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Notation

We use the following notation�

dxe � smallest integer such that dxe � x�

a � b � a is of the same order of magnitude as b�

IR� �IR���� The set of nonnegative �strictly positive� real numbers�

IRn � The n�dimensional vector space over IR�

IRm�n � Set of m�n matrices with real elements�

A � Set of indices� A � fi�� � � � � i�g � f�� � � � � ng� � � �A�

�A � Number of elements in the set A�

x � �xi� � Typical name for a vector� Normally� x is a column vector� i�e�

x � IRn is equivalent with x � IRn��� The transpose of x is the

row vector xT� IR��n�

e
�
�

�
� Vector of all ones �all zeros��

ei � Vector with �ei�i � � and all other components equal to zero�

xA � The subvector �xi� � � � xi� �T with ik �A�

jxj � �jxij�� Similarly� x�� � �x��i � and x��� �
p
x � �
p
xi��

x � y � xi � yi� i� �� � � � � n�

xTy � x�y� � � � �� xnyn� Inner produt�

x�y � �xiyi�� elementwise �or Hadamard� product� �In Matlab�

x �� y ��

kxkp � �xp� � � � �xpn�
��p
� Vector norm� Special cases�

kxk� � jx�j�� � ��jxnj � eT jxj� kxk� � maxfjx�j� � � � � jxnjg �

kxk� �
p
x�� � � � �� x�n �

p
xTx �

Notation �

A � �aij�� Typical name for a matrix� The transpose of A is denoted AT

with �AT �ij � aji�

A�T � Short for
�
A��

�T
�

�
AT

���
�

diag�x� � Diagonal matrix with xi as the ith diagonal element�

I � diag�e��

� � Matrix of all zeros� It should be clear from the context�

whether � is a matrix or a vector�

X � diag�x�� Common usage in Interior Point environments�

A��j �Ai���� Column �row� vector with elements from the jth column

�ith row� of A� Examples� I��k � ek� Ik��� eTk �

AA � The submatrix af A consisting of the columns

A��j� � � � � �A��j� with jk �A�

kAkF �

�
�ij aij

����
� Frobenius �or Euclidean� matrix norm�

kAkp � maxkxk
p
��

�kAxkp�� Induced matrix norm� Special cases�

kAk� � max j
�

�i jaij j
�
� kAk� � max i

�
�j jaijj

�
�

kAk� � max j
�
�j�A�

�
�

�
max j

�
�j�A
TA�
�����
�

Here �j�B�
�
�j�B�

�
is the jth singular value �eigenvalue�

of matrix B�

rx� � Vector with jth component ��
�xj

�

�� � Matrix with �i� j�th component ���

�xi�xj
�

P �P�� � Feasible domain for problem �P � �interior of this domain��

P� � Set of optimal solutions for problem �P ��

�M � Machine accuracy �also called unit round o��� In all exam�

ples we have used Matlab� which follows the IEEE standard�

�M � 	��� � ���������� Results are shown rounded to an

appropriate number of digits�



�� Introduction

A linear optimization �LO� problem�	consists in �nding a vector that opti�

mizes �i�e� minimizes or maximizes� a linear objective function subject to a

�nite set of linear constraints� The constraints may be equality constraints

or inequality constraints� As two examples consider the so�called canonical

form

�P c� min
�
cTx � Ax � b� x � � �
� ����a�

and the standard form

�P s� min
�
cTx � Ax � b� x � � �
� ����b�

In both formulations the matrix A� IRm�nand the vectors c�x � IRn�

b� IRm� The two problems are di�erent � but in Section 	�� we shall

see that it is easy to get from one formulation to the other�

For a problem �P � the feasible domain P is the set of points in IRn�

for which all the constraints are satis�ed� If this set is empty �i�e� the

constraints are inconsistent�� then the problem is said to be infeasible�

otherwise it is feasible� If the objective function is bounded on P� then

the problem is said to be bounded� otherwise it is unbounded� The optimal

set P� is the set of optimal solutions� This set is empty if the problem is

infeasible or unbounded�

Assume that �P � is feasible� and let x and y denote two points in P�

Then

cTy � cTx 	 cT �x	y� �

If cT �x	y� � � then x cannot be an optimal solution� Put another way�

If
�	 This is often denoted a linear programming �LP� problem� but the name linear

optimization is more descriptive and is becoming increasingly popular in the liter�

ature�

Introduction �

cTh 	  � ���	�

then cT �x�th� 	 cTx for all t� � and we say that h is a descent direction�

The relative gain�
cTx 	 cT �x � th�

�

kthk�

is maximal if h is chosen as the steepest descent direction�

hsd � 	c �

An immediate consequence of these observations is that a point in P�

must lie on the boundary of P� since otherwise we can decrease the value

of the objective function by following a descent direction to the boundary�

Example ���� Consider the problem

�P � min
�

�x� � �x� �
�
�x� � x� � �

�
�x� � x� � �� � x�� x� � 	

�
�

The feasible domain is shown in Figure �
�� with the lines x� � �x� �� and

x����x� � �� indicated by thin line
 Figure �
� shows the space of descent

directions corresponding to the vector c�� � � �T

(2,0)

(0,1)
 

(0,2)
 

X
1

X
2

 Feasible 

 domain 

Figure ���� Feasible domain

c

h

Figure ����

Descent directions

In the next �gure we indicate a possible way of solving the optimization

problem
 The ideas behind this algorithm are generalized in the Simplex

method� see Chapter �
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Figure ����

Simplex idea

We start at the point�	 x��� ��� which is in the interior of the feasible

domain
 From that point we follow the steepest descent direction until we

reach the boundary of P
 This happens at the point x���� 	�
 Using

h� ���� 	�� we stay on the boundary and decrease cTx further
 The next

constraint is reached at the point x���� 	�� and with h����� �� we get

on to x� �	� ��
 Now it is not possible to decrease the objective function

further
 Thus� the optimal set consists of one point� P� � fx�g � f�	� ��g�

and the minimum value is cTx���


Example ���� For the problem of Example �
� it is easily seen that if we change

the �rst two inequalities� then the constraints are inconsistent
 This means

that the problem

�P �� min
�

�x� � �x� �
�
�x� � x� � �

�
�x� � x� � �� � x�� x� � 	

�
�

is infeasible


If the problem is changed to

�Q� min
�

x� � �x� �
�
�x� � x� � �

�
�x� � x� � �� � x�� x� � 	

�
�

then c � � � � �T is orthogonal to the line segment between ��� 	� and �	� ��


In this case Q� consists of all the points in that segment� Q� � fx� j x� �

��� 	� � t���� ��� 	� t� �g� with cTx���
 This shows that the optimal

solution to an LO problem may not be unique


�	 In this example we identify vectors in IR� with geometric vectors� and e�g� write

x ���� �	 instead of the more appropriate x � 
 � � �T �

Introduction �

Finally� consider

�U� min
�

��x� � �x� �
�
�x� � x� � �

�
�
x� � x� � �� � x�� x� � 	

�
�

It is clear� that the points x � �� �� � t��� �� are feasible for all t� 	� and

cTx � ���� ��t� �� as t��
 This is an unbounded problem


As mentioned in Example ���� Figure ��
 can be said to indicate the

basic idea in the Simplex method� The optimal solution is found as a vertex

�corner point� of the feasible domain� and can be determined by going from

one vertex to the next as long as the objective function decreases� This

method was originally formulated by Dantzig in ���� and has since been

constantly improved�

For about � years the Simplex method was the only real workhorse

for solving LO problems� Starting in ����� however� the publication of

Karmarkar�s algorithm provoked an overwhelming interest in the socalled

Interior point methods �IPM�� and now a number of e�cient variants exist�

The logarithmic barrier function is basic for most �if not all� IPMs� It

is de�ned via the function�	

��t� � t	 log�� � t� for t� �	��
� � ���
�

The graph is shown below� Note� that t�  is the unique minimizer of �

with ��� � �

−1  0  1  2  3
 0 

0.5

 1 

1.5

 2 
ψ(t)

t

Figure ���� Graph of �� ��	
�

To see how this function can be used in the LO context� consider the

formulation ����a�� and introduce the surplus vector s�x� de�ned by

�	 log is the natural �or Naperian	 logarithm� This implies that the derivative of logx

is x���
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s�x� � Ax 	 b � �����

For a feasible point it follows that x �� and s�x�� �� We shall assume

that in P�� the interior of the feasible domain� we have strict inequality

both for x and for s� i�e�

x � � and s�x� � � for x �P� � �����

Then we can de�ne the logarithmic barrier function

���x� � cTx 	 �
�� nX

j��
logxj �

mX
i��

log si�x�
	A � �����

where the barrier parameter � is a positive number� The logarithm terms

are introduced to keep x in P�� For a �xed value of � the minimizer x��� of

���x� in P� is found by solving a nonlinear system of equations �see Section


���� and letting ��  we shall see in Section 
�	 that x��� � x� �P��

Example ���� For the problem of Example �
� we have

A �


��� �

��� ��
�

� b �


�
��

�
� c �



�

�
�

�

We have used the IPM sketched above and found the results for xj��� and

si��� � si�x���� shown in in the left part of Figure �

 In the right part we

give these results in the usual x�x��plane� cf
 Figure �
�
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Figure ���� Interior point method

Introduction �	

In Chapter 	 we give the theoretical background for LO algorithms�

Chapters 
 and � discuss Interior Point and Simplex methods� respectively�

and in Chapter � we introduce another class of methods� called continuation

methods�

The present note is only a brief introduction to this vast �eld� For

a more profound discussion an abundance of textbooks are available� We

shall refer to ��� and ��
� for the theory and programming of the Simplex

method� while �
�� is a thorough introduction to the theory seen from an

IPM point of view� Mathematical models employing linear optimization

are discussed in ���� and ���� is an introduction in Danish to both theory�

the Simplex method and applications�



�� Theoretical Background

In this chapter we give the background for algorithms for solving LO prob�

lems� First� in Section 	�� we show that any problem can be written in

canonical or in standard form ������ In Section 	�	 we discuss the impor�

tant aspect of duality� and show that with any problem

�P � minf fP �x� � P constraints g �

there is an associated dual problem

�D� maxf fD�y� � D constraints g �

In this connection �P � is called the primal problem� In Table 	��� p� 	 we

give rules for transformation between �P � and �D��

In Sections 	�
�� we introduce complementarity� and give some fun�

damental results for LO problems� Finally� in Sections 	���� we discuss

projection� the logarithmic barrier function and the central path� which are

basic for Interior Point methods�

���� Formulation

A linear optimization problem has the form

�P � minf fP �x� � Set of linear constraints g �	��a�

or

�P � maxf fP �x� � Set of linear constraints g � �	��b�

Here� x � IRn and fP �x� is a linear objective function

fP �x� � cTx � f
 �

where c � IRn and f
 � IR are given�

�	�	 Formulation ��

We �rst note that the two versions of �	��� are equivalent in the sense

that maxffP �x� � Constraintsg has the same optimal solution�s� x� as

minf	fP �x� � Constraintsg� and that the constant f
 has no in�uence on

x�� Therefore� we need only discuss problems of the form

�P � min
�
fP �x�  cTx � Set of linear constraints

�
� �	�	�

There are the following possibilities for the constraints�

�� Equality constraints

aTix � bi � �	�
a�

	� Inequality constraints

aTix � bi or aTi x � bi � �	�
b�


� Simple constraints

xj � j or xj � uj � �	�
c�

Here� the vectors ai � IRn and the scalars bi� j � uj � IR are given�

Generally� the set of constraints includes more than one of these types�

To ease the discussion� however� we shall assume that the problem is given

in �or rewritten to� either canonical or standard form� ������

�P c� min
�
cTx � Ax � b� x � � �
�

�P s� min
�
cTx � Ax � b� x � � �
�

Example ���� In this example we show how some frequently occuring constraints

can be rewritten to conform with ��
��
 The list is not exhaustive


Given Canonical Standard

constraint form form

aTi x � bi �aTi x � �bi aTi x � si � bi� si � 	

aTi x � bi aTi x � si � bi� si � 	

aTi x � bi

aTi x � bi and

�aTi x � �bi

The extra variables fsig are called slack variables
 They are closely related

to the surplus vector s�x� de�ned in ��
��
 For each slack variable n is

increased by one� A is augmented with a column from the unit matrix I � and

c is augmented with a zero element




�� Theoretical Background

In both formulations simple constraints on the variables can be treated as

follows�

xj � �j xj � �j � x�j� x�j � 	

xj � uj xj � uj � x�j� x�j � 	

�j � xj � uj

xj � �j � x�j � x��j with

x�j � x��j � uj � �j �

x�j� x
��
j � 	

xj free x�j � x��j � x�j� x
��
j � 	

In all cases xj is replaced by x�j �possibly augmented with x��j �� and the

transformation may imply changes in A� b and c


Example ���� Consider the problem

�P � max
�

��x� � �	x� �
�x� � �x� � ��

�x� � �x� � �
� x� � 	

�
�

The variable x� is free� and we write it as x��x���x��� with x��� x
��
� � 	
 By

further use of the tools of example �
� we see that �P � is equivalent with

�P c� min
�
c

T
x � Ax � b� x � �

�
�

where
x �

�
x�

x��
x���


� c �

����
��	

�	


� A �
��� �� �

�� � ��

� �� �


� b �
����

�

��


�

Alternatively� we can reformulate the problem to

�P s� min
�
c

T
x � Ax � b� x � �

�
�

where
x �

��� x�
x��

x���
s�

��� � c �
��������	

�	
	

��� � A �


� � �� �

�� � �� 	
�

� b �


��

�
�

�

Example ���� The problem of Example �
� can be written in standard form

with
x �

��� x�
x�

s�
s�

��� � c �
��� �

�
	

	
��� � A �


��� � �� 	

���� � 	 �
�

� b �


�

�
�

�

�	�	 Formulation ��

Example ���� Consider a problem in standard form with n variables and

rank�A� � m � n
 Let B be a subset of m elements from f�� � � � � ng�

and C � f�� � � � � ngnB
 We can split A into B � A
B

� IRm�m and

C � A
C

� IRm�n�m obtained by picking the columns with index from B and

C� respectively� and we let �c
B
� c
C
� and �x
B
�x
C
� denote a similar splitting of

c and x
 Then

�P � min
�
c

T
x � Ax � b � x � �

�

is equivalent with

�P �� min
�
c TB xB � c TC xC � BxB � b�CxC � xB�xC � �

�
�

Now� assume that rank�B��m
 Then

xB � B
��
b�B��
CxC � eb� eAxC ��
�a�

and
c TB xB � c TC xC � c TB
eb �
�
c TC �CT
B
�T
cC

�T
xC � c� � ecTxC � ��
�b�

Therefore� �P � is equivalent with the following problem in canonical form

with n�m variables and m constraints�

�Pc� min
n ecTz � �eAz � �eb� z � �
o

�

If the original problem has p�m free variables� and their indices are part

of B� then the constraint x
B

� � should be used only for the n�p non free

variables
 This implies that in �Pc� the matrix eA is �m�p���n�m�


Example ���� The problem treated in Example �
� can be written

�P � min f ���x� � �	x� � 	x� � Ax � b� x�� x� � 	 g �

where x� is a slack variable� and

A �


� � �

�� � 	
�

� b �


��

�
�

�

We take B � f�� �g� including the index of the free variable x�� and get

B �


� �

	 �
�

� C �


�
��

�
� eA �



����

����
�

� eb �


�����

���
�

�

ec � ����


�
��

�T 

� 	

� �
��� 

	
��	

���
� ���� ��
� � � ���
� �



�� Theoretical Background

Now� ��
�a� takes the form


x�

x�
�

�


�����

���
�

�


����

����
�

x� �

and x�� 	� x� free� lead to the equivalent problem

�P �� min
n
����	
�

� �	�
�

x� �
���

�

� ��
�

x� � 	 � x� � 	
o

�

or� simpler

�P ��� min f �x� � �x� � �� � x� � 	 g �

Now it is easily seen that the optimal set is x�� ��� x���� and x�� �	 with

the optimal value cTx� � �	� 


Example ���� Many programs for solving LO problems demand that the problem

is presented either in canonical form or in standard form
 This� however� can

give unnecessary trouble during the solution process caused by linear depen�

dent rows in A �arising from transforming equality constraints to canonical

form� or linear dependent columns �arising from the treatment of free vari�

ables�


Rather than expanding the number of constraints and�or variables� it may be

better to reduce it� as described in Example �
�
 A deeper analysis is given

in ���� Theorem I
��� Let the LO problem �P � have m constraints and n

variables� including m� equality constraints and n� free variables
 Then there

is an equivalent canonical problem �P ��� for which m��n� �m�n��m��n��


The better LO programs all include a preprocessing of the problem with the

aim of identifying and removing free variables and redundancy� see ���� ���


���� Duality

This is a fundamental concept in linear optimization � and plays an impor�

tant role in the theory� in applications as well as in algorithms� Therefore

it plays a major role in all textbooks on LO� but often the dual problem

appears as Godsent� Our presentation is inspired by ���� and further leans

on �	�� �
��� �
���

First� consider a problem in standard form

�P � min
�
cTx � Ax � b� x � � �
� �	���

�	�	 Duality ��

with n variables and m constraints� We assume that the problems is feasi�

ble� i�e� the domain P is not empty� We relax �P � to

�R� min
�
cTx � yT �b 	Ax� � x � � �
� �	���

where y is an arbitrary vector in IRm� The elements yi are called penalty

factors� The relaxed problem is also an LO problem� and for any y � IRm

it has the simple feasible domain R � IRn
��

We introduce the notation

fR�x�y� � cTx � yT �b	Ax�

� xT �c 	ATy� � bTy � �	���

and let x�R�y� denote an optimal solution to �R� for a given y �

It is seen that P � R and that fR�x�y� � fP �x� for x �P �implying

that b	Ax ���� Therefore�

fR�x�R�y��y� � fP �x�� for all y � IRm �

This means that for any m�vector y the solution to the relaxed problem

gives a lower bound for the optimal value for �P �� This is true also� if we

choose y � y�� the vector that maximizes this lower bound�

max

y �F
ffR�x�R�y��y�g � fP �x�� � �	���

where F � IRm is the space from which we may choose y �

The optimal value for the relaxed problem is easily computed� From

the second expression for fR in �	��� and from the positivity of x �R it

follows that if any �c	ATy�i 	 � then we let xi �
� and get the minimal

value 	
� To get the maximal lower bound we therefore must specify the

condition
c 	ATy � � �

and see that then x�R�y� �� is optimal for �R� with fR�x�R�y��y� � bTy �

cf� �	���� Thus� y� is an optimal solution to the LO problem

�D� max
�
bTy � ATy � c � � �	���

This is a dual problem associated with the primal problem �P � given by

�	���� Note that in this LO problem the variables yj are free�



�� Theoretical Background

Example ��	� For the problem discussed in Example �
� we gave a standard

formulation in Example �
�
 Using this we �nd the dual problem

�D� max
�

y� � �y� �
�
�
y� � �
�
y� � � � �y� � 	

y� � y� � � � y� � 	

�
�

The feasible domain D is shown below
 The solution can be found as dis�

cussed in connection with Figure �
�� except that now we have a maximization

problem
 The solution is y����� 	� with fD�y
��� �
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Y
1

