, in fact, all the functions involved are both convex and concave, and so KT are necessary and sufficient, because when one has convexity, as we know, a local extremum is the global one. As LP singles out the constraints $\boldsymbol{x} \geq 0$ from the rest, let us introduce Lagrange multipliers $\boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}$ for the constraints $A \boldsymbol{x} \leq \boldsymbol{b}$ and $\boldsymbol{\mu} \in \mathbb{R}_{+}^{n}$ for the constraints $\boldsymbol{x} \geq 0$.
The Lagrangian (note: there are plus signs, due to Max) is

$$
L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=(\boldsymbol{c}+\boldsymbol{\mu}) \cdot \boldsymbol{x}+\boldsymbol{\lambda} \cdot(\boldsymbol{b}-A \boldsymbol{x})=\left(\boldsymbol{c}+\boldsymbol{\mu}-A^{T} \boldsymbol{\lambda}\right) \cdot \boldsymbol{x}+\boldsymbol{\lambda} \cdot \boldsymbol{b}
$$

and by KT, \boldsymbol{x} is the maximum production strategy if and only if together with some $\boldsymbol{\lambda} \boldsymbol{\mu} \geq 0$, it satisfies the inequalities/equations:

$$
\begin{array}{ll}
A^{T} \boldsymbol{\lambda}=\boldsymbol{c}+\boldsymbol{\mu}, & \boldsymbol{\mu} \cdot \boldsymbol{x}=0, \\
A \boldsymbol{x} \leq \boldsymbol{b}, & \boldsymbol{\lambda} \cdot(\boldsymbol{b}-A \boldsymbol{x})=0, \quad \boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu} \geq 0
\end{array}
$$

In other words, $\boldsymbol{\lambda}$ is an optimal solution for the dual problem min $\boldsymbol{\lambda} \cdot \boldsymbol{b}$ for $\boldsymbol{\lambda} \geq 0$, such that $A^{T} \boldsymbol{\lambda} \geq \boldsymbol{c}$, reached when $\boldsymbol{\lambda} \cdot \boldsymbol{b}=\boldsymbol{c} \cdot \boldsymbol{x}$. Indeed, to get it - the strong duality - take the first equation and dot-multiply it by \boldsymbol{x}, using $\boldsymbol{\mu} \cdot \boldsymbol{x}=0$, as well as $\boldsymbol{\lambda} \cdot \boldsymbol{b}=\lambda \cdot A \boldsymbol{x}$ from the fourth equation.
Recall that for a pair $(\boldsymbol{x}, \boldsymbol{\lambda})$ of feasible solutions of the primal $A \boldsymbol{x} \leq \boldsymbol{b}$ and the dual $A^{T} \boldsymbol{\lambda} \geq \boldsymbol{c}$ problems, one always has $\boldsymbol{\lambda} \cdot \boldsymbol{b} \geq \boldsymbol{c} \cdot \boldsymbol{x}$ by the so-called weak duality theorem: to get it just dot-multiply the primal from the left by $\boldsymbol{\lambda}$, the dual from the right by \boldsymbol{x} and compare, using that both $\boldsymbol{x}, \boldsymbol{\lambda} \geq 0$).

Complementary slackness theorem is also there: by definition of $\boldsymbol{\lambda}$, a component $\hat{\lambda}_{i}$ may be positive only if the i th constraint for the primal is satisfied as an equality. In the same fashion, the j th feasibility inequality for the dual optimal solution (shadow price) $\boldsymbol{\lambda}$ may not be an equality only if the corresponding component of $\hat{\boldsymbol{x}}$ is zero, that is the decision variable x_{j} is free (the dual inequalities for the basic components of \boldsymbol{x} are satisfied as the equalities). The vector $\boldsymbol{\mu}=A^{T} \boldsymbol{\lambda}-\boldsymbol{c}$, whose components $\hat{\mu}_{j}$ may be strictly positive only for non-basic j, shows the amount by which the market price c_{j} should increase, so that j becomes basic, that is the optimal pair $(\boldsymbol{x}, \boldsymbol{\lambda})$ should change, as $\mu_{j}<0$ is not allowed. So it gives a reduced cost of the non-basic decision variable x_{j}.
Of course, the same can be done when the primal problem is not the MP, but Canonical form, which involves equalities. Then the Lagrange multipliers $\boldsymbol{\lambda}$, or the shadow prices, will be unsigned and solve the dual problem.