Y
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Figure ���� D

Next� consider a problem in canonical form�

�P � min
�
cTx � Ax � b� x � � �
� �	��a�

Again� we want to �nd a lower bound on f �x�� by introducing a relaxed

problem �R� with objective function given by �	���� Now� however� we must

restrict the penalty factors to ensure that �	��� holds� Since b	Ax � �� the

restriction y �F � IRm� guarantees this� and we see that the dual problem

to �	��a� is

�D� max
�
bTy � ATy � c� y � � �
� �	��b�

Example ��
� The problem of Example �
� is stated in canonical form� and from

��
�	� we see that its dual is

�D� max
�

y� � �y� �
�
�y� �

�
� y� � �

y� � y� � �
� y�� y� � 	

�
�

This is seen to be equivalent with the result of Example �
� when we replace

y� by �y�


�	�	 Duality 	

Other types of constraints can be treated similarly� and to make a long

story short�

� For each constraint in �P � there is a variable in �D��

� For each variable in �P � there is a constraint in �D��

� If �P � is a maximization problem� then the relaxed problem provides

an upper bound on fP �x���

Primal �P � Dual �D�

Objective min
�
cTx

�
max

�
bTy

�
Objective

max
�	cTx� min
�	bTy�

Constraint aTix � bi yi free Variable

aTix � bi yi � 

aTix � bi yi � 

Variable xj free �AT �j��y � cj Constraint

xj �  �AT �j��y � cj

xj �  �AT �j��y � cj

Table ���� Transformation between primal and dual

Exercise ���� Find the dual of problem �P � in Example �
�� and show that it

has the optimal value fD�y
����	�


Example ����� The roles of the primal and dual problem may interchange�

Consider the LO problem from Example �
�
 It can be written as

�Q� min
�

�y� � �y� �
�
�
y� �
�
�
y� � �

y� � y� � �
� y�� y� � 	

�
�

and by the rules of Table �
� we �nd its dual

�D� max
�

�x� � �x� �
�
�x� � x� � ��

�
�x� � x� � �

� x�� x� � 	
�

�

If we replace x by �x� we see that this is equivalent with the original problem

from Example �
�




	� Theoretical Background

Now� let �P � be a minimization problem� and therefore �D� a max�

imization problem� For any pair of feasible vectors x �P and y �D we

de�ne the duality gap

��x�y�  fP �x�	 fD�y� � cTx 	 bTy � �	����

From the derivation � i�e� the de�nition of �D� � follows

The weak duality property

cTx 	 bTy �  for all x �P� y �D � �	��	�

Further� it follows that if ��x�y� �  �the duality gap is closed�� then fP �x�

and fD�y� are respectively as small and as large as possible� which means

that both x and y are optimal�

��x�y� �  � x �P� and y �D� � �	��
�

In �Examples ���� 	��� and �Example 	��� Exercise 	��� we saw that the

converse may be true� x �P�� y �D� � ��x �y� � � In Section 	�� we

shall see� under what circumstances this is the case� but �rst we need some

extra theory�

���� Complementarity

Consider the primal problem in canonical form�

�P � min
�
cTx � Ax � b� x � � �
� �	���a�

with the corresponding dual

�D� max
�
bTy � ATy � c� y � � �
� �	���b�

For any pair of feasible vectors x �P and y �D we de�ne the surplus vectors

�cf� ������
s�x� � Ax 	 b and s�y� � c 	ATy � �	����

Note� that x� s�y�� IRn� and y � s�x�� IRm� �

The de�nition �	���� is equivalent with

b � Ax 	 s�x� c � ATy � s�y� � �	����

�	
	 Complementarity 		

We insert these in the expression �	���� for the duality gap�

��x �y� � cTx 	 bTy

� xTATy � xT s�y�	 yTAx � yT s�x�

� xT s�y� � yT s�x� � �	����

All the vectors are nonnegative� so the duality gap vanishes only if each

x�jsj�y
�� �  and y�i si�x
�� � � or�	

x��s�y�� � � � y��s�x�� � � � �	���a�

This is the socalled complementarity property of optimal solution pairs

�x� �P�� y� �D��� If the optimal solutions to �P � and �D� further have

the additional property

x� � s�y�� � � � y� � s�x�� � � � �	���b�

then we say that �P � and �D� have the strict complementarity property�

Example ����� In Examples �
� and �
���
� we treated a problem of the form

��
��� with

A �


��� �

��� ��
�

� b �


�
��

�
� c �



�

�
�

�

The optimal solutions and corresponding surplus vectors are

x
� �



	

�
�

� y
� �



�

	
�

� s�x�� �


	

�
�

� s�y�� �


���

	
�

�

and we �nd

x
�
�s�y�� �



	

	
�

� x
� � s�y�� �



���

�
�

� � �

y
�
�s�x�� �



	

	
�

� y
� � s�x�� �



�

�
�

� � �

Thus� both ��
��a� and ��
��b� are satis�ed in this case


�	 See �Notation for the de�nition of u�v�



	
 Theoretical Background

For a problem in standard form

�P � min
�
cTx � Ax � b� x � � �
� �	���a�

the dual problem is given by �	���� which can be reformulated to

�D� max
�
bTy � ATy � s � c� s � � �
� �	���b�

Thus� y is free and s�x� �� for a feasible x� The problem �	���� is said

to have the strict complementarity property if it has an optimal solution

x�� y�� s� satisfying

x��s� � � and x� � s� � � � �	�	�

This result is often refered to as the Goldman�Tucker Theorem	

Note� that in this formulation we have the surplus vectors s�x� � � and

s�y� � s� For x �P and y � s �D the expression �	���� reduces to

��x�y�  cTx 	 bTy � xTs � �	�	��

When �P � has the strict complementarity property� we can split the

index set f�� 	� � � �� ng into the sets

B  f i j x�i � g and C  f i j s�i � g � �	�		�

It follows from �	�	� that B and C are disjoint and B � C � f�� � � � � ng�

This splitting is called an optimal partition of �P ��

Finally� consider the special LO problem

�S� min
�
qTx � Mx � 	q� x � � �
� �	�	
a�

where M is skew�symmetric �i�e� MT � 	M �� and q��� By the rules of

Table 	�� the dual of this problem is

�DS�� max
� 	qTy � MTy � q� y � � �
�

Since MT � 	M � this is seen to be equivalent with

�DS� min
�
qTy � My � 	q� y � � �
� �	�	
b�

Problem �S� is said to be self�dual�

�	�	 Fundamental Theorems 	�

Lemma ���� The self�dual problem �S� with q� � satis�es

�� Problem �S� is feasible and bounded�

	� The optimal set S� contains ex that satis�es the complementarity

properties ex�s�ex� � � and ex � s�ex� � ��


� S has an optimal partition B� C�

Proof� See �
�� Chapter 	��

Example ����� Consider

�S� min
�

�x� �

	x� � x� � 	

�x� � 	x� � �� � x�� x� � 	
�

�

The feasible set is the strip 	�x�� �� x� � 	� and the optimal set is S� �

f�u� 	� j u� �	� ��g
 The corresponding surplus vectors are s�x�� � �	� ��u�


The points ex� corresponding to u in the open interval u� �	� �� are seen to

satisfy ��
�	�� and the optimal partition of �S� is given by B� f�g� C� f�g


���� Fundamental Theorems

Theorem ���� For the given pair �P � and �D� there are three alter�

natives

�� Both �P � and �D� are feasible and bounded� and there exists a

strictly complementary optimal pair �ex �P�� ey �D�� with

cTex � bTey �

	� Either �P � or �D� is unbounded and the other is infeasible�


� Both �P � and �D� are infeasible�

Proof� See Appendix A���



	� Theoretical Background

Example ����� We already saw examples of point �� in the theorem
 Now�

consider the infeasible problem from Example �
�

�P �� min
�

�x� � �x� �
�
�
x� � x� � �

�
�x� � x� � �� � x�� x� � 	

�
�

By the rules of Table �
� its dual is

�D�� max
�

y� � �y� �
�
�y� �

�
� y� � �

y� � y� � �
� y�� y� � 	

�
�

This is a feasible problem� e
g
 satis�ed by y�� y�� � t for all t� 	
 The

corresponding objective value is t� and we see that �D�� is unbounded


The unbounded primal problem

�U� min
�

��x� � �x� �
�
�
x� � x� � �

�
�x� � x� � �� � x�� x� � 	

�

has the dual

�DU� max
�

y� � �y� �
�
�y� �

�
� y� � ��

y� � y� � �� � y�� y� � 	
�

�

This is seen to be an infeasible problem


Consider the problem in standard form�

�P � min
�
cTx � Ax � b� x � � �
�

with the corresponding dual

�D� max
�
bTy � ATy � s � c� s � � �
�

If �P � is feasible and bounded� then Theorem 	�	 implies that there is an

optimal partition B� C� We can split the matrices and vectors as in Example

	��� and see that the constraints imply

BxB � b 	CxC � BTy � cB 	 sB � CTy � cC 	 sC � �	�	�a�

Now� from �	�	���	�		� it follows that exC �� and esB ��� so that

�exB� ey � esC� can be found from

BexB � b � BT ey � cB � esC � cC 	CT ey � �	�	�b�

�	�	 Fundamental Theorems 	�

Let �B denote the number of elements in B� There are the following cases

to consider�

�� �B � rank�B� � m � �exB� ey � esC� are uniquely determined by �	�	�b��

and �ex � ey� is the unique optimal solution pair�

	� rank�B� � �B 	 m � ex is the only point in P�� whileey � ey �
	 �Nz

with BT ey �
	 � cB and the columns of N form a basis of the null space

N �BT �� z is any vector in IRm�
�B for which cC	CT �ey �
	�Nz� � ��


� rank�B� � m 	 �B � ey and es are unique� whileex � ex�
	 �Gz

with Bex�
	 � b and span�G� � N �B�� z is any vector in IR
�B�m for

which ex�
	 �Gz � ��

�� rank�B� 	 minf�B�mg � Neither ex nor �ey � es� is unique�

In the cases 	���� problem �P � is said to be degenerate	

Example ����� Problem �Q� from Example �
� is degenerate
 In standard form

it corresponds to n��� m���

A �


��� � �� 	

��� �� 	 ��
�

� b �


�
��

�
� c �

��� �
�

	
	

��� �

B � f�� �� �g� C � f�g is an optimal partition of �Q�� corresponding to

B �


��� � 	

��� �� ��
�

� C �


��

	
�

�

We are in case �� and �nd

exB �
�
�

	
�	��


� z

� ��
�
����


� ey �



�

	
�

� es �
��� 	

	
�

	
��� �

The condition exB � � is satis�ed for 	�z� �
 Note� that cT ex � bT ey � �

for all z in this interval


For z�	 the �nd coordinate of exB is zero� corresponding to B � f�� �g
 The



	� Theoretical Background

dual slack vector es is una�ected by z� so C � f�g
 The vectors

x
� �

��� �
	

	
�	��

��� � y
� �



�

	
�

� s
� �

��� 	
	

�
	

���

are also optimal� but here the condition x��s� � � is violated by the �nd

coordinate
 Similarly� for z�� we also get an optimal solution satisfying the

complementarity condition x�� s� � �� but x� � s� � � is violated by the

�st coordinate


Example ����� Let B and C with B 	 C� f�� � � � � ng be given� and split the

vectors as in Example �
�
 Let exC�� � esB ��� and compute exB� ey� esC by

means of ��
���
 If exB�� and esC �� � then �ex� ey� es� is optimal
 This follows

from the fact that both ex and �ey� es� are feasible� and by using ��
��� we see

that
��ex� ey� � exTes � ex T
B esB � ex T
C esC � ex T
B

� � �
TesC � 	 �

We can use this to generate LO problems with known solution� Choose

m� n� �B and 	x� 	y� 	s� where

n is the number of variables�

m is the number of equality constraints� m�n�

�B is the number of elements in B� �B�n�

	x� 	y� 	s are �descaling factors� for x� y and s


The matrix A� IRm�n and the vector y� are generated with uniform random

elements in ���� �� and ��	y� 	y�� respectively
 To get x� and s� with positive

elements� we �rst generate the vectors u� v and w with

ui �

i
n

� vi � 	uix 
 ui� wi � 	uis 
 ui� i��� � � � � n �

Next� the partition is found as follows� If �B � n
� then B � f�� �� � � � � ��Bg�

otherwise we add a su�cient number of odd indices
 C consists of the unused

elements of f�� � � � � ng� and we let

�x�i � s
�
i � �

�
�vi� 	� for i�B

�	� wi� for i�C

�	�	 Fundamental Theorems 	�

Finally� b �� Ax� and c �� ATy� � s�
 This generator is used to compare

the algorithms in Sections � � 


The problem of feasability can also be investigated via the following�

famous lemma� dating back to ��	�

Lemma ���� �Farkas� Lemma	� Given A� IRm�n and b� IRm� and

consider the pairs of problems

Problem A Problem B

� Ax � b� x � � ATy � �� bTy � � y � �

	 ATx � b ATy � �� bTy 	 � y � �


 bTx 	 � ATx � � Ay � b� y � �

� bTx 	 � Ax � � ATy � b

In each case either Problem A or Problem B �but not both� has a

solution�

Proof� See Appendix A�	�

Cases 
 and � in Farkas� Lemma have important applications in nonlin�

ear optimization� where b is the gradient g of an objective function and we

seek a descent direction h from a current iterate x� As in the discussion in

Chapter � we demand gTh	 � and the direction h is subject to constraints

ensuring that the next iterate stays inside a certain domain�

Corresponding to Case 
 in Lemma 	�	 there are the two alternatives�

If we can �nd h satisfying

gTh 	  and ATh � � �

then x�th is a better approximation to the minimizer for t in a certain in�

terval �� ��� Otherwise� x an is optimal solution to the nonlinear problem�
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characterized by

g � Ay with y � � �

An alternative formulation and proof is given in the next example�

In Section 	�� we apply Case � of Farkas� Lemma� Either we can get a

better approximation x�th by using h satisfying

gTh 	  and Ah � � � �	�	�a�

or we have found the optimal solution� characterized by

g � ATy �	�	�b�

for some y in the relevant vector space� In Section 	�� we give an alternative

proof of this version of Farkas� Lemma�

Example ����� Another version of Farkas� Lemma is found in ���� Lemma �
�
���

Given vectors fa�� � � � �ang and g with aj�g� IRm� Then the set

S �
�
h� IRm j gTh � 	� aTi h � 	� i��� � � � � n

�

is empty if and only if there exist multipliers yj � 	 such that g �
Pn

j�� yjaj�

Letting A � �a� � � � an� and replacing �b�x� by �g �h�� we see that this ver�

sion is idential with Case � in Lemma �
�


This version of Farkas� Lemma has

a more intuitive proof� In Figure

�
� we show a�� a� and g in the case

m� n��� and dashed lines orthog�

onal to these� cf
 Figure �
�
 The set

S is indicated by the shaded area


If g is in the hatched angle between

a� and a�� then g � y�a� � y�a�

with y�� y�� 	� and S is empty


S

a
1

a
2

g

Figure ���� Farkas� Lemma

�		 Projection onto Null Space 


���� Projection onto Null Space

This is an important tool in connection with interior point methods�

Given a rectangular matrix A� IRm�n with m	n� and with linearly

independent rows� i�e� rank�A� �m� The row space R�A� and null space

N �A� of A are both subspaces of IRn� de�ned by�	

R�A� � fx � IRn j x � ATy � y � IRmg �

N �A� � fx � IRn j Ax � �g �

�	�	��

Now� let xR �R�A� and xN �N �A�� Then

x T
RxN � �ATy�TxN � yTAxN � yT� �  �

i�e� xR and xN are orthogonal� In words� The null space of A is orthogonal

to the row space of A	

Any x � IRn can be written as the direct sum of an xR �R�A� and an

xN �N �A��

x � xR � xN � ATy � xN �

�
�

�
�

�
�

�
�

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
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� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
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N �A�
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�
�
�
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�
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xN
xR � ATy

x

Figure ���� Projection onto null space

We can state the problem in matrix form

I AT

A �

� 

xN
y

�
�



x
�

�
� �	�	�a�

�	 Note� that x�ATy is equivalent with x � y�A
T
��� � � � � ymA

T
m��� where Ai�� is

the row vector with elements given by the ith row of A�
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By block elimination we see that y must satisfy

AATy � Ax � �	�	�b�

The assumption rank�A� �m implies that the m�m matrix AAT is non�

singular� i�e� �AAT ��� exists� and we �nd�	

xN � PAx � where PA � I 	AT �AAT ���A �	�	�c�

is the socalled projection matrix with respect to A�

Among all vectors z in N �A�� the vector xN �PAx is the one that

minimizes the distance kx	zk�� This implies that the angle between x

and xN is in the range �� �� �� so that xTxN � �

In the next section we are given a gradient g � IRn and consider the

problem of �nding h such that

gTh 	  and Ah � � � �	�	��

The vector in the null space of A which is closest to the steepest descent

direction 	g is found by projecting this vector onto N �A��

h � 	PAg � �	�	��

From the above observation we see that

gTh � 	gTPAg �  �

If this is strictly negative� then �	�	�� is a solution to �	�	��� Otherwise�

g is orthogonal to N �A�� which means that it belongs to R�A� and can

be expressed as g � ATy � Note� that this discussion can be seen as an

alternative proof of Case � in Farkas� Lemma� p� 	��

�	 Note� that y given by �����b	 is the least�squares solution by to the overdetermined

system of equations ATy � x� and x
N

is the corresponding residual� r�by	 �

x � AT by� The matrix in �����a	 is a socalled augmented matrix� and �����b	

is the normal equations� see 
��� Section ������ or 
��� Section ������� A more

accurate solution can be found by orthogonal transformation� 
��� Section �������


��� Section ����� Also the projection can be found via orthogonal transformation�

but it is outside the scope of this introduction to go into this�

�	�	 Logarithmic Barrier Function 
	

���� Logarithmic Barrier Function

We consider an LO problem in standard form with n variables

�P � min
�
cTx � Ax � b� x � � �

and the associated problem

�P�� min
�
���x� � Ax � b� x � �

�
� �	�
a�

where �� is the logarithmic barrier function�	

���x� � cTx 	 �
nX

j��
logxj � �	�
b�

with the barrier parameter �� � A large value of � emphasizes the barrier

term and keeps fxjg away from zero� A smaller value of � emphasizes the

objective value fP �x� � cTx � Intuitively� a minimizer x��� of �P�� should

converge to an optimal solution of �P � if ���

The feasible domain of �P��� P� � fx � IRn jAx �b� x ��g� is equal

to P�� the interior of the feasible domain of �P �� We assume that this set

is not empty� and that we know a point x �P�� We seek a �new� point

x�th so that

t �  � x � th�P� and ���x � th� 	 ���x� � �	�
��

This means that h should be a descent direction� satisfying

hT
�rx���x�
�
	  � �	�
	a�

where rx�� is the gradient�	

rx���x� � c 	 �x�� � �	�
	b�

The Hessian of ���x� is

����x� � �X�� � �	�

�

�	 This de�nition is equivalent with the de�nition ����	 for �P 	 in canonical form�

Now� A and x include slack variables �cf� Example ���	� instead of the surplus

vector used in ����	�

�	 x�� is the vector with ith component x��i � X � diag�x	� cf� Notation�
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which is positive de�nite for any x � IRn��� This implies that if we �nd a

stationary point of ��� ex �P��IRn��� then this is the minimizer of �P���

According to the discussion in the previous section� x is a stationary

point if rg��x� � ATy for some y � IRm� By putting s��x��� which is

equivalent with x�s� �e� it follows that �� has a minimizer if and only if

there exist vectors x� y � s such that�	

Ax � b � x � � � �	�
�a�

ATy � s � c � s � � � �	�
�b�

x�s � �e � �	�
�c�

The conditions x �� and s�� can be relaxed to x �� and s��� since

�	�
�c� ensures strict inequality� Therefore� �	�
�a� is simply the feasibility

constraints for �P �� Similarly� �	�
�b� is the feasibility constraints for the

corresponding dual problem� cf� �	���b��

Theorem ��
� �Interior Point Condition	� Let �� � Then the

following statements are equivalent�

�� Both P and D contain a strictly positive vector�

	� There exists a unique minimizer x��� of �� on P��


� The KKT system �	�
�� has a unique solution� �x����y���� s�����

Proof� See �
�� Theorem II����

�	 �����	 is known as theKarush�Kuhn�Tucker conditions for the nonlinear optimiza�

tion problem �P�	� We shall use �KKT system to refer to this nonlinear system

of equations�

�	�	 The Central Path 
�

���� The Central Path

The interior point condition Theorem 	�� is independent of �� This implies

that if it is satis�ed� then for each positive value of � we have a unique

x���� The set of points

f x��� � � �  g �	�
�a�

is called the central path of �P �� Similarly�

f �y���� s���� � � �  g �	�
�b�

is the central path of �D�� and �	�
�c� is the centering condition with respect

to ��
In Example ��
 we showed the central path for a simple problem� and

saw that x��� converged to an optimal solution as ��� We now show

that this must hold in general when �P � is feasible and bounded�

First� we remind of �	�	��� For any x �P and y �D we can express the

duality gap as ��x�y� � xTs� For �x�y� on the central path this leads to

��x����y���� � x���T s���

� eT �x����s����

� eT ��e� � n� � �	�
��

Thus� if � is su�ciently small� say � � �
n�� then fP �x���� 	 fP �x�� � ��

which means that we are close to the optimal value for �P ��



�� Interior Point Methods

In this chapter we consider the primal problem �P � in standard form with

n variables and m constraints

�P � min
�
cTx � Ax � b� x � � �
�

and the corresponding dual problem

�D� max
�
bTy � ATy � s � c� s � � �
�

In Section 	�� we introduced the logarithmic barrier function and modi�ed

�P � to �P��� whose minimizer is the solution to the KKT system

Ax � b � x � � � �
��a�

ATy � s � c � s � � � �
��b�

x�s � �e � �
��c�

The solution x��� and �y���� s���� to this nonlinear system is on the central

path of �P � and �D�� respectively� and in Section 	�� we saw that if � � �
n��

then cT �x���	x�� � �� where x� is an optimal solution for �P �� Similarly�

it can be shown that bT �y� 	 y���� � �� where y� is an optimal solution

for �D��

A point �x� y � s� that satis�es the conditions �
��a�b� is said to be

strictly feasible and to lie in the interior of the feasible domain�

Roughly� Interior Point Methods �IPM� have the form sketched in Al�

gorithm IPM below� There exist a number of di�erent variants of IPM� all

of which rely on Lemma 
��� We concentrate on the socalled Primal Dual

Logarithmic Barrier Method� which is currently considered to be the best�

This method is described in Sections 
�� � 
��� and in Section 
�� we give

a brief review of Karmarkar�s method�


	�	 Newton Iteration	 I 
�

Algorithm IPM

Get an initial strictly feasible x and s�

and an initial value for y and ��

repeat fouter loopg

repeat finner loopg

update x� y � s

until su�ciently close to �x����y���� s����

reduce �

until n� � �

Lemma ���� If the barrier parameter has the initial value �
 and each

reduction has the form �k �� ��	���k�� with 	� 	 �� then after at

most �
�

�
log

n�

�

�

reductions we have n�k � ��

Proof� Evidently� �k � ��	��k�
� so that

n�k � � � n��	��k�
 � � � k log��	�� � log

�
n�


�

and using the relation 	 log��	�� � � we get the result�

���� Newton Iteration� I

In Section 	�� we saw that the logarithmic barrier function is strictly convex

on P�� This makes Newton�s method an obvious choice for the inner loop

iterations in Algorithm IPM�

Given a strictly feasible point �x �y � s�� i�e� �
��a�b� is satis�ed� We

want to �nd �x�hx� y�hy� s�hs� so that also the centering condition

�
��c� is satis�ed�
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A�x � hx� � b �

AT �y � hy� � s � hs � c �

�x � hx���s � hs� � �e �

�
�	�

We subtract Ax �b� ATy�s� c and neglect the quadratic term hx�hs in

the last equation� This de�nes the Newton step h � �hx� hy� hs� �

Ahx � � �

AThy � hs � � �

Shx �Xhs � �e 	 x�s �

�
�
�

This linear system� 	n�m equations with 	n�m unknowns� is discussed in

Section 
��� Here� we only mention that the system is nonsingular� so that

h is unique�

The Newton step is said to be feasible�	if x�hx�� and s�hs��� In

order to clarify this problem and also to get a good measure of� how close

x and �y � s� are to the central paths of �P � and �D�� we introduce a scaling

of the variables�

x �
p
�Du � s �
p
�D��u �

hx �
p
�Ddx � hs �
p
�D��ds � hy �
p
� dy �

�
��a�

where

u �
r

�
�
x�s � D � diag�

p
x�s��� � �
��b�

The system �
�	� changes to

ADdx � �

�AD�Tdy � ds � �

dx � ds � u�� 	 u �

�
���

If �x�y � s� � �x����y���� s����� then x�s � �e� so that u� e and u�� 	

u � �� implying dx �dy �ds � �� Otherwise� dx and ds are nonzero� and

the �rst two equations in �
��� show that dx �N �AD� and ds �R�AD��

From the discussion in Section 	�� we see that dx and ds are orthogonal�

and from the last equation in �
��� it now follows that

�	 �Strictly feasible would be more appropriate�
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�

kdxk�� � kdsk�� � ku�� 	 uk�� � �
���

This motivates the following measure for the proximity of �x� y � s� to

�x���� y���� s������	

��x� s ��  �
	
ku�� 	 uk� �

�
	
k

r
�
x�s
	

r
x�s

�

k� � �
���

Without further ado we now summarize a number of properties of the

Newton step�

Theorem ���� The Newton step satis�es

�� The vectors hx and hs are orthogonal� hTxhs � � and also dTxds � �

	� The step is feasible if and only if �e � hx�hs � ��


� �x�hx�T �s�hs� � n��

�� Let �  ��x� s ��� Then

khx�hsk� � ��� and khx�hsk� �
p

	��� �

�� If �  ��x� s �� 	 �� then the step is feasible� and

��x�hx� s�hs �� � ��p
	��	 ���

�

Proof� See Appendix A�
�

By comparing �	�
�� and point 
� in the theorem we see that after a

feasible step the duality gap ��x�hx�y�hy� is equal to ��x����y����� It

is also important to note that Newton�s method is quadratically convergent

in the domainn
�x �y��P�D j ��x� s �� � �

p
�� � ����

o
� �
���

Here� point �� shows that ��x�hx� s�hs �� � ���

When such a good approximation has been found� it is time to reduce

the barrier parameter in Algorithm IPM� p� 
�� To see� how much � can

be reduced� we need

�	 The factor �
� is introduced for convenience�
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Lemma ���� Let �x � s� be a positive primal�dual pair with xTs � n��

Moreover� let �  ��x� s �� and � � ��	��� with 	� 	 �� Then

��x� s �� �
s

��	���� �

��n

���	�� �

Proof� See �
�� Lemma II��
��

In the following sections we shall discuss di�erent strategies for per�

forming the Newton iteration and for reducing the barrier parameter�

���� Full Newton Step

Assume that we are given starting values x
 �P�� y
 � IRm so that

s
  c 	ATy
 � �� Further� we are given a proximity parameter � and a

barrier reduction parameter �� 	�� � 	 ��

The initial barrier parameter is found by n�
 � xT
s
� and we assume

that ��x
� s
 �
� � � � We then proceed by the following simple version of

the basic algorithm�

Algorithm IPM�

x �� x
 y �� y
 s �� s
 � �� �
 

repeat

compute h by �
�
�

x �� x � hx y �� y � hy s �� s � hs 

� �� ��	��� 

until n� � �

Getting the starting value that satis�es ��x
� s
 �
� � � may need

several Newton iterations� maybe involving the use of dampeded Newton

steps �see Section 
�
� to ensure that the next point is strictly feasible�

Provided that we choose � and � su�cently small� however� the inner loop

in the general algorithm �p� 
�� is reduced to one iteration step�


	�	 Full Newton Step �

Theorem ��
� If � � �
p

�� and � � �
�	
p
n�� then Algorithm IPM�

requires at mostl
	

p
n log

n�

�

m

iterations to get n�k � ��

Proof� The choice � � �
p

�� guarantees that the starting guess is in the

region of quadratic convergence� see �
���� After the �rst Newton step

with ���
 we therefore have ��x�� s� �
� � �� � p
��� and Lemma


�
 with � � �
�	
p
n� shows that

��x�� s� ��� �
s

�	�
	

�

�

����	��
�

r
�

	
�

�
�

� ���� 	

�
p

�� �

Thus� we are in the region of quadratic convergence for the next Newton

step� etc� The upper bound on the number of iterations follows from

Lemma 
�� with � � �
�	
p
n��

Example ���� The dominant work in Algorithm IPM� is the solution of the

system ��
�� in each iteration
 For a full matrix the cost is O�n��  ops per

iteration
 Since log n grows very slowly with n� the result of Theorem �
�

is that we can �nd an �
�approximation� to the solution with O�n����  ops


This is referred to as �polynomial cost��

If we replace 
 by 
�� then this cost doubles � because log���
�� � � log���
�


Example ���� In a number of examples �e
g
 �
�� �
�� �
� and �
�� we consider

the problem given by n��� m���

A �


��� � �� 	

���� � 	 �
�

� b �


�

�
�

� c �
��� �

�
	

	
��� �

The vectors

x� �
��� �

�


�
��� � y� �


��	

����
�

� s� �
��� 	��

���
��	

���
��� �
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are easily seen to be stricly feasible� and we let �� � �xT�s���n � ��
 The

corresponding measure of proximity is ��x�� s����� � 	������ so this is a

good starting point for Algorithm IPM� with � � ����
p
n� � 	��


The number K of iterations needed to get n� below 
��	�� can be estimated

by Theorem �
�� K�	
 We can make this a bit sharper� though� From the

proof of Lemma �
� with ����	�� we get

K �
�

log



n��

�
log�����

�
� d�����e � �� �

First� we show the behaviour of the �rst two components�	 of x� cf
 Examples

�
� and �
�� and in Figure �
�b we show the behaviour of y� cf
 Example �
�
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Figure ���a� Algorithm IPM��

Results for �x�� x��
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Figure ���b� Algorithm IPM��

Results for �y�� y��

Finally� in Figure �
�c we give proximity measures as functions of iteration

number
 We discuss these results in the next section


�	 Components x��� are slack variables� and of no primary interest�


	
	 Newton Iteration	 II �	
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Figure ���c� Algorithm IPM�� Proximity values

o � ��xk � sk��k�� � � ��xk�h
	k

x � sk�h

	k

s ��k�

���� Newton Iteration� II

The behaviour shown in Figure 
��c is typical for the simple algorithm

IPM� � As the iterations proceed� the accuracy after the Newton step is

almost �too good�� This is caused by the �xed barrier reduction parameter

�� chosen to ensure that �x� s� is in the region of quadratic convergence� as

indicated by ��x � s �� � �  � � �
p

���

Another approach is to use a �large update method�� where the barrier

reduction parameter � is chosen e�g� as � � ���� Then the interior loop in

Algorithm IPM p� 
� is necessary� and there is a risk that in the �rst steps

of this iteration the Newton step is infeasible� i�e� x�hx�  and s�hs� 

are not satis�ed� This problem can be cured by choosing damped Newton

steps� where we use the step �h with �� � computed to keep the new

iterate strictly positive�

� � minf!�x�hx� ���!�s�hs� ��g � �
��a�

with

!�z�v � �� � minf�� � �maxf� j z � �v � �gg � �
��b�

Here� � is a chosen constant in the range 	� 	 �� e�g� � � �������

The large update method is summarized in algorithm IPM� below�

where the accuracy parameter can be chosen as � � �
p

���
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Algorithm IPM�

x �� x
 s �� s
 � �� �
 

repeat

� �� ��	��� 

repeat

compute h by �
�
�

compute damping factor � by �
���

x �� x � �hx s �� s � �hs 

until ��x� s �� � �

until n� � �

The e�ciency of the method depends on the choice of � and �� and �
��

Theorem II���� shows that the required number of iterations is O�n logn��

Also see ���� and the next example�

Example ���� We have used the large update method on the problem of Ex�

ample �
� and with the same starting values� corresponding to �����
 For

� � 	����� �� one outer iteration is su�cient to satisfy the stopping crite�

rion with 
��	��
 Therefore we have strengthened the desired accuracy to


��	��� and give the number of iterations needed for di�erent choices of �

and 


�

 	
� 	
�� 	
����

	
� � � �

	
� �� �� ��

	
�� �� � �

	
��� �� �� �

	
���� �� � �

In all cases the computed solution had an error

max fkx�x�k�� ks�s�k�� ky�y�k�g � �	�� �

Here� superscript � denotes exact solution� cf
 Examples �
� and �
��

x
� �

��� 	
�

	
�

��� � s
� �

��� 	�
	

�
	

��� � y
� �



�

	
�

�

The choice ��	�� is equal to the value used in Example �
�� and the large

update method behaves like the simplest full Newton step algorithm



	
	 Newton Iteration	 II ��

The other � values correspond to e�ective damping
 The best combination

of ��� � needs less than �	! of the iterations needed with algorithm IPM�


Also note that � even for this small problem � the algorithm seems to be

surprisingly sensitive to the choice of the parameters � and 


In order to get the background for some of the more e�cient versions

of IPMs� we take a closer look at the Newton step de�ned by �
�
�� which

we write in matrix form���A � �

� AT I

S � X

���� hxhy
hs

�� �
�� �

�

�e 	Xs
�� � �
���

Note� that Xs � x�s� The solution splits naturally into two parts corre�

sponding to 	Xs and �e� respectively�

hN � ha � hc with Bha �
�� �

�
	Xs

�� � Bhc �
�� �

�
�e

�� � �
����

where B is the matrix in �
���� The two contributions are called the

a�ne�scaling direction and the centering direction� respectively� In Section


�� we show� how to make use of this splitting and the properties stated in

the next theorem about the duality gap and the proximity measure de�ned

by �
����

Theorem ���� Let �x� s� be a positive primal�dual pair with xTs � n��

and let hNh� ha and hc be de�ned by �
����� Then�

For 	���
� small enough to ensure feasibility�

�� �x � �hax�T �s � �has� � ��	��n� � ��	��xTs �

	� �x � �hcx�T �s � �hcs� � �����n� � �����xTs �


�
�
x � �hNx

�T �
s � �hNs

�
� n� � xTs �

Further� for su�ciently small values of � �

�� ��x � �hax� s � �has  �� � p��� ��x� s �� �

�� ��x � �hcx� s � �hcs �� 	
p

�		� ��x � s �� �

�� ��x � �hNx � s � �hNs  �� 	
p

�	� ��x� s �� �
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Proof� The theorem is new and the proof is rather lengthy� It can be found

in Appendix A���

Point 
� in the theorem is identical with 
� in Theorem 
�	� and ���

	� show that the duality gap decreases in the a�ne scaling direction� but

increases in the centering direction� As regards proximity� however� points

����� show that the opposite is true� Thus� the name �centering��

Example ���� Consider the problem from Example �
� with the feasible starting

point
x� �

��� �
�


�

��� � y� �


��	

����
�

� s� �
��� 	��

���
��	

���
��� �

and � � �xT�s���n � ��
 In �gure �
�a we show the �rst two coordinates of

x�� x���� on the central path� and the vectors ha� hc and the full Newton

step hN � ha � hc


Note� that ha is not feasible� x�ha is outside the feasible domain
 Taking a

damped step in this direction� however� would bring us close to the solution�

whose �rste two coordinates are �	���� cf
 Figure �
�a
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Figure ���a� A�ne	scaling� centering and Newton steps

Figure �
�b below shows the proximity measure � as function of � and the

direction
 It con�rms Theorem �
� although it is di�cult to see that for

��� we get better results by using the direction hc than by using hN 


The Newton approximation to the KKT equations is derived under the as�

sumption that khk is so small that we can ignore the second order term

hx�hs
 This is not satis�ed by the steps shown in Figure �
�a� and the dif�

ference in their lengths further confuses the picture in Figure �
�b
 Also� we

only show two out of the �	 coordinates in �x�y� s�
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Proximity measure

Example ���� In Section �
� we describe a socalled predictor	corrector algorithm�

which can be outlined as follows�

Given x�y�s
 An appropriate value of the barrier parameter � is found by

going in the direction of ha
 Next� the Newton step is computed by hN �

ha � hc� where hc is computed with this ��value


The computation can be done by accumulating ��
��� into a matrix equation

BH �
�
� �

� �

�Xs e


�

Then� ha comes out as the �rst column of H � and hc � �H���
 We discuss

this aspect further in Section �



For the problem from the previous example we see from Figure �
�a that the

step �
�h

a is feasible� and from �� in Theorem �
 we see that the corresponding

��value is � � ��� �
� ��� � ���
 This is shown below together with the �rst

two coordinates of x�����
 The full Newton step is seen to land close to this

point
 For comparison we also indicate the hc from Example �
�
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Figure ���� Predictor
corrector method
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���� Infeasible Predictor	Corrector Method

This is currently considered to be the most e�cient IPM� and among its

advantages is that it does not need a feasible starting vector� This demand

is not essential for applying Newton�s method to �
����

Let x�y�s be given with x � s� �� and let�	

fP � b 	Ax� fD � c 	ATy 	 s� fC � �e 	Xs � �
��	a�

Then� the Newton step h � �hx�hyhs� is the solution to the system��A � �

� AT I

S � X

���� hxhy
hs

�� �
�� fPfD

fC
�� � �
��	b�

We discuss this system i Section 
��� Notice that if �x�y s� are feasible�

then fP � �� fD ��� and �
��	b� is identical with �
����

Exercise ���� Show that if x�hx�� and s�hs�� � then the point

�x�hx� y�hy� s�hs� is feasible


We are interested in large reductions of the barrier parameter �� and

shall use the predictor�corrector method outlined in the previous section�

The a�ne�scaling direction is found by solving

Bha �
�� fP

fD
	Xs

�� � �
��
�

where B is the matrix in �
��	b�� A predictor is computed by taking a

damped step in this direction�	bx � x � �Ph
a
x � by � y � �Dh

a
y � bs � s � �Dh

a
s � �
���a�

with the damping factors determined by

�	 Index P � D and C for Primal� Dual and Central path� respectively�

�	 Experience shows that it pays to use di�erent damping factors for the primal and

dual variables� The function � is de�ned in ����b	� p� ���
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�P � !�x �hax� �� � �D � !�s�has � �� � �
���b�

Next� the new value for the barrier parameter � is computed� The

following heuristic is recommended by �	� and ����

� �� ���� where � � min
�

��
bxTbs

n�
�

� �
����

Now� we compute the centering step by solving�	

Bhc �
�� �

�
�e

�� � �
����

and we get the next iterate �the �corrector�� by using a damped step in

the Newton direction given by h � ha � hc�

As regards stopping criteria� the central path is only de�ned for strictly

feasible points� therefore we cannot use the proximity measure and barrier

value as in algorithms IPM� and IPM�� Instead we check feasibility�

kfP k� � ���� � kbk�� � kfDk� � ���� � kck�� � �
���a�

and the duality gap

jcTx 	 bTy j � ���� � maxfjcTxj� jbTy jg� � �
���b�

Further� we need criteria to stop the iteration if the problem is infeasible or

unbounded� In that case the absolute value of the primal or dual objective

function jcTxj or jbTy j will grow during iteration� and a simple check is

given by	
max

�jcTxj� jbTy j� � �
��

�
� � max

�jcTx
j� jbTy
j
��
� �
���c�

Finally� as in all iterative processes� we must have a �safety valve�

k � kmax � �
���d�

�	 The solution of �����	 and �����	 can be combined as described in Example ����

	 This check is not robust for large problems� A better approach is to embed the

problem in a self�dual problem as in the proof of Theorem ���� see e�g� 
�� Section

��� 
��� Section ������
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Now� we can summarize the algorithm as follows�

Algorithm IPM


x �� x
 y �� y
 s �� s
 � �� xTs
n k �� 

repeat

if �
���c� or �
���d� is satis�ed then Stop

if �
���a� and �
���b� are satis�ed then Stop

k �� k � �

Compute ha by �
��
�bx �� x � !�x �hax� ��hax bs �� s � !�s�has � ��has  

Compute � by �
����

Compute hc by �
����

h �� ha�hc 

�P �� !�x�hx� �� �D � !�s�hs� ��

x �� x � �Phx y �� y � �Dhy s �� s � �Dhs

end

In the examples we use the iteration parameters �� � �� � �� � ���� kmax �

maxf	� ng and � � �������

Example ��	� We have used Algorithm IPM� on the problem from Example

�
�
 With the infeasible starting vector

x� � s� � e � y� � � ��
���

we get the results shown below
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Figure ���a� Algorithm IPM
	 Results for �x�� x�� and �y�� y��

The stopping criteria ��
��� are satis�ed after  iterations� and in Figure �
�b

we show the results for �� the in�nity norm of fP and fD� and the duality

gap
 Note� that ��
��a� is satis�ed before ��
��b�
 This is generally true with

this algorithm
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Figure ���b� Algorithm IPM�� Barrier value and error measures

�� � �� o � kfP k�� � � kfDk�� � � jcTx � bTyj

Naturally� the algorithm also works with a feasible starting point
 If we use

the starting point from Examples �
� and �
�� the algorithm also needs 

iterations� and the points stay feasible


Example ��
� For the infeasible problem �P �� from Examples �
� and �
��

the algorithm was stopped by ��
��c� after  iterations
 The performance is

illustrated below
k kfP k� kfDk� jcTxj jbTyj

	 ����e�	
 ��		e�		 ���		e�		 	

� 
��	e�
� ���e�		 �
�
�e�	
 ���	�e�	


� ��
�e�
	 ���e�		 �����e�	
 �����e�	


� ����e�	� ���e�		 ����	e�	� �����e�	


� ��
e�	 ���e�		 �
���e�	� ����e�	


 ����e�	� ���e�		 ����	e�
� ����e�	


After the �rst iteration we have primal feasibility� whereas we cannot get dual

feasibility� cf
 Example �
��
 The primal objective cTx seems to �converge�

to ��� cf
 Example �
�� and the algorithm is stopped by ��
��c� after 

iterations


Example ���� To get an idea of the e�ciency of algorithm IPM� we have

generated larger problems as described in Example �
�
 In all cases we used

the default parameter values 
�� 
� ��	��� �	������ and the starting

point given by ��
���
 The largest error in the solution� as measured by the

duality gap was ���
�	��


First� we consider �well scaled� problems� In the generator we let n��m and

	x�	y� 	s��
 The number of iterations is shown in Figure �
a� and the

behaviour is illustrated in Figure �
b for the case needing most iterations


The problem is dual feasible after � iterations� and as in Example �
� we see
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that ��
��b� is the critical stopping criterion
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Figure ���a� Algorithm IPM�� Well scaled problems�

� � �B � 	��m� o � �B � m� x � �B � ���m
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Figure ���b� Algorithm IPM�� Well scaled problem� n���	


�� � �� o � kfP k�� � � kfDk�� � � jcTx � bTyj

Next� to get �descaled� problems we have used 	x��	�� 	y��� 	s��	��


Results are given in Figure �
c
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Figure ���c Algorithm IPM�� Descaled problems�

� � �B � 	��m� o � �B � m� x � �B � ���m

In both cases degeneracy �i
e
 �B �� m� cf
 the discussion p
 ��� seems to

speed up convergence rather than impairing it


From Figure �
a we see that the required number of iterations grows very

slowly with n
 This is in accordance with the literature� where O�n���� or

O�log n� is frequently mentioned



		 Solving the Newton Equations �	

A similar growth is seen in Figure �
c� and it �costs� about �	 more it�

erations for a problem of the same size
 The reason is that for this set of

problems the choice ��
��� is a very poor approximation to a point on the

central path
 It illustrates that IPMs are sensitive the the choice of starting

point and motivates special algorithms for this
 We shall not discuss this�

but refer to ���


Below we show the behaviour for the outlier at n��	�
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Figure ���d� Algorithm IPM�� Descaled problem� n��	


�� � �� o � kfP k�� � � kfDk�� � � jcTx � bTyj

With the large value of 	x relative to 	y and 	s� the �rst iterations seem

to focus on getting primal feasibility
 This is obtained after � iterations�

and is followed by a large reduction in the barrier parameter
 This stays

�xed the next �� iterations� while the error in dual feasibility and the dual�

ity gap decrease slowly
 Once dual feasibility is obtained� we get fast �nal

convergence


It should be mentioned� that also for a feasible starting point we may �nd a

similar behavior


���� Solving the Newton Equations

In all the versions of the Primal Dual Method discussed in Sections 
����

the Newton step is the solution to a linear system of equations of the form��A � �

� AT I

S � X

���� hxhy
hs

�� �
�� fPfD

fC
�� � �
����
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where X � diag�x�� S � diag�s� and the right�hand side depend on the

current iterate �and the expressions for the right�hand side depend on the

version of the method�� We can simplify the system� From the last block

of equations we see that

hs � X��fC 	D��hx � �
�	a�

where we have used �
��b��

D� � S��X � �
�	b�

With this expression for hs we can compress �
���� to
	D�� AT

A �

� 

hx
hy

�
�



fD 	X��fC

fP

�




fx
fy

�
� �
�	��

Exercise ����� Let fP � � �i
e
 x is feasible�
 Show that hx � �DPAD�Dfx��

i
e
 �D times the projection of the vector Dfx onto the null space of the

scaled matrix AD


The system can be compressed even further� Multiplying the �rst block

of equations by AD� and adding to the second block we eliminate hx and

see that hy is determined by

�AD�AT �hy � fy �AD�fx  ef � �
�		�

Exercise ����� The matrix H � AD�AT is obviously symmetric
 Show� that if

A has full rank� then H is positive de�nite� and therefore nonsingular


This shows that �
�		� has a unique solution� and after computing this�

the other components of h can be found from �
�����

hs � fD 	AThy � hx � S���fC 	Xhs� � �
�	
�

As the iterates converge to the solution we see that

d�i �
xi

si
�

�
 if i�B

 if i� C �


		 Solving the Newton Equations ��

where B� C are de�ned in �	�		�� This means the the diagonal of D will

have both very small and very large elements� and it has the e�ect that

the matrix in �
�		� gets increasingly ill conditioned� Fortunately� a close

analysis ���� shows� that this ill conditioning has no damaging e�ects� pro�

vided that the implementation is done carefully� This is the subject of the

remainder of this section�

In practical applications the number of constraints and variables �m

and n� may be very large� and the solution of �
�	�� in each step of the

iteration will dominate the execution time� Fortunately� the matrix A is

normally sparse � i�e� most of the aij �  � and this can be exploited in the

solution� see ��� or �
���

The sparsity can be fully exploited by using an iterative method to

solve the linear system� see e�g� �
�� To get an e�cient method� a good

preconditioner is needed� and this is used successfully in special applica�

tions� �
�� In spite of much e�ort� however� there still is no algorithm for

getting a good preconditioner in the general case� and a direct method is

recommended� �	�� �����

We can use a direct method on the augmented system �
�	�� or on

the normal equations formulation �
�		�� Both choices have their pros and

cons� The names come from the literature on least squares problems� cf� the

relationship shown in Exercise 
�� and in Section 	���

First� consider the normal equations approach� As discussed in Exercise


���� the matrix H � AD�AT is symmetric and positive de�nite� This

implies that we can use Cholesky factorization�	

H � CCT � �
�	��

where C is a lower triangular matrix� WhenA is sparse� then hopefully also

H is sparse� Normally� however� we get �ll�ins� i�e� C has more nonzeros

than the lower triangle of H �

�	 See e�g� 
��� Section ������ or 
��� Section �����
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The number of �ll�ins can be reduced by pivoting	 If we take the pivots

from the diagonal� then the symmetry is preserved� and we can write�	

PAD�ATPT � CCT � �
�	�a�

Now� the solution to �
�		� is found by�
	

w � C���Pef� � hy � P�C�Tw � � �
�	�b�

In words�w is computed by forward substitution on a permuted version ofef�

and then hy is found by permuting the vector obtained by back substitution

on w �
There exist a number of algorithms for �nding P� so that the number

of �ll�ins in C is kept low� See �
�� Chapter ��� ��� Chapter �� or �����

Example ����� Consider the matrix A whose sparsity pattern is shown in Fig�

ure �
�a
 We have m��		� n��		 �and the trailing �		 columns could

respresent slack variables�
 The number of nonzeros is denoted nz


nz = 498

Figure ���a� Constraint matrix A

Below we give the patterns of the lower triangle of H and the Cholesky

factors given by ��
��� and by ��
�a� with P determined by the Matlab

implementation of the socalled minimum degree algorithm�

�	 P is a permutation matrix representing the row and column interchanges� If P �� I �

then the C in �����	 will be di�erent from the C in �����	�

�
	 As always in numerical linear algebra� an expression like �C��z is short for �solve

the linear system Cx� z� We �almost	 never invert a matrix� The inverse of a

sparse matrix is normally dense�


		 Solving the Newton Equations ��

nz = 546 nz = 2696 nz = 853

Lower triangle of H C
I

from ����� C
P

from �����

Figure ���b� Lower triangle of H and Cholesky factors

The relative density in A is ������		
�		� � 	�		��� and in the lower triangle

of H it is �� 
 ������		 
 �	�� � 	�	���� i
e
 more than three times larger


The relative number if �ll�ins in the Cholesky factor is reduced from �
�� to

	
� when we use ��
�� instead of ��
���


An advantage of the normal equations approach is that the choice of

a good pivoting is independent of the actual values in D� Therefore� this

socalled Analyse is performed once� only� A serious disadvantage is that

the inherent ill conditioning is enhanced by this approach� To see this�

consider the following reformulation of the matrix�

H � AD�AT �

nX
i��

d�iA��iA
T
��i � �
�	��

where A��i is the ith column of A� Assume� that A��j and A��k have their

nonzeros in the same rows� and that the nonzero values satisfy��	 jaijj � ��

Further� assume that d�k 	 �Md�j � Then

�
�
d�jA��jA
T
��j � d�kA��kA

T
��k

�
� d�jA��jA
T
��j �

i�e� we loose the information from the kth column�

Example ����� From ��
��� it also follows� that if one of the columns is �almost�

dense� then H will be �almost� dense


This problem can be solved as follows� Assume that the columns of A are

ordered so that the �almost� dense columns come last� and split the matrix

��	 See Notation for the mening of ��� ���	 denotes �computed value of ��	�
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AD �
� eAS

eAF

�
�

where eAF � IRm�q is �almost� dense and eAS � IRm�	n�q
 is sparse
 Then

H � �AD��AD�T � eAS
eAT
S � eAF
eAT
F �

Further� assume that the sparse part has full rank� i
e
 in the Cholesky fac�

torizationeAS
eAT
S � CSC

T
S �

the lower triangular CS is nonsingular
 Now� let V and z be the solutions

to the sparse systems

CSV � eAF � CSz �ef � ��
��a�

Then the solution to ��
��� can be computed by the Sherman
Morrison


Woodbury formula

hy � C
�T
S

�
z �V �I �V

T
V ���VT
z

�
� ��
��b�

The validity of this can be shown by insertion
 The computation involves

the solution of a q�q system with the symmetric� positive de�nite matrix

I�VTV � which is �almost� dense� but normally q is small
 For further details

see ��� Section ��


Also the augmented system �
�	�� is symmetric� but it is not positive

de�nite� and numerical stability must be taken into account in the choice

of pivots� It is possible to preserve symmetry� stability and sparsity by a

factorization of the form

P

	D�� AT

A �

�
PT � LGLT � �
�	�a�

where L is unit lower triangular and G has ��� and 	�	 symmetric blocks

along the diagonal and zeros elsewhere� see ���� Section ����� Having com�

puted the factorization� the solution to �
�	�� is found by

w � L��
�
P



fx
fy

��
� v � G��w �



hx
hy

�
� P

�
L�Tv

�
� �
�	�b�

This approach has better accuracy properties� and �almost� dense

columns in A do not give excessive �ll� However� the pivoting depends

on the current values in D� so the Analyse must be repeated in each iter�


		 Solving the Newton Equations ��

ation step� Also� the demands on storage and computing time are normally

more than twice the demands from the normal equations approach�

Example ����� In a predictor�corrector method we have to solve ��
��� with

two di�erent right�hand sides
 This is performed with two �Solves�� i
e
 two

applications of ��
�b� or ��
��b�
 Typically� each Solve costs less than �	!

of a �Factorize�� and this is the background for more advanced predictor�

corrector schemes� where the corrrector is recomputed several times� taking

into account the term hx�hs� which was dropped in the derivation of the

Newton equations ��
��� see e
g
 ��� Section �
���


Example ����� The simpli�ed system ��
��� was derived from the primal�dual

method� ��
���
 However� basically this is the system to be solved with any

IPM� as we illustrate below and in the next example
 Therefore� if two dif�

ferent IPMs use K� and K� iterations� then K��K� is a good estimate of the

ratio between their execution times� since the solution of ��
��� dominates


Consider a primal�dual method applied to an LO problem with both lower

and upper constraints on the variables
 As we saw in Example �
�� we can

write it in the form

�P �� min
�
c

T
x � Ax � b� � � x � u

�

or

�P � min
�
c

T
x � Ax � b� x � v � u� x�v � �

�
�

Proceeding as in Section �
� we minimize

���x�v� � c
T
x � �

nX
j��

log xjvj �

and get the KKT system

Ax � b � x � � �

x � v � u � x � � �

ATy � s � z � c � s� z � � � y free �

x�s � �e �
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Given x�v� s� z�� and y
 The Newton step is de�ned by�����
A � � � �

I � I � �

� AT � I �I

S � � X �

� � Z � V

�����
�����
hx
hy
hv
hs
hz

����� �
�����
b�Ax

u� x � v

c �ATy � s � z

�e � x�s

�e � v�z

����� �
�����
fP
fU
fD
fCx
fCv

����� �

This can be simpli�ed by the substitutions

hv � fU � hx �

hs � X���fCx � Shx� �

hz � V���fCv � ZfU � Zhx� �

and the system reduces to the form ��
��� with

D�� � X��S �V��Z �

fx � fD �X��fCx �V���fCv � ZfU � �

fy � fP �

Example ����� We brie y outline two other IPMs
 They di�er from the primal�

dual method in the de�nition of the Newton step h� but use the framework

of Algorithm IPM p
 �� as regards monitoring the barrier parameter �� and

the interior loop may involve damped Newton steps


Primal Logarithmic Barrier Method� Let

�P � min
�
c

T
x � Ax � b� x � �

�
�

We use the same barrier function as in Section �
��

���x� � cTx � �
Pn

j�� log xj �

rx���x� � c � �x�� �

rx���x�h�  c � �x�� � �X��h �

Given a feasible x� we seek h in the null space of A� and so that rx���x�h�

satis�es point � in Farkas� Lemma p
 ���

Ah � � � c � �x�� � �X��
h � A

T
y �


	�	 Karmarkars Algorithm �

or the following system� which is of the form ��
����

��X�� AT

A �

�

h
y

�
�



c � �x��

�

�
�

Dual Logarithmic Barrier Method� We consider the dual in the form

�D� min
�
�cTy � AT
y � c� y free

�
�

and use the barrier function

���y� � �bTy � �
Pn

j�� log sj � with s � s�y� � c �ATy �

ry���y� � �b� �As�� �

ry���y�hy�  �b� �As�� � �AS��hs � with hs � �AThy �

The Newton step is therefore de�ned by

I AT

�AS�� �

�

hs
hy

�
�



�

�b � �As��
�

�

or 

� �
�S

� AT

A �

�

��S��hs

hy

�
�



�

�b� �As��
�

�

which again is of the form ��
���


���� Karmarkars Algorithm

Narendra Karmarkar published his method in ����� and this started an

explosive research in the �eld of IPMs� His method cannot compete with

today�s e�cient versions� as presented in the previous sections� but for the

sake of completeness we give a short presentation of it�

Consider

�P � min
�
cTx � Ax � b� x � � �
�

and let z be the current approximation to an optimal solution x�� The

point z is assumed to be interior� and centered at this point we de�ne two

ellipsoids in IR
n� E� and E��� with their surfaces respectively inside and

outside the feasible domain�
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E’

E"

z

z’

z"

−c
x*

Figure ��	� Interior and exterior ellipsoid

The points z� and z�� are the intersections betweeen E� and E�� and the

vector from z in the direction of the negative gradient� The ratio � de�ned

by

z�� 	 z � ��z � 	 z�

obviously satis�es � � �� It is also obvious that

cTz � cT z� � cTx� � cTz�� �

and from these relations we see that

cT �x� 	 z�� � cT �z�� 	 z�� � ��	��cT �z� 	 z� �

or

cT �z� 	 x�� � ��	��cT �z 	 z�� � ��	��cT �z 	 x� 	 �z� 	 x��� �

so that
cT �z � 	 x�� �

�
�	 �
�

�
cT �z 	 x�� � �
�	��

Since �	 �
� 	 �� the point z� is a better approximation to x�� and we can

repeat the process with ellipsoids centered at z� now� however the ratio �

is much larger� so we get almost no improvement�

Karmarkar�s method is based on

�� A special formulation of the problem�

�PK� min
n bcTbx � bAbx � �� eT bx � �� bx � � o
� �
�
�

constructed so that the vector bn��e is feasible� and the optimal value is


	�	 Karmarkars Algorithm �	

bcT bx� � � In Example 
��� we show� how a given problem can be written

in this �Karmarkar standard form�� For notational convenience we omit

the �b� in the following�

	� The use of a transformation� whereby the current iterate is mapped

into the centre of the transformed feasible domain�

In Figure 
�� we show �for n� 
� the feasible region� which is the part

of the hyperplane eTx � � in the positive orthant� The centre is n��e� and

2
X

3
X

−c’

1
X

Figure ���� Interior and exterior ellipsoid

the largest interior and smallest exterior ellipsoids are balls with radius

r� �
s

�

n�n	��

and r�� �
r
n	 �

n

�

respectively� Therefore� � � r��
r� � n	�� and after k iterations we have��	

cT �xk 	 x�� �
�

�	 �
n	�

�k
cT �x
 	 x�� �

��	 This is a simpli�ed analysis� It assumes that in every iteration the point cor�

responding to z� in Figure ��� is in the strict interior of the feasible domain�

Even worse� we do not use �c but a projection of it �marked �c � in the �g�

ure	� However� a stringent analysis involving the �Karmarkar potential� �K�x	 �

n log cTx �
P
logxj� yields a result similar to our simpli�ed derivation� see 
���

or 
��� Theorem IV���� and in practice considerably faster convergence is normally

achieved�
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Similar to Lemma 
�� we see that after at most�
�n	�� log

�
�

�

iteration we have cT �xk 	 x�� � � � cT �x
 	 x���

Karmarkar uses the transformation

ex �

Z��x

eTZ��x

� x �

Z ex
eTZex � �
�
��

where Z � diag�z�� with z denoting the current iterate� This is mapped

into ez � n��e� and problem �PK� is transformed into

�P �K� min
�
cTZex
eTZex � AZex � �� eT ex � �� ex � � �

�

The objective of this problem is nonlinear� but we know that the optimal

value is zero� and this happens only if the nominator is zero� Therefore� we

linearize �P �K� to

� ePK� min
�

�Zc�T ex � AZex � �� eT ex � �� ex � � �
� �
�
	�

The next transformed iterate is found as ex � ez � �eh� which should be

feasible� i�e� AZeh � � and eT eh � � We get eh by projecting the negative

gradient 	Zc onto the null space of the matrix

B �


AZ
eT

�
�

According to �	�	�a� we can �nd eh by solving��	

I BT

B �

� 
 eh
y

�
�


	Zc
�

�
� �
�

�

The value of � in ex � ez � �ehcan be found as described in Section 
�
 for

damped Newton steps� and to get back to x we use the back transformation

in �
�
���

��	 eh � �c� in Figure ���� Note� that also in Karmarkar�s method the dominating

part of the computational work is the solution of a system of the form �����	�
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Example ���	� Consider an LO problem in canonical form

�P � min
�
cTx � Ax � b� x � �

�
�

�D� max
�
bTy � AT y � c� y � �

�
�

Introducing slack variables we can write the problem in standard form�

�P �� min
�
cTx � Ax � z � b� x� z � �

�
�

�D�� max
�
bTy � AT y � s � c� y� s � �

�
�

Now� let
"n � ��n�m��� � x� � s� � e	n
 � y� � z� � e	m
 �

where e	n
 �e	m
� is the vector with n �m� ones� and let

q� � "nb�Ax� � z�� r� � "nc �ATy� � s�� �� � bTy� � cTx� �

Then
bA �

�� A �I � � �"nb q�

� � AT I �"nc r�

cT � �bT � 	 ��
�� � bx �

�������
x
z
y
s

�
�

�������

can be used in the Karmarkar standard formulation� It is seen that x � �
ne

is feasible� bAx�� � eTx��


The problem

�PK� min
n bcTbx � bAbx � �� eT bx � �� bx � �
o

with bc � IRn having "cn � � as the only nonzero element� has the objective

�� which is nonnegative
 Thus� �PK� is both feasible and bounded� and

according to Theorem �
� is has a solution bx� with ���	


Now� as in the proof of Theorem �
�� we see that If ���	� then �P � is either

infeasible or unbounded
 Otherwise� also the vector  bx� with  � ���"n���

satis�es the homogeneous constraints bA� bx�� � �
 This means� that the

x� z� y and s parts of  bx� are feasible for the original problem� and their

duality gap is zero
 Therefore� we have found an optimal solution
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Consider an LO problem in canonical form

�P c� min
�
cTx � Ax � b� x � � �
�

with n variables and m inequality constraints� Each of the equations

Ai��x � bi and xj �  de�nes a hyperplane in IRn �a line in IR��� which

splits the space into two parts� the feasible part Ai��x � bi �xj � � and

the infeasible part Ai��x 	 bi �xj 	 �� The hyperplanes de�ne a polytope

�also called a simplex � with vertices where n �or more� of these planes meet�

In Examples ��� and ��	 we saw� that at least one member of the optimal

set is at a vertex� In general there are up to ��m�n� � �n�m	�

m�n� vertices�

and even for small problems� this is a prohibitively�	 large number� The

Simplex method often �nds the solution much faster�

The fundamental idea was given in Figure ��
 and is further illustrated

in Figure ���� move from one vertex to an adjacent vertex as long as the

objective cTx decreases�

We shall present the Simplex algorithm as applied to an LO problem

in standard form�	

�P � min
�
cTx � Ax � b� x � � �
�

with n variables and m	n constraints� The discussion after Theorem 	�	

can be seen as another introduction to the Simplex idea� The index set

f�� � � � � ng can be split into two disjoint sets B �with m elements� and C

�	 �����	 � ���� �������	 � ����e���� �������	 � ���	e�
�� � � � �

�	 As shown in Section ���� this can be obtained from �P c	 by extending x with

m slack variables� implying that n �� n�m� Conversely� for a problem given in

standard form there is an equivalent canonical form� see Example ���� We use

this relationship implicitly in the discussion when we illustrate some concepts by

a two�dimensional �gure�

�	�	 The Algorithm ��

Figure ���� Vertices and Simplex path

�with n	m elements�� and we split A� c and x accordingly� so that the

constraints take the form

BxB � b 	CxC � �����

where B � AB and C � AC � We say that xB and xC are basic and

nonbasic variables� respectively�

If B is nonsingular and B��b � �� then the x given by xB � B��b

and xC � � is a vertex of the polytope� and an adjacent vertex is obtained

by swapping an element in B with an element in C� This is elaborated in

Sections ��� � ���� and Sections ��� � ��� give implementation aspects and

some variants of the method�

���� The Algorithm

Assume� that we are given a vertex xk� corresponding to a splitting B�Bk�

C� Ck so that

rank�B� � m � ���	a�

x
�k	

C � � � ���	b�

x
�k	

B � B��b � � � ���	c�
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To see� whether we can improve the objective� we look at the complete

solution to the equality constraints� as given by ������

xB � B���b 	CxC� � x
�k	

B 	B��CxC � ���
a�

and the corresponding objective is�	

cTx � c TB xB � c TC xC

� c TB x
�k	

B � dTxC

� cTxk � dTxC � ���
b�

where

d � cC 	CTg with g � B�TcB � ���
c�

The constraints demand that xC ��� Therefore� if d� �� then we cannot

decrease the objective� and xk is optimal�

Otherwise� let ds be a negative component of d� and change �xC�s

to � � � while the other components of xC are kept at zero� Then the

objective decreases� and the basic variables are changed to

xB � x
�k	

B 	 �h � where h � B���C���s � �����

Let

�j �
�

�x �k	
B �j
hj if hj � 

�
 if hj � 

� ����a�

� � minf��� � � � � �mg � ����b�

If � � �
� then we can make � arbitrarily large� and thus decrease the

objective to 	
� the problem is unbounded� Otherwise� the vector

z � x
�k	

B 	 �h �����

is nonnegative and at least one of its elements � the qth � is zero�	 � Now�

the qth element in B is swapped with the sth element in C� giving us Bk���

�	 d � dk is the socalled reduced�cost vector� For the sake of convenience we omit

the index� Similarly� h�hk in ����	�

�	 The element xq is called a blocking variable�

�	�	 The Algorithm ��

Ck��� and the next vertex has x
�k��	

B � z except for �x
�k��	

B �q ��� The

objective is decreased by ��	ds��

The algorithm is summarized below� It assumes that B and

C � f�� � � � � ngnB are initialized so that the conditions in ���	� are satis�ed�

and we use B�i� �C�i�� to indicate the ith element in B �C��

Algorithm Simplex

xB �� B��b

repeat

Compute d by ���
c�

if d � � then Stop fx is optimalg

Choose s so that ds 	 

h �� B��A��C�s	

if h � � then Stop f �P � is unboundedg

Compute � by �����

Choose q so that �q � �

Swap B�q� and C�s�

xB �� xB 	 �h �xB�q �� �

end

Example ���� Consider the problem from Example �
�
 In standard form it is

given by n��� m���

A �


��� � �� 	

���� � 	 �
�

� b �


�

�
�

� c �
��� �

�
	

	
��� �

The feasible region is given below� cf
 Figure �
�


(2,0)

(0,1)
 

(0,2)
 

X
1

X
2

x
4
 = 0

x
3
 = 0

 Feasible 

 domain 

Figure ���
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The choice B� � f�� �g� C� � f�� �g satis�es the conditions of ��
��� B is

nonsingular and

x
	�


B

�


� ��

� 	
��� 

�

�
�

�


�

�
�

� � �

This corresponds to x� �

�
	 � � 	

�T

 The last two components are

slacks� so x� corresponds to the point �	� �� in Figure �
�


Now� we start the iteration�

d �


�

	
�

�


��� ����

	 �

�

� �

�� 	
��� 

�

	
�

�


�

	
�

�


��

�
�

�


�
��

�
�

s��� and

h �


� ��

� 	
��� 

	

�
�

�


�

�
�

� �� �
�

�
� � � �� �

�
�

� � � � � � �

We see that q��� B� � f�� �g� C� � f�� �g and

z �


�

�
�

� � 



�

�
�

�


�

	
�

� x
	�

B

�


�

�
�

�

Now for the next iteration�

d �


�

	
�

�


��� ����

�� 	

�

� �

	 �
��� 

�

	
�

�


���

�
�

�

Both components of d are positive� so that x� �
�
	 � 	 �

�T
is optimal


This corresponds to the point �	� �� in in Figure �
�


Example ���� For the problem of the previous example we change the objective

vector to c �
�
� � 	 	

�T

 Then the last expression for d is changed to

d �


�

	
�

�


��� ����

�� 	

�

� �

	 �
��� 

�

	
�

�


	

�
�

�

We still have d�� so that x� is optimal
 However� the fact that d��	 shows

that if we move in the direction given by s���

h �


� 	

� �
��� 

���

����
�

�


���

����
�

�

�	�	 Degeneracy �

then the objective value is unchanged
 This is in agreement with Example

�
�� It corresponds to x �
�
� �� �
� 	 �� ��
�

�T
� which is feasible for

	 � � � �� and the �rst two elements give the line segment between the

points �	� �� and ��� 	� in Figure �
�


Problem �U� from Example �
� is obtained by changing c to �c so that the

�rst d in Example �
� is changed to d �
�
�� �

�T

 Now� s��� and

h �


� ��

� 	
��� 

���

����
�

�


����
����

�
�

Thus� h�� � indicating �as it should� that the problem is unbounded


Assume� that x
�k	
B �� in every iteration step� Then ��  in each

step� and the objective decreases� This implies that we cannot return to a

vertex already tried� and since the number of vertices is �nite� the Simplex

algorithm has �nite termination�

Exercise ���� The matrix B � ABk has full rank
 Show� that also ABk��

obtained by swapping B�q� and C�s� has full rank


Hint� Exploit� that q is chosen so that the qth component in h � B��C��s

is nonzero


The computational work is dominated by the solution of the two sys�

tems

BTg � cB and Bh � C��s

in each iteration step� This is discussed in Section ���� Before that� how�

ever� we look at the selection of incoming and outgoing basis variables and

the choice of starting point�

���� Degeneracy

A vertex is said to be degenerate if one or more components in x
�k	
B is

zero� This happens if more than n	m hyperplanes meet at the vertex� as

illustrated below�
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Example ���� For n�m � � we show a nondegenerate vertex xk�� and an

adjacent� degenerate vertex xk
 The infeasible parts of IR� are indicated by

shading


x
k−1

x
k

−c

x
t
 = 0

x
u
 = 0 x

v
 = 0

x
w

 = 0

Figure ���� Degeneracy

At xk�� the variables xu and xv are positive� so that u� v �Bk��� while

t�w�Ck��
 Let h correspond to the edge xw �	
 Then both xu and xv

are blocking variables�	 � �ju � �jv � �
 At xk the nonbasic variable xt is

swapped with either xu or xv


Now� consider the Simplex step from xk �without knowledge of� how we got

there�
 All three edges correspond to descent directions� but one of them is

in Bk and the others are in Ck 
 There are the following possibilities

In Ck �Chosen as s� Blocking variable

v�w v xu

v�w w xu

u�w u �

u�w w xv

u� v u �

u� v v �

In the cases marked ��� there is no problems in leaving xk
 In the other cases

we get ��	� i
e
 no progress� xk�� � xk� but B and C have changed
 Further�

there is a risk of �cycling�� The iteration may go on for ever� alternating

between u�B� v�w�C and v�B� u�w�C


This example may seem pathological� but for large� �real�life� problems

it seems to be the rule rather than an exception that some of the vertices

are degenerate�

�	 ju and jv are the indices in Bk�� of u and v� respectively�

�	
	 Pricing and Pivoting �	

Degeneracy of a vertex must not be confused with degeneracy of the

problem� as discussed in Section 	��� Problem �P � my be nondegenerate

and still have degenerate vertices� If the solution x� has less than m nonzero

elements �case 	� page 	��� then the �nal vertex is degenerate� while a

nonunique solution to �P � �case 
� page 	�� may give a nondegenerate

�nal vertex�

The cycling can be avoided by �agging the variables so that we cannot

return to a splitting B� C already tried� A special version of this is Bland�s

rule� where s is always chosen as the �rst index in the current C� for which

di	  and q is the �rst index in the current B� for which �j ��� ��
� Section

��
�
�� Such a strategy guarantees that we leave a degenerate vertex after

a �nite number of iteration steps� but does not prevent �stalling� � there

is no progress during these steps�

Another approach is based on perturbing the problem so that an in�

tersection between n	m�p hyperplanes is split into p nondegenerate �but

close� vertices� Such a method is described in ��	�� Basically� if � computed

by ����� is smaller than a prescribed positive value �min� it is replaced by

�min� implying that some components of z� ������ are negative� Let J � B

denote the set of indices for which zj 	 � then z � obtained by replacing

these components by zero is feasible for the perturbed constraints

Ax � b� � where b� � b 	A��B�J 	zJ � �����

Alternatively� the code can be written so that slight infeasibilities in the

variables and constraints are accepted� After all� the computed results are

a�ected by rounding errors� and occational �puri�cation� is used during

the iteration� see Section ���� In this connection the perturbed iterate can

also be puri�ed� e�g� by the technique described in ����� � ������

���� Pricing and Pivoting

These names are often used�	 in connection with the choice of s i�e� the

incoming basis variable� Once this is chosen� the number q of the outgoing

variable is well de�ned� except when the vertex is degenerate�

�	 Citing from 
��� Section ������ �� � � the subject of linear programming is sur�

rounded by notational and terminological thickets� Both of these thorny defenses

are lovingly cultivated by a coterie of stern acolytes who have devoted themselves

to the �eld� Actually� the basic ideas of linear programming are quite simple��



�
 The Simplex Method

Normally� there is more than one

negative element in d� and as illus�

trated in Figure ���� the choice be�

tween them may have a large e�ect on

the number of Simplex steps� Start�

ing at the vertex marked by a double

circle� we can go to the left and reach

the solution in two steps� If we go to

the right� we have to use � steps�

−c

Figure ���

Ideally� we want to choose s so that the total computational work is

minimized� This� however� is prohibitive� Instead we aim at optimizing

the current Simplex step� Let S denote the set of candidates for incoming

variable�
dj 	  � j �S �

Some simple choices of s are

�� Take s as the �rst member in S�

	� s � argmax

j �S
�jdj j� �

The second choice implies� that if � were independent of s� then we max�

imize the gain 	�ds� However� � depends on h � B��C��s� and a more

advanced strategy is to compute h for all j �S� and pick the one that max�

imizes the gain� This is also prohibitive�	 but since the advent of e�cient

interior point methods a large e�ort has been made to get better Simplex

methods� and especially this part has shown great improvement� See �	��

for an overview and a list of references�

���� Initialization

It is common usage to distinguish between

Phase �� Compute a starting point satisfying the conditions in ���	��

Phase �� The algorithm� as presented in the previous sections�

	 and does not guarantee the best overall performance� In Figure ��� the �rst step

to the right gives a larger decrease in the objective than the step to the left�

�	�	 Initialization ��

There exists a number of strategies for Phase �� The simplest idea is

based on solving the expanded problem

� bP � min
n bcT bx � bAbx � b� bx � � o
� ����a�

where bx� bc � IRn�m and bA� IRm��n�m	 are given by

bx �


x
z

�
� bc �



�
e

�
� bA �

�
A I

�
� ����b�

Since z ��� the minimal value of the objective bcT bx � eTz occurs for z ���

Assume that all�	 bi� � then bx �
�
�T bT

�T
satis�es the constraints�

Thus� � bP � is both bounded and feasible� and according to Theorem 	�	 it

has a solution�

We can use Simplex p� �� to �nd this and note� that the choice bB
 �

fn��� � � � � n�mg �corresponding toB� I � bx�
	
B

�b� satis�es the conditions

in ���	�� Let bx� denote the result� If eTz� � � then the original problem

�P � is infeasible� Otherwise� z� � �� and x� is feasible for �P �� Even

better� x� is a vertex for �P �� To see this� let p be the number of b�j �n in

the �nal set bB�� If bx� i nondegenerate� then p�m and we can start Phase

	 with B
 � bB�� Also for a degenerate bx� it may happen that p�m�

otherwise we have to supplement with m	p other columns from A to get

a full rank basis� see Section ����

Example ���� For the problem of Example �
�� b�� and the expanded problem

has the constraint matrix

bA �


��� � �� 	 � 	

���� � 	 � 	 �
�

�

The choice bB� � f� �g� bC� � f�� �� �� �g gives

bx 	�

B � b �



�

�
�

� d � � �AT
e �

�
�
� �� � ��

�T
�

We choose s�� and get

�	 If bk � �� we can replace Ak��x � bk by �Ak��x � �bk�
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h �


�

�
�

� � � minf�� �g � � � z �


�

�
�

� � 



�

�
�

�


	

�
�

�

Thus� q��� bB� � f�� �g� bC� � f�� � �� �g� bx 	�

B

�
�
� �

�T



In the next iteration we �nd d �
�
�
� � �� ��

�T



We choose s�� and get h �
�
�� �

�T
� ���� z �

�
� 	

�T
� q��


This leads to bB� � f�� �g� bC� � f�� � �� �g� bx 	�

B

�
�
� �

�T

 Now� bc
B

� ��

so that d � bcC � �
	 � � 	

�T � � � and Phase � is �nished
bB� � bB� has both elements in the range ��� n�
 Therefore� B� � f�� �g can

be used for starting Simplex on the original problem � as it was done in

Example �
�


The Simplex method is well suited for warm start	 This is of interest

e�g�� when a nonlinear problem is solved by iteration involving a series of

LO problems� where the elements inA� b and c may have changed from the

previous problem� but as the outer iteration proceeds� the optimal partion

will be �almost� the same�

In such a case initialization via the expanded problem � bP � is wasteful�

Instead we can use the B from the previous problem as starting point for

a special Simplex iteration� We assume� that condition ���	a� is satis�ed�	

also with the new elements in A� and modify the algorithm focusing on

feasibility rather than the objective�

If x
�
	
B � B��b � �� then all conditions in ���	� are satis�ed� and we

can go directly to Phase 	� Otherwise� let V � V�x� � B denote the set of

violated constraints�

xj 	  � j �V � ����a�

and let
��x� �

X
j �V�x	

�	xj� � ecTx � ����b�

with
�	 If not� then we have to adjust to get a full rank B� see Section ����

�		 Basis Factorization ��

ecj � ecj�x� �
�	� if j �V�x�

 otherwise

� ����c�

The function ��x� is nonnegative and piecewise linear since ec�x� is constant

in regions� where no xj changes sign�

The minimum of ��x� is zero � when all variables are feasible� We can

use the Simplex ideas to �nd this minimum� Since ecC ��� Equation ���
�

reduces toecTx � ecTxk � dTxC with d � 	CTB�TecB �

If d� �� then we cannot decrease �� and �P � is infeasible� Otherwise�

choose s so that ds	  compute h as in ����� and

�j �
�������

�x
�k	

B �j
hj if hj 	 

	
 otherwise
�

if j �V

�x
�k	

B �j
hj if hj � 

�
 otherwise
�

if j �B�V

����a�

� � min
�

min

j �B�Vf�jg� max

j �Vf�jg
�

� ����b�

The step taken to get the next iterate is 	�h� The construction ensures

that feasible variables stay feasible� and aims at getting as many variables

feasible as possible� See ��
� Section ������ for more details and a proof that

this algorithm stops after a �nite number of steps�

Example ���� For the problem of Example �
� take B� � f�� �g
 The matrix B �

�� 	

	 �
�

has full rank� and x 	�

B

� B��


�

�
�

�


��

�
�

� so that V�x�� � f�g


We �nd d �
�
���� ��

�T
� and the choice s�� results in h �

�
�� �

�T
�

��� and z �
�
	 �

�T
� q��


Thus� after one iteration we have B� � f�� �g� x 	�

B

�
�
� �

�T
� which is

feasible� and we are ready for Phase �
 Actually� this starting point is the

optimal solution
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���� Basis Factorization

Given the splitting of the index set f�� � � � � ng into B and C� and the corre�

sponding splitting of A into B and C � we have to solve

BTg � cB and Bh � C��s � ������

where the choice of s was discussed in Section ��
� If m is large� then

the solution of these systems in each Simplex step dominates the execu�

tion time� Therefore it is necessary to have an e�cient �and accurate�

implementation�

As mentioned in Section 
��� the constraint matrix A � and therefore

the basis matrix B � is normally sparse� and this should be exploited� In

contrast to the coe�cient matrix in IPMs� B is neither symmetric nor

positive de�nite �but normally considerably sparser than AD�AT �� This

implies that we have to take into account both sparsity and numerical sta�

bility in the factorization of B� see �
�� or ���� The result can be expressed

as

PBQ � LU � ����	�

where P and Q are permutation matrices representing the row and column

interchanges� respectively L is a unit lower triangular matrix and U is an

upper triangular matrix with nonzero diagonal elements �since B has full

rank�� If the problem is sparse� then so are L and U �

Once the factorization is known� the vector h can be computed by�
	

h � QU��L��PC��s � ����
a�

This involves the solution of two triangular systems and two sets of inter�

changes of elements in a vector� and in sparse matrix terminology it is one

Solve�
From ����	� we see that BT � QUTLTP� and the vector g can there�

fore be found as

g � PTL�TU�TQTcB � ����
b�

�
	 See the footnote on page ��� For a permutation matrix P�� � PT �

�		 Basis Factorization ��

This� again is a Solve� where the roles of �P�Q� are replaced by �QT �PT �

and the lower �upper� triangular matrix L �U � is replaced by the lower

�upper� UT �LT ��

The conclusion is� that each Simplex step involves one factorization

and two Solves� For a dense matrix the factorization involves about �
�m

�

�ops� and each Solve �costs� 	m� �ops� For a sparse matrix a Solve

costs about �" of a facorization�

The next basis matrix B�k��	 di�ers from B�k	 only in the qth col�

umn� This can be exploiting by computing the factorization for B�k��	

by updating the previous factorization� We shall present the Bartels�Golub

algorithm� where the L matrix is represented in product form of the inverse

Mr � � �M�M�B � PUQ � ������

Each M i is a matrix which di�ers from I in just one of the o��diagonal

elements� This factorization is derived in Appendix A���

Example ��	� LetM i have the o��diagonal element �� in row k� column j
 Then

v �M iu is identical with u except for vk � uk � �uj
 Thus� Mi represents

an elementary row operation� It can be stored as a triple ���� k� j�


With this factorization of B� the solutions to ������ are found as

g � MT
�M

T
� � � �MT
r PU

�TQcB �

h � QTU��PTM r � � �M�M�C��s �

������

Let ������ correspond toB�B�k	� The next basis matrixB�k��	 di�ers

from B�k	 only in the qth column� which is replaced by C��s� From ������

we see that the upper triangular U can be expressed as

U � PTM r � � �M�M�B
�k	QT �

This implies that

S � PTMr � � �M�M�B
�k��	QT

is identical withU except for the qth column� where q is the column number

in BQT of B��q� This column is a �spike� with elements given by
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S��q � PTM r � � �M�M�C��s �

The next U is obtained by transforming S to upper triangular form� The

work is minimized by �rst moving the qth column to the last position and

shifting each of the columns q��� � � � �m one place to the left� The resulting

matrix S eQ is said to have upper Hessenberg form	��	 Finally�U is obtained

by applying at most m	q elemenatry row operations� The three matrices

are indicated in Figure ����

������� ������� �������

������ ������ ����������� ����� ��������� ���� ������� ��� ���

�� �� ��� � ���
�� ��
��

q q

S S eQ U

Figure ���� Updating U

The accumulated result of these transformations is that

M r � � �M r � � �M�B
�k��	 � P U Q �

i�e� a factorization of the form ������� with more fM ig� however� and we

can use ������ with P� Q� U � r updated to P� Q� U � r�

In the transformation from S eQ to U row pivoting is used for stability

reasons� Reid �
�� showed that in the sparse case row and column permu�

tations can often be used to decrease the number �r	 r� of row operations�

In this connection row interchanges is also used to reduce �ll�in�

In the dense case the transformation from S to U costs at most m�	�

�ops �when q� ��� Even for medium�sized problems this is considerably

smaller than the �
�m

� �ops needed to factorize B�k��	 �from scratch��

��	 This means that in each column it has at most one nonzero element below the

diagonal� The step S � SeQ is shared by another updating algorithm known by

the names Forest�Tomlin� It di�ers from the Bartels�Golub algorithm �B�G	 in

some details� and experience indicate 
���� that especially for sparse problems the

B�G algorithm is superior�

�		 Basis Factorization �

As the Simplex iteration proceeds� the number r grows� implying that

storage demands for the fM ig time for performing the r simple row op�

erations and the e�ect of rounding errors all grow� In the sparse case U

will also su�er from an increasing amount of �ll�in� Therefore� an occa�

tional refactorization is used� e�g� every mth Simplex step or monitored by

the number of nonzeros in U or by the growth factor	 This is the largest

element in jU j relative to the largest element in jB�k	j� If this is large� it

indicates a risk of excessive e�ect of rounding errors�

Example ��
� We have implemented the Simplex method as described above�

with cold start Phase � de�ned by ��
�� and the choice of incoming varible

given by �� page ��
 In case of a degenerate vertex we modify the problem

by ��
��� and recompute �once� with warm start on the original problem
 We

refactorize if r exceeds m�m���� i
e
 twice the number of nonzeros in L in

an LU�factorization


The costly part of each iteration is

Task Dense matrix � ops�

Compute g and h � 
 ��m� � �r�

Compute d ��n�m�m

Update factorization �r � �m� q��

On the average we can expect r � �
�m

� and m � q � �
�m� and this leads to

the following estimate of the cost when n��m�

R 
 �
�

m� �K
SPX


 �	m� �

where R and K
SPX

are the numbers of refactorization and iterations� respec�

tively


For comparison� suppose that we use the normal equations approach �see

Section �
� in connection with algorithm IPM�� p
 ��
 The cost per iteration

with this is dominated by

Task Dense matrix � ops�

Compute fP and fD � 
 �mn

Compute AD�AT n
m�

Compute C �
�m

� �m�

Compute hay and hcy � 
 �m�
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Thus� if n��m� then the cost of K
IPM

iterations with this method is about

K
IPM

 
�

�
m� � ��m�

!
�

We use these estimates in the next example


From the two estimates we see that� if K
SPX

�� 	���m 
 K
IPM

� then we can

expect Simplex to be faster than IPM
 Normally� however� K
SPX

grows a

little faster than m� while K
IPM

is almost constant� so IPM wins for large

problems
 If n� m� then this change�over occurs for a smaller m�value


As mentioned several times� �real�life problems� are often sparse� and this

is exploited in both a Simplex and an IPM code
 A comparison of compu�

tational e�ort is complicated by the fact� that normally the Cholesky factor

in the IPM method is more dense��	 than the L �as represented by the Mr�

and the U in the factorization of B� leading to the change�over for a larger

m�value


Example ���� We have used the algorithm from the previous example on the

same problems as treated by algorithm IPM� in Example �
�
 In all cases

shown� the largest relative error in the objective was ���e�
�


First� Figure �
�a shows results for well scaled problems
 The notation �B �

	��m means that the solution is a degenerate vertex with 	��m zeros in ex
B
�

while �B � ���m means that the solution is not unique
 The number of
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Figure ���a� Simplex� Well scaled problems�

� � �B � 	��m� o � �B � m� x � �B � ���m

iterations seems to grow slightly faster than linearly��	 with n� and the

degenerate problems need slightly more iterations than the others
 The worst

��	 See Figures ���a�b�

��	 A least sqares �t to the results shows� that KSPX � ��� � n��� �

�	�	 Dual Simplex �	

case is �n��B� � ���	� ���� which needs �� iterations ���� in Phase �� ���

in Phase �� and one refactorization
 For comparison� this problem needed ��

iterations with IPM�� and the estimates in the previous example give

work
SPX

� ��e�	�  ops� work
IPM

� �
�e�	�  ops �

In Figure �
�b we show results for �descaled� problems� 	x��	�� 	y���

	s��	��
 The number of iterations is larger than for the well scaled prob�

lems� but the Simplex method seems to be less sensitive than the IPMmethod

used in Example �
�

0 20 40 60 80 100 120 140 160 180 200

0

100

200

300

400

n

its

Figure ���b� Simplex� Descaled problems�

� � �B � 	��m� o � �B � m� x � �B � ���m

���� Dual Simplex

For the primal problem in standard form

�P � min
�
cTx � Ax � b� x � � �
� �����a�

the dual is
�D� max

�
bTy � ATy � s � c� s � � �
� �����b�

Assume� that we have solved �P � by the Simplex method with the �nal

splitting B� C� Then it follows from �	�	�� that an optimal solution to �D�

is given byey � B�TcB � esB � � � esC � cC 	CT ey � ������
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By comparison with Section ��� we see that �ey � esC� are the �nal version of

the �Simplex vectors� �g � d��

Example ����� Assume that �P � is nondegenerate� i
e
 exB�� � and let us perturb

the right�hand side to b�r
 Then ex
B

is changed to ex
B

�B��r � and for krk

small enough� this stays positive� so that we have the same optimal splitting


The objective is changed by

c T
B

�B��
r� � eyT r �

Thus� ey expresses the sensitivity of the optimal value with respect to small

changes in the right�hand side


Economists played an important role in the early days of linear programming

and the development of the Simplex method
 Problem �P � was often formu�

lated as the minimization of expenditure� so the relation between ey and the

vector d justi�es the name �pricing vector�� cf
 Section �
�
 In the same vein�eyi is called the marginal cost of constraint number i


Example ����� The problem of Example �
� has the optimal splitting B � f�� �g�

C � f�� �g� and

B �


� 	

� �
�

� C �


��� ��

���� 	
�

�

The solution to the dual problem was given in Example �
�� ey �
�
� 	

�T
�es � �

	� 	 � 	
�T
� and it is easily seen that they satisfy ��
���


From ey��	 we se that a small change in b� should not change the objective�

xB �


� 	

� �
��� 

�

��r
�

�


�

��r
�

�

which stays positive for r���� and thus� is optimal in this range
 The

objective is

c
T
x � c TB xB � � 
 � � 	 
 ���r� � � �

which is independent of r


�	�	 Dual Simplex ��

The Dual Simplex Method is based on this relationship between the

dual solution and the vectors used in the primal Simplex method described

in the previous sections� Instead of the warm start algorithm of Section ���

it may be advantageous to use Dual Simplex�

Suppose that we are given a splitting B� C� so that

y � B�TcB �����a�

is feasible for �D�� i�e�

sB  cB 	BTy � � and sC  cC 	CTy � � � �����b�

Then the basic solution given by xB � B��b is said to be dual feasible	 If

it is also primal feasible �i�e� xB � ��� then it is optimal� Otherwise� let q

be the index of a negative component of xB� We change y �y �k	 to

y 	 �u with u � B�Teq � � �  � ������

Then the dual objective increases�

bT �y 	 �u� � bTy 	 �eTq B
��b

� bTy 	 ��xB�q � bTy

since �xB�q 	 � As regards dual feasibility� we see that

sB � cB 	BT �y 	 �u� � �eq �

sC � s
�k	

C � �h with h � CTu �

If h��� then we can increase � in�nitely� �D� is unbounded� Otherwise�

we proceed similar to ������

�j �
�

�	s �k	C �j
hj if hj 	 

�
 otherwise

� j � �� � � � � n	m � ���	a�

p � argmin
�
�j

�
� � � �p � ���	b�

Now� the B�q� is swapped with C�p� y �k��	 � y �k	 	 �h B is updated as

described in Section ��� and x �k��	

B � B��b�



�� The Simplex Method

Example ����� We shall apply the Dual Simplex Method to the problem of

Examples �
� and �
���

A �


��� � �� 	

���� � 	 �
�

� c �
�
� � 	 	

�T
�

For b �
�
� �

�T
the optimal splitting is B � f�� �g� C � f�� �g� andey �
�
� 	

�T
� es � �
	� 	 � 	

�T



Now� we change the right�hand side to b �
�
� 	

�T
� and from Example �
��

�with r� � �� we see that x
B

�
�
� ��

�T
� which is not primal feasible


The change in b does not� however� a�ect the dual constraints� so with the

choice y	�
� ey� the vector xB is dual feasible


With q�� we �nd

u �


� 	

� �
��T 

	

�
�

�


��

�
�

� h �


��� ��

���� 	
�T 
��

�
�

�


����

�

�
�

�� �

�	�
���� �

�
�

� �� � �� � p � �� � �
�

�
�

The next splitting is B � f�� �g� C � f�� �g� and we �nd

xB �


� ���

� ����
��� 

�

	
�

�


���

���
�

�

which is positive� so we are �nished
 The optimal vector is

x� �
�
�
�

�
� 	 	

�T



�� Continuation Methods

This class of methods can be said to have the �avour of both IPMs and the

Simplex method� With the former they share the advantage of continuous

di�erentiability and not being restricted to the vertices of a polytope� With

the latter they share the possibility of cheap updates of the factorization�

We shall restrict ourselves to discussing a special version� based on the

work of Madsen et al� �	�� � �	�� and on �	
�� The method is formulated in

Section ��� and further developed in the rest of the chapter�

���� Formulation

Again� we consider an LO problem in standard form

�P � min
�
cTx � Ax � b� x � � �

with the dual

�D� max
�
bTy � ATy � c� y free

�
�

We solve the dual problem via a series of smooth approximations depending

on a positive parameter �� which we let go to zero� These problems have

the form
�D� � max

�
�� �y�  bTy 	

nX
i��

���si�y�� � y free
"

� ����a�

where si�y� is the ith component of the surplus vector

s � s�y� � c 	ATy � ����b�

and �� is de�ned by

���s� �
� �

�� �� 	 s�� if s � �

 if s � �

� ����c�



�� Continuation Methods

The feasibility conditionATy � c is equivalent with s�y���� and the func�

tion �� is chosen to smooth the separation between feasible and infeasible

parts of the domain and to penalize infeasible points�

Example ���� In Figure 
� we show ���s� for two values of 	
 The function

is a piecewise second order polynomial with continuous �rst derivative
 As

	 � 	� the shape of the graph approaches a corner


−1  0  1  2

1
 

2
 

3
 

ρ

s

Figure ���� Smoothing function for 	�� dotted line� and 	� �
� full line�

We introduce an �activity matrix� W��y� � diag�w��	i�y�� as fol�

lows�	
w��	i�y� �

�
� if si�y� � �

 if si�y� � �

� ���	�

The active set A���y� consists of the indices for which w��	i�y� � ��

Now� we can write the objective function �� in the form

�� �y� � bTy 	 �
	�

��e 	 s�TW ��e 	 s� � ���
a�

where we have omitted the index � and argument y for notational conve�

nience�

�	 Note� that W � �W � A matrix with this property is said to be idempotent�

	�	 Formulation ��

The hyperplanes si�y� � � divide IRm into subregions� inside each of

which A���y� and therefore W��y� are constant� This means that ���y�

is a piecewise second order polynomial� It is continuous� and also the

gradient
ry�� �y� � b 	 �
�
AW ��e 	 s� ���
b�

varies continuously across the hyperplanes�

Example ���� For the problem of Example �
� we have

A �


��� � �� 	

���� � 	 �
�

� c �
�
� � 	 	

�T
�

and the hyperplanes si�y� �	 are the lines shown in Figure 
� for 	�� and

	� �
� 
 In the shaded areas the active set is A�	�y� � f�� �� �g
 We have also

marked the solution y� � ��� 	�� cf
 Example �
�
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Figure ���� Dividing hyperplanes for 	 �� left� and 	� �
� right�

A maximizer y� of �D� � satis�es ry���y� � � �� or

b	AW �e 	 �
�
s� � � � ����a�

where W �W��y��� s� s�y��� We can reformulate this to

AWATy� � AWc � ��b 	AWe� � ����b�

If we knew W �W� �y��� then this were a linear problem� Without this

knowledge� however� it is a nonlinear problem� which we solve by Newton



�� Continuation Methods

iteration� see Section ��	� Having found the solution� we reduce �� Equation

����b� shows that if W stays equal to W� �y��� then y� changes linearly

with ��
y� � y �
	 � �u � ����a�

where

AWATy �
	 � AWc� AWATu � b	AWe � ����b�

A simpler expression for u is

u � �
�

 
y� 	 y �
	

!
� ����c�

Now� for � �� � let

y ���		 � y �
	 � ��	��u

� y� 	 �u ����a�

with the surplus vector

s�y ���		� � c 	ATy ���		

� s�y�� � �v � where v � ATu � ����b�

If A��	��y ���		� � A���y�� for all � � �� ��� then this set is equal to

the set B containing the indices of basic variables of the solution � cf� the

introduction to Chapter �� A su�cient condition is that

k�A���y�� � sk�y�� � �vk � �	�

k ��A���y�� � sk�y�� � �vk � �	�
"

for  � � � � �

This is satis�ed only if

k�A���y�� � sk�y �
	� � � vk � 	sk�y�� �

k ��A���y�� � vk � 	 �
�
sk�y�� �

�����

If one or more components of s�y ���		� pass the value �	� for some �

in the range �� ��� then the active set changes� and we compute y� for a

reduced value of �� In �	�� we have shown� that for � smaller than a �nite�

positive value we can identify the active set corresponding to � � �

	�	 Formulation �

As regards the primal solution� let

ex � W� �y��
 
e 	 �
� s�y��

!
� �����

From ���	� it follows that ex � �� and ����a� shows that this vector satis�es

the constraints Aex � b� This means that ex is feasible for �P �� and the

duality gap is

cT ex 	 bTy �
	 � exT  c 	ATy�
	
!

� exTW��y� �s�y �
	� �

Thus� if ����� is satis�ed� then the duality gap is closed� and ex is optimal

for �P ��

The algorithm�	 is summarized in

Algorithm PP

Choose starting value �

repeat

Compute y� fSection ��	g

if ��nal set� then fSection ��
g

Compute x by ����� Stop

else
Reduce � fSection ��
g

end

end

Example ���� For the problem of the previous example the threshold value 	��

gives the active set A�	� y�� � f�� �� �g and

y� �


�����

	����
�

� s�y�� �
��� 	��	�

	�	��

�����

�	����
��� � u �


�	����

	����
�

� v �
����	�����	����

	����

	����
��� �

For � � 	� the index k�� leaves the active set


With 	�	�� we get A�	�y�� � f�� �g and

y� �


�

	
�

� s�y�� �
�
	� 	 � 	

�T
� u � �� v � � �

�	 The name �PP� is chosen because the method is based on piecewise polynomials�
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This means that the conditions in �
�� are satis�ed� B � f�� �g� and �
��

gives the primal solution �in agreement with e
g
 Example �
���

ex �
��� 	

�

	

�
����e �
��� �

	
��

	
���� �
��� 	

�
	

�
��� �

The result u� � is special for this problem� where b �
�
� �

�T
� and

b �AWe �


�

�
�

�


� 	

� �
�

�

�
�

� � �

Therefore u�� according to �
�b�� and for all 	 � 	� we �nd y� � y	�



���� Compute Maximizer

We use Newton iteration with line search to �nd the maximizer y� � Let y

denote the current iterate with corresponding s� s�y� and W �W��y��

The Newton direction h is found by linearizing�	 the expression ���
b� for

ry���y�h� � ��

ry���y � h� � b	 �
�
AW ��e 	 s �ATh� � � �

or

AWATh � �b	AW ��e 	 s�  g � �����

If g � �� then y is optimal� y �y� � Otherwise we use line search to

�nd the maximizer of

����  ��� �y � �h�

� ��y � �h�Tb 	 �
���e 	 s � �d�TW ��e 	 s � �d�

� c
��� � c�����	 �
�c������ � ����a�

Here�

d � ATh � ����b�

�	 If W does not change� then there is no approximation involved�

	�	 Compute Maximizer �	

and the coe�cients

c
��� � �yTb 	 �
�

��e 	 s�TW ��e 	 s�

c���� � �hTb 	 dTW ��e 	 s�

c���� � dTWd

����c�

are piecewise constant� They change at the kink values f�kg� where a

component of s�y��h� � s 	 �d passes the value �� Let si�y��h� � �

for ���k� � This implies

�k �
si 	 �

di

� ������

and only pairs�	 �si��� di� � or �si	 �� di	 � give rise to kink values�

We shall assume that the kink values are sorted in increasing order�

 	 �� � �� � � � ��K �

It is easily seen that K �n� Further� ���� is concave� which implies that

either it has a unique maximizer �� in the range �� �K �� or �D� � � and

therefore �D� � is unbounded� If the problem is bounded� then the maxi�

mizer is the zero of the piecewise �rst order polynomial

����� � c����	 c����� � ����	�

and it can be computed by the algorithm

c� �� c��� c� �� c��� k �� �

while �k 	 K� and �c� 	 c��k � �

Update c� and c�

k �� k��

end

if k � K then �� �� c�
c�

else Unbounded

����
�

From ����� � ����� we see that

c��� � hTg � hTHh � c��� � ������

�	 The case �si� �� di� �	 �i�A���y	 but leaves immediately	 must be treated

specially� see 
����



�
 Continuation Methods

where we have introduced

H � AWAT � ������

This matrix is symmetric and positive semide�nite� In this section�	 we

assume that AW has full rank� in which case H is positive de�nite� and

g �� � � h � H��g �� �� so that c��� � c��� � �

If the smallest kink value ��� �� then �� � �� and the vectorey � y � h

has the same active set as y � This implies that there is no approximation

involved in the derivation of ������ and ry���ey� � �� so that ey � y� �

Otherwise� we need to update the coe�cients� Assume that index i changes

activity as � passes the kink value �k� Then

if i enters A then c� �� c� � �kd
�
i  c� �� c� � d�i  

else c� �� c� 	 �kd
�
i  c� �� c� 	 d�i  

������

The updating of c� follows directly from ����c�� and the expression for c�

is derived from the continuity of ������

The algorithm for computing the maximizer is summarized below� In

�	�� we have shown that this algorithm �nds the maximizer in a �nite

number of steps�

Algorithm PPNewton

Get initial y  s �� c 	ATy

repeat

Compute h by ����� d �� ATh

Compute kinks f�kg by ������

Compute �� by ����
�

y �� y � ��h s �� s 	 ��d

until ��� � �� or �k��hk � �kyk�

In the examples we use �� ����� After a threshold reduction from � to

�	� we use ����a� to get the initial y �

�	 In the discussion of implementation aspects in Section ��� we also deal with the

rank de�cient case�

	
	 Update Threshold ��

���� Update Threshold

Given � and y� � we can use ����� to see whether the active set changes as

� is reduced to �	��

Example ���� Below we illustrate �ve di�erent possibilities for the behaviour of

the surplus vector as 	�� goes to zero


The dotted line shows the criti�

cal value
 The two components of

s�y	���
� indicated by full line do

not change activity� while the two

dashed lines correspond to indices

entering or leaving A


Finally� the line marked by circles

illustrates that B may contain in�

dices that are not in A�	�y�� for

any strictly positive 	
 This can oc�

cur for degenerate LO problems


s

γ

γ δ

Figure ���

As in the line search in the previous section we de�ne kink values

 	 �� � �� � � � � � �K 	 � for the threshold reduction� Suppose that the

ith component of s passes the critical value for � � �k� From ����b� we see

that this implies

si � �kvi � � 	 �k �

or

�k �
� 	 si

� � vi
� ������

where si � si�y��� Only values �k � �� �� are of interest� They correspond

to pairs �si��� vi	 	 si
�� or �si	 �� vi� 	 si
���

If this set is empty �K � �� then A���y�� � A��y�
	�� we compute

the primal solution by ����� and stop� Otherwise� the next threshold valuee� is found by the following heuristics�

e� �
�
�
� �� 	 ��� if K � �

minf���� � 	 ��g otherwise

� �����a�



�� Continuation Methods

Here�

�� � �
� ��r � �r��� �����b�

with

r � max
�

�� minfK	�� j�	mjg� � �����c�

where � � �A���y��� This heuristic aims at having m elements in the

active set� Similarly� the initial threshold value is chosen as

� � am � ������

where the vector a is found by sorting the elements of jcj in increasing

order� This ensures that s��� � c has at least m active elements�

Example ���� We have used the generator of Example �
� to get a well scaled

problem �	x� 	y� 	s��� of size m��B�	� n��		
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Figure ���� Performance of Algorithm PP� m��B�	� n��		

The �gure shows results from Algorithm PP� which found the solution to

full accuracy after �� iteration steps� where a step is counted as the solution

of �
�	� below for determining either the Newton direction h or the vector

y	�

 The iteration involved � threshold reductions
 We give the number of

elements in A as a function of iteration number and also show the 	�values �in

logarithmic scale�
 The horizontal gap between di�erent 	�values illustrates

the computation of y	�
 by �
b�� this is part of the threshold reduction

scheme


	�	 Implementation Aspects ��

���� Implementation Aspects

The work involved with the piecewise polynomial algorithm is dominated

by the solution of ������	

Hh � g � where H � AWAT � ���	�

This looks like the basic problem in IPMs� solving systems of the form

�AD�AT �h � f �

cf� Section 
��� In both cases the matrix is symmetric� and the �middle

matrix� W or D� changes from one iteration step to the next�

As discussed in Section 
��� the �IPM matrix� is positive de�nite� and

the solution can be found via Cholesky factorization� However� all elements

in the diagonal of D change� so a refactorization is needed in each step�

In contrast� the matrix

H � AWAT �

X
j �A

A��jA
T
��j � AAA

T
A ���	��

�with A�A���y�� is only guaranteed to be positive semide�nite � it may

be singular� This is the bad news� The good news is� that normally the

change in the active set is relatively small� This means that relatively

few of the elements in W change� and we can save work by updating the

factorization of H instead of doing a refactorization� Also� the number

� � �A is typically about m� so that if a refactorization is performed� then

it involves � columns of A� which can be much smaller than taking all the

n columns as needed in an IPM�

Example ���� For the problem of the previous example we show below the

number of elements that enter and leave the active set at each iteration step


The active set A�	�y�� for the �rst 	�value has �� elements� and the �rst

A�	�y� after the reduction has � elements � �� elements left the set and �

entered it
 Here� the algorithm uses a refactorization
 In most of the other

steps the number of changes is very small� and no more refactorizations are

used


�	 Note� that also y	�
 is found by solving ����b	 of this form� cf� Example ����
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Figure ���� Changes in active set� m��B�	� n��		

Factorization� We use a Marquardt�like modi�cation of the matrix� and

replace ���	� byfH eh � g � with fH � AWAT � ��I � ���		�

where � is a small positive number� The matrix fH is symmetric and

positive de�nite� and we can write it in the form

fH �
�
�I AA

� 
 �I
AT
A

�
�

We introduce the QR factorization	

R
�

�
� QT



�I
AT
A

�
� ���	
a�

where Q is orthogonal and R� IRm�m is upper triangular� It is seen� that

this is equivalent with the triangular factorizationfH � RTR � ���	
b�

Further� let E and L denote the set of indices that respectively enter and

leave the active set� From the above it follows that the new fH can be

expressed as

RTR �� RTR�AEA
T
E 	ALA

T
L � ���	�a�

	 cf� 
��� Chapter �� or 
��� Section �����

	�	 Implementation Aspects ��

The change from RTR to RTR � RTR � AEA
T
E can be found from the

updating formula

R
�

�
� QT



R
AT
E

�
� ���	�b�

while bRT bR � RTR 	ALA
T
L is equivalent with RTR � bRT bR� ALA

T
L �

or the downdating formula

R
�

�
� eQT


 bR
AT
L

�
� ���	�c�

A change involving both up� and downdates is performed by ���	�c� fol�

lowed by ���	�b� with bR playing the role of R in the right�hand side� This

order is chosen because the downdating is inherently unstable� and a refac�

torization is performed if there is indication of dominating e�ect of round�

ing errors� or if the accumulated number of columns in fALg exceeds m�

The initial factorization and the refactorizations are performed by ���	�b�

with R� �I � AE �AA� The orthogonal transformations are performed by

Householder matrices� see �
�� for details�

The parameter � is chosen so that

�� If H has full rank� then the di�erence between h and eh is negligible�

	� If H is rank de�cient� then the direction eh should ensure that the �rst

change in active set during the line search �see Section ��	� is that an

index enters the set�


� The accuracy of the factorization is not spoiled by a �downdate��

Partly based on experiments and supported by the analysis in Appendix

A�� we have found that the choice

�� � ��
�M � kAk� � kAk� ���	��

is a good compromise between these demands�

Newton iteration� With the modi�ed matrix fH and Newton directioneh the relation ������ no longer holds� but must be replaced by
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c��� � ehTg� c��� � dTWd �

where d � AT eh� If ���	� is consistent �especially if H has full rank�� then

the relative di�erence�	 �c���	 c���� 
c��� � �M �

For an inconsistent problem � H is rank de�cient and ���	� has no

solution � the analysis in Appendix A�� shows that Wd � �� This means

that the actives stay active� and the kink points correspond to indices

entering A� Since c��� is very small� the function ������ ����	�� is positive

for ������ and the next H corresponds to an augmented active set and

will be closer to a full rank matrix�

Sparse matrix aspects� The discussion in Section 
�� is valid also for

the PP algorithm with two major di�erences�

�� We cannot use one initial Analyse since the sparsity pattern will

change from one iteration step to the next�

	� The modi�ed system ���		� is suited for iterative solution with an oc�

cational refactorization acting as preconditioner�

The last claim is supported by ���� dealing with a sparse implementation

of the PP algorithm outlined in Example ��� below�

Example ��	� We have used Algorithm PP on the well scaled problems treated

in Examples �
� and �
�� and the resulting number of iterations are shown

below
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Figure ���� PP algorithm� Well scaled problems�

� � �B � 	��m� o � �B � m� x � �B � ���m

�	 See Notation for the meaning of ���

	�	 Implementation Aspects �

In all cases the solution was found with a relative error in the objective less

than ���e�
�
 Further� we can give the following statistics�

�B max no
 of refac
s max no
 of 	�reduc
s no
 of it
s

	��m �� �� O�n�

m � � O�n����

���m � � O�n����

Thus� this simple version of the algorithm seems to be unsuited for problems

where there exist solutions with less than m nonzero components in x�


We have also tried the algorithm on the descaled problems from Examples �
�

and �
�
 Except for the smallest of these problems the algorithm needed more

than n iteration steps �which is used as a �safety valve� in Algorithm PP�


We are currently �December ����� working on several possible improvements


One of them is presented in the next section


Example ��
� In ���� we present another piecewise polynomial algorithm� which

is based on the formulation

�P � max
�
c

T
x � Ax � b� �e � x � e

�

with the dual

�D� min
�
b

T
y � ks�y�k� � y free

�
�

As in Section 
� we introduce a smooth approximation

�D�� max
�
b

T
y �

Pn
i��
���si�y�� � y free

�
�

where�	
���s� �

�
�
�� s

� if jsj � 	

jsj � �
�	 if jsj � 	

�

In Figure 
� we show this function for two values of 	
 As 	 � 	� the shape

of the graph approaches the graph of jsj


The active set contains the indices of the small components of the surplus

vector s�y� � c � ATy� i�A�	�y� � jsij� 	� and the Newton direction

is found by a system of the form �
�	�
 Now� however� the right�hand side

�	 This smoothing function was taken from robust data �tting� and we refer to it as

the �Huber smoothing function�� 
����
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depends also on the sign of the non active components of s�y�
 We refer to

���� ���� and ���� for details� and to ����� ���� and ���� for a generalization of

the ideas to solving quadratic programming problems


−2 −1  0  1  2

1
 

2
 

σ

s

Figure ��	� Huber function for 	�� dotted line� and 	� �
� full line�

���� A Hybrid Method

Let B denote a subset of f�� � � � � ng and let S�B� denote the part of IRm

containing the vectors y � for which A���y� � B� Figure ��	 indicates�

that as � � � this subregion gets close to a vertex of the polytope from

Section ��� plus part of the exterior of this polytope �or S�B� may be

empty�� Further� the de�nition ����c� of �� makes this exterior increasingly

�expensive�� This has the e�ect that kWsk � c� and ����� shows that the

Newton direction is determined by a vector h with khk � ��

Therefore� as � � � the behaviour of the PP algorithm will be similar

to the Simplex algorithm� but less robust because the small h will need

a large �� to bring us to another vertex� and this implies� that a small

error in the direction de�ned by h can have serious e�ects� This is �at least

partly� the explanation of the poor results reported in Example ����

One remedy is to use the PP method only for reasonably large ��values�

to get us close to the optimal partition of �P �� and then shift to the Simplex

algorithm��
	 Such a hybrid method can have the form given in Algorithm

PP Simplex below�

�
	 In the notation of Section ��� we use the PP method for Phase �� For well scaled�

non degenerate problems the solution is often found before the start of Phase ��

		 A Hybrid Method �	

Algorithm PP Simplex

Choose starting value � r ��  

repeat

Compute y� by Algorithm PPNewton� p �


if ��nal set� then Compute x by ����� Stop

else Reduce � r �� r��

until r � R

Get B� B and xB

Find x� by Algorithm Simplex� page ��

Experiments indicate that a shift after R� 	 ��reductions generally

gives good performance� and this is the value used in the examples�

The transition to a starting point for Simplex from the last y� with

corresponding A � A���y�� and ex computed by ����� is made as follows���	

if �A 	 m then

Augment A so that �A � m

elseif �A � m then

Reduce A until �A � m

with simultaneous updating of ex

end

B �� A B �� AA x �
B � exA

The adjustments are performed with the goal

minfc TB xB � ABxB � b� xB � �g

in mind�

In the case � � �A���y�� 	 m we simply augment A with

fj�� � � � jm��g� the indices of the m	� smallest elements in the non�active

part of c� Note� that components j�� � � �jm�� in ex are all zero� and there�

fore the condition AAexA � b is also satis�ed with the augmented A�

The case �A���y� � � m is treated iteratively� If any component of exA

is zero� reduce A by removing this index� Otherwise� consider the problem

�T � min
�
c TA �exA � th� � AA�exA � th� � b� exA � th � � �

��	 In this presentation we assume that a matrix A
A

has full rank� rank�A
A

	 �

minfm��Ag� See 
��� for a discussion of what to do when this is not satis�ed�
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for t� � The current bx satis�es the constraints AAexA � b� exA � �� so

h should satisfy

c TAh � � exAh � � �

These conditions are met if we compute h as the projection of 	cA onto the

null space of AA� cf� Section 	��� Applying �	�	�c� to the present problem

we see that
h � A T
Au	 cA� where �AAA

T
A �u � AAcA �

This system has the form �AWAT �u � AWc� and is solved as described

in Section ���� Then� we determine t� as the smallest value for which a

component of exA� th is equal to zero� let exA �� exA� t�h� and can remove

at least one element from A� Therefore� this iteration stops after at most

�A���y� �	m steps� Each of these is similar to a Simplex step� and in the

examples we count them as Simplex steps�

Example ���� We have used Algorithm PP Simplex on the problems in Examples

�
� and �
�
 By comparison we see that the number of PP steps is about the

same as the number of IPM steps � and much cheaper
 For the well scaled

problems the number of Simplex steps is about ���	 of the steps needed by

a pure Simplex method
 For the descaled problems this ratio is about ���


0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

n

PP its.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

n

Simplex its.

Figure ��
a� Algorithm PP Simplex� Well scaled problems�

� � �B � 	��m� o � �B � m� x � �B � ���m

		 A Hybrid Method ��
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Figure ��
b� Algorithm PP Simplex� Descaled problems�

� � �B � 	��m� o � �B �m� x � �B � ���m

Example ����� The Simplex method is notorious for the possibility that the

number of steps may grow exponentially with the size of the problem
 In

practice the �normal� behaviour seems to be that the number of steps grows

slightly faster than n � cf
 Example �
�� but in pathological cases the expo�

nential growth occurs
 A famous example� due to Klee and Minty ����� is

given by

�E� min
�
c

T
x � Ax � b� x � �

�

with n��m and

aij �
�
�� i�j � j � �� � � � � i��

� � j� i and j�m�i

	 � otherwise

� �
��a�

bi � ��	i��
 � i � �� � � � �m � �
��b�

cj �
�
��m�j � j � �� � � � �m

	 � j �m��� � � � � n

� �
��c�

where � � � is a chosen value
 The optimal partitioning is

B � fm� m��� � � � � n��g � and
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exB �
����
��	m��


�





��	m��

���� � ey �
����
	





	
��

���� � esC �
����
�m��





�

�

���� �

With the Simplex starting point B � fm��� � � � � �mg� B � I � x
B

� b�

and with the pivoting rule ��� p
 ��� the number of Simplex steps is �m��


This is demonstrated in the following table� where we also give results from

Algorithm IPM� �p
 ��� and Algorithm PP �p
 �	�
 In IPM� the maximum

mumber of steps is set to �		 �and marked by � if this limit is reached�� and

in PP we return the result after at most R�� reductions of 	
 The �error�

is the relative duality gap� jcTx � bTyj�jcTxj 


m ��A� Simplex IPM� PP

its error its error its redu error

� ��
e�		 � 	 � ����e�	� � � 	

� ���	e�	
 � 	 �� ���e�
	 � � 	

� 
���e�	 � 	 �� ���e�	� �� � 	

 ����e�	 �� 	 �� 
��
e�
� �� � 	

� �
�e�	� �� 	 � ����e�	� �	 	 ���
e�	�

� ����e�	� ��� 	 � ����e�
	 �� 	 
���e�
	

� ���	e�	� � 	 � 
���e�
 � 	 �
�e�


� 
��	e�	� �� 	 � ����e�
	 �� 	 ����e�
�

Results for problems generated by ����� with � ��


The failing of IPM� to stop is primarily caused by the severe descaling of

the solution� and show that our implementation needs some improvement


As mentioned� this is a pathological problem� but it demonstrates that even

small size LO problems can be hard to solve


Appendix A� Selected Proofs

A��� Proof of Theorem ���

We consider the primal problem in canonical form�

�P � min
�
cTx � Ax � b� x � � �
�

�D� max
�
bTy � ATy � c� y � � �
�

�A���

and introduce the homogeneous problem

�E� min
�
�Tz � Mz � �� z � � �
� �A�	a�

where the �m�n����vector z and the �m�n�����matrix M are given by

z �
�� yx

�
�� � M �
�� � A 	b

	AT � c

bT cT 
�� � �A�	b�

The matrix is skew�symmetric� and problem �E� is of the form �	�	
��

This implies the existence of an optimal solution ez� that satis�es the strict

complementarity propertiesez�s�ez� � � � ez � s�ez� � � � �A�
�

The surplus vector s�z� for �E� splits into

s�x� � Ax 	 �b �

s�y� � �c 	ATy �

s��� � bTy 	 cTx �

�A���

The feasible set of �E� is E � fz � IRm�n�� jz�Mz � �g� This implies�

that if ez is an optimal solution� then �ez is also optimal for any choice of

�� � and this leads to two alternatives�
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Case �� e� ��  � We can normalize ez so that e�� �� and the above splitting

of s�ez� gives s�ex� and s�ey� identical with �	����� �A�
� further impliesey�s�ex� � � � ey � s�ex� � � �ex�s�ey� � � � ex � s�ey� � � �

� � �bT ey 	 cT ex� �  � � � �bT ey 	 cT ex� �  �

Thus� the case e� ��  corresponds to alternative �� in the theorem�

Case �� e��  � Now� �A�
� � �A��� imply that Aex � �� AT ey � � and

bT ey 	 cT ex � � The last relation further implies that bT ey � � cT ex 	 �

or both bT ey �  and cT ex 	 �

Case �a� bT ey �  � The feasible set P is empty� since otherwise we

would have the contradiction

 � xT �AT ey� � �Ax�T ey � bT ey �  �

Moreover� if �D� is feasible� and y �D� then the relation AT ey � � implies

that y��ey is feasible for all positive values of �� The objective value

bT �y � �ey� � bTy � �bT ey

can be arbitrarily large� i�e� �D� is unbounded�

Case �b� cT ex 	  � Similar arguments show that �D� is infeasible and

�P � is either infeasible or unbounded�

Thus� we have shown that e��  corresponds to alternatives 	� and 
�

in the theorem�

A��� Proof of Lemma ���

A solution to Problem �A is the feasible set of the LO problem

�P�� min
�
�Tx � Ax � b� x � � �

with the dual

�D�� max
�
bTy � ATy � �� y � � �
�

Using the notation and results from the proof of Theorem 	�	 we �nd

A	
	 Proof of Theorem 
	� ��

e� ��  � P� is not empty� i�e� Problem �A has solutions� Also �D��

is feasible� and bTy � �T ex �  for any y �D�� This means that the

constraint bTy �  in �B cannot be satis�ed�e�� � As in the proof of Theorem 	�	 we see that bT ey	�T ex � bT ey �

� and ey solves Problem �B� while P� is empty i�e� �A has no solution�

In case � we consider

�P�� min
�
�Tx � Ax � b �
�

�D�� max
�
bTy � ATy � �� y � � �
�

As in Case � we see that either 	A has a solution� or 	B is solved by y �	ey �

satisfying bT ey � � AT ey � �� ey � ��

In case 
 we consider

�P�� min
�
bTx � Ax � � �
�

�D�� max
�
�Ty � Ay � b� y � � �
�

If both problems are feasible� then bTx � �T ey �  for any x �P�� Problem


B but not 
A has a solution� Otherwise� bT ex 	 � D� is empty� and ex

solves 
A�

Finally� in case � we consider

�P�� min
�
bTx � Ax � �

�
�

�D�� max
�
�Ty � ATy � b

�
�

and the discussion is similar to case 
�

A��� Proof of Theorem ���

We already discussed the orthogonality of dx and ds �before �
����� Simi�

larly� hTxhs �  follows from hx �N �A� and hs �R�A��

To prove 	� we introduce

x��� � x � �hx � s��� � s � �hs �A��a�

and
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z��� � x����s���

� x�s � ��x�hs � s�hx� � ���hx�hs�

� x�s � ���e 	 x�s� � ���hx�hs� � �A��b�

Here� we have used the last equation in �
�
�� We consider this vector z���

in the range ��� �� noting that z�� � x�s � � and that

z��� � �x�hx���s�hs� also is a positive vector if the step is feasible�

Now� if the step is feasible� then

� 	 z��� � �e � hx�hs �

i�e� we have shown the �only if� part� For the �if� part we know that

z��� ��e�hx�hs��� and combining this with �A��� we see that

z��� � x�s � ���e 	 x�s� 	 ����e�

� ��	���x�s � ��e� � � for  � � 	 � � �A���

Both x��� and s��� vary continuously with �� and �A��� shows that all

their components stay positive as � increases from  to �� Also z������

implying that x���� s���� �� i�e� the step is feasible� This completes the

proof of 	��

Next� �x�hx�T �s�hs� � eTz��� � eT ��e� � hTxhs � n� �

Here� we have used the ortogonality of hx and hs�

Finally� for �� and ��� see �
�� Section �����

A��� Proof of Theorem ���

As in the proof of Theorem 
�	 we see that

�hax�Thas � �hcx�Thcs �  � �A���

Further� for g� a� c�N we generalize �A��� to

xg��� � x � �hgx � sg��� � s � �hgs � �A��a�

zg��� � xg����sg���

� x�s � ��x�hgs � s�hgx� � ���hgx�h
g
s� � �A��b�

A	�	 Proof of Theorem 
	 ��

For the a�ne�scaling and the centering directions we have

x�has � s�hax � 	x�s � x�hcs � s�hcx � �e �

respectively� so that

za��� � ��	 ��x�s � ���hax�h
a
s� � �A��a�

zc��� � x�s � ��e � ���hcx�h
c
s� � �A��b�

Now� using the orthogonalities �A��� we �nd

�xa����T sa��� � eTza��� � ��	 ��xT s � ��	 ��n� �

�xc����T sc��� � eTzc��� � xT s � ��n � �� � ��n� �

and we have proven points �� and 	�� Point 
� follows by simple addition�

For the proximity we consider the function obtained from �
����

��h� �� � ����x��hx� s��hs ��

� ku	 u��k�� � eT
�
u� � u�� 	 	e

�
� �A��a�

where u is given by �
����

u� � ����x��hx���s��hs� � �A��b�

We let
u�
  ���x�s � U
 � diag�u
� � �A���a�

and see that

eTu�
 � ���xT s � n �A���b�

and

��h� � � ���
  ����x� s ��

� eT
�
u�
 � u��


�	 	n � eTu��
 	 n � �A���c�

For small values of � Taylor�s theorem shows that

��h� �� � ���
 � ����h� � � �A��	a�

where
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���h� � � hTx �rx�� � hTs �rs��

� hTx �I 	U��

 �rxu

�

 � hTs �I 	U��

 �rsu

�



� ���
�
hTx �I 	U��

 �s � hTs �I 	U��

 �x

�

� ���eT �I 	U��

 ��Shx �Xhs� � �A��	b�

Therefore�
���ha� � � ���eT �I 	U��

 ��	�u�
�

� eT �u��
 	 u�
� � eTu��
 	 n � ���
�

Combining this with �A��	a� and �A��a� we get point ���

For the centering direction we �nd

���hc� � � ���eT �I 	U��

 ���e�

� eT �e 	 u��
 � � eT
�
e 	 �u��
 	 e � e��

�

� eT
�		�u��
 	 e� 	 �u��
 	 e��
�

� 	���
 	 eT �u��
 	 e�� 	 	���
 �

since all elements in both e and �u��
 	 e�� are positive� Point �� follows

immediately� Finally�

���hN � � � eT �u��
 	 u�
 � e 	 u��
 �

� eT �u��
 	 u��
 �	 n � n

� 	eT �u��
 	 e � �u��
 	 e��
�

� � 	���
 	 eT �u��
 	 e�� 	 	���
 �

and �� follows�

A��� Proof of 
�����

Consider the general step in transforming the full rank matrix B to an

upper triangular matrix by means of row and column interchanges and el�

ementary row operations

A		 Proof of ��	��� ��	

PsBs��Qs �

������
� � � � �

� � � �

y � �
� �

z � �
������

�

������
�

�

�

�

 �
������
������
� � � � �

� � � �

y � �
� �

 � �
������ � fM��

s Bs �

Blanks signify already created zeros Ps and Qs are elementary permuta�

tion matrices satisfying P��s � PT
s � Ps� Q

��
s � QT
s � Qs the elimi�

nation factor  � z
y and changed values are marked by ���� It is easily

veri�ed �by matrix multiplication�� that fM is obtained from fM��
s simply

by changing the sign of the o��diagonal element�

After r � r � �
�m�m	�� � of these steps the matrix U �Br is upper

triangular� and we see that

U � fM rPrBr��Qr

� fM rPr
fM r��Pr��Br��Qr��Qr

� � � �

� fM rPr
fM r��Pr�� � � �fM�P�BQ� � � �Qr��Qr

m

PUQ � PfM rPr
fM r��Pr�� � � �fM�P�B � �A��
�

where

P � P� � � �Pr��Pr � Q � QrQr�� � � �Q� �

Now� exploiting that P��i � PT
i � Pi� we get

P�� � �Ps
fM sPs � P�� � �Ps
fM sPs� � �P�P�� � �Ps��

� M sP�� � �Ps�� � �A����

where M s is found from fMs by applying the �rst s row interchanges and
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the same column interchanges� This means� that also M s has ones on the

diagonal� and the 	 lands in an o��diagonal position�

Finally� ������ is obtained from �A��
� by consecutive use of �A�����

A��� Discussion of 
�����

Let the symmetric� positive semide�nite matrix H have the eigensolutions

����v��� � � � � ��m�vm� with orthonormal eigenvectors fvjg and ordered so

that

�� � � � � � �p �  � �p�� � � � � � �m �  � �A����

The number p�m is the rank of H � and the row space and null space �cf�

�	�	��� are
R�H � � span�v�� � � � �vp�� N �H � � span�vp��� � � � �vm� �

The modi�ed matrix fH has the same eigenvectors as H � while the eigen�

values are changed to e�j � �j���� j � �� � � � �m�

In ���	� let the right�hand side have the expansion

g � gR � gN  gR �
Pp

j�� �jvj � gN �
Pp

j�p�� �jvj �

Then

eh � fH��g �

pX
j��

�j

�j � ��
vj � ���

mX
j�p��

�jvj � �A����

First� consider the case where H has full rank� p�m� The solution to

���	� is
h �

Pm
j����j
�j�v j �

and we see that h and eh are close if �� is negligible compared to all the

eigeinvalues� This is the case if �� � �m� which we generalize to

�� � �p � �A����

A	�	 Discussion of �	��� ���

Next� if the system is rank de�cient� it may be

consistent� g �R�H �� i�e� gN � �� Then ���	� has the complete solution

h �

pX
j��

�j
�j
vj �

pX
j�p��

�jvj �

where the f�jg can take any value� The minimum norm solution is given

by �j � � j � p��� � � � �m� Provided that �A���� holds� we see that in this

case� eh is close to this vector�

If the system ���	� is inconsistent� i�e� gN ���� then it has no solution� and

provided that kgNk
kgRk is not very small and that �A���� holds� then it

follows from �A���� thateh � ���gN �

This eh is orthogonal to R�H �� and an SVD analysis �
�� shows that with

this Newton direction we get WAT eh � ��

The ��value given in ���	�� is based on analyzing the e�ects of rounding

errors and using ideas from regularization� ����� The depency on A is

derived from the following estimate of the largest eigenvalue�

�� � kHk� � kAWATk� � kAATk�

� kAk� � kATk� � kAk� � kAk� �

We refer to �
�� for details�



Appendix B� Answers to Exercises

Exercise ���� By the rules of Table �
� we �nd

�D� min
�

���y� � �y� �

�y� � y� � ���

�y� � �y� � ��	 � y� � 	
�

�

The free variable y� is determined from the equality constraint�

y� � � �
� ��	��y��� and we see that �D� is equivalent with the scalar problem

�D�� min
n
����
�

y� �
�	

�

�
��

�
y� �

�	
�
� ���� y� � 	

o
�

Here� the negativity constraint y�� 	 is redundant
 The optimal value is

attained for y�� �

�
�� ����� ��
� � � � ���
� and gives the value

fD�y
�� � ����

�
���	�
�

� �
�	

�

� �	� �

Exercise ���� A feasible point satis�es all constraints
 The positivity constraints

are satis�ed by the assumption� and from the de�nitions we se that

A�x�hx� � Ax � fP � b �

AT �y�hy� � �s�hs� � ATy � s � fD � c �

Thus� also the equality constraints are satis�ed


Exercise ����� The system ��
��� is equivalent with

�D�� DAT

A �

�

hx
hy

�
�



Dfx
fy

�

m 

I DAT

AD �

�

�D��hx

hy

�
�



Dfx

�fy
�

�

Appendix B	 Answers to Exercises ���

Since �AD�T � DTAT � DAT � and fy � fP � �� we recognize this as the

system ��
��a� de�ning the projection �D��hx of Dfx onto the null space

of AD


Exercise ����� The full rank assumption implies that for all v ��� the vector

z�ATv �� �
 Further� D� � diag�d�i � with d�i � xi�si � 	
 Therefore�

�v � IRm� v ��� � v
T
AD

�
A

T
v � z

T
D

�
z �

X
d�i z

�
i � 	 �

This is the de�nition of H being positive de�nite


Exercise ���� The columns in B are linearly independent
 Therefore� ABk��

is

rank de�cient if and only if C��s is a linear combination of the columns in

B with index j �� q
 This� however� is not the case� since

Bh � C��s � C��s � h�B��� � � � �� hqB��q � � � �� hmB��m

with hq ��	
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