
OPT 2 Problem Sheet 11

Due: Wednesday October 20

into the OPT2 HW→IN box (which will be installed there by then) in the Royal
Fort Gate House (a small and pretty building with a kitchen in the backyard of
the main Maths building, separated from the latter by the cube-shaped and not
so pretty ”Porters’ Lodge”, where some of the 1st year tutorials have been held.)

General optimisation problems

Use calculus, common sense or a graphic argument to answer the following optimization questions
(give an optimal solution and the optimal objective value if it exists; if not, argue why):

1. Minimize x2 + 1 for x ∈ R;

2. Maximize x + y for x, y ∈ [−1, 1];

3. Maximize x + y for x, y ∈ (−1, 1);

4. Optional: Minimize ex2+y2+z2
for 2x2 + 3y2 + 4z2 < 1;

5. Maximize x2 + y2 for |x|+ |y| = 1;

6. Maximize y − x for x2 − y2 ≥ 1, x ≥ 0. HINT: x2 − y2 = 1 is a hyperbola.

Linear programming

1. Formulate as a LP, but do not try to solve: A toy factory makes three types of wooden
dolls: Grumpy, Sleepy, and Bashful. The manufacturing process uses three different machines
A,B,C. Each Grumpy is processed for one hour each on machines A and C and three hours on
B. Sleepy takes two hours on machine A and four hours on C. Bashful takes an hour on machine
A and two hours on machine B. Because of maintenance schedules, machine A is available for
40 hours a week, B for 50 and C for 45. The profit per item is £4, £2, £5 respectively for the
three types. How many of each type should the factory make per week in order to maximize the
total profit?

Suppose now there is an extra condition that exactly 360 toys are to be manufactured each week.
Use this to reduce the number of variables, so the problem can be solved graphically. Do the
graphs and show that such a problem is unfeasible: the feasible set is empty.

2. Solve graphically a LP: A small-scale farmer has 100 acres of land. He can use it as pasture
for cows, at a profit of £10 per acre per year, or as arable land for growing crops, at a profit of
£15 per acre per year; or he can leave it fallow at zero profit. Pasture requires 30 hours work
per acre per year, arable needs 60 hours work per acre per year. The farmer wants to maximize
profits, and is willing to work 4200 hours per year.

(a) How should the land be divided between pasture and arable?

(b) How much extra profit will the farmer get, if he acquires an extra acre of land, the rest of
the data being the same?

(c) What if he still has 100 acres, but the profit from pasture changes to £7 per acre per year?
1If you spot any bugs, please let me know.
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3. Optional: Formulate as LP, do not solve. A Manufacturer of herbal medicine distills three
essential medicine Components out of three different plant Extracts. The three Components are
combined to form two different mixtures, called Remedy 1 and Remedy 2. The Manufacturer
has to decide on the amounts of Extracts to buy and Remedies to produce, in order to maximize
his gains. Formulate the task as a LP, given that:

• To produce one gram of Remedy 1, one needs .25g., .35g. and .15g. of Components 1,2,
and 3, respectively. The rest is alcohol, which is available free and unlimited (what a world
would that be!). Remedy 1 sells for £10 per gram and the manufacturer cannot sell more
than 100 grams of it.

• To produce one gram of Remedy 2, one needs .20g., .10g. and .30g. of Components 1,2, and
3, respectively. The rest is alcohol. Remedy 2 sells for £13 per gram and the manufacturer
cannot sell more than 130 grams.

• One gram of Extract 1 contains .20g., .15g., and .25g. of Components 1,2, and 3, respec-
tively, costs £3, and is available in unlimited quantities.

• One gram of Extract 2 contains .30g., .30g., and 0g. of Components 1,2, and 3, respectively,
costs £4, and no more than 1000 grams are available on the market.

• One gram of Extract 3 contains .10g., .15g., and .45g. of Components 1,2, and 3, respec-
tively, costs £5, and no more than 500 grams are available.

• Distilling the Components out of Extracts and mixing the Remedies does not involve any
additional costs.

4. Optional: Formulate the following optimal assignment task as a LP. A group of four
Universities in the South-West of England has to form a student team for a quiz show. The
conditions of the show are as follows. One team member is to be selected from each University.
The team member must be enrolled in one of the following single honours Degree Programmes:
Mathematics, Physics, Chemistry, or Biology. No two team members are allowed to come from
Degree Programmes in the same subject. Each Degree Programme in each University presents
one candidate, and on the basis of a series of tests, each candidate is assigned an Erudition coef-
ficient eij , where i marks the University and j marks the Degree Programme that the candidate
comes from. The objective now is to maximise the overall strength of the team, i.e., the sum of
the Erudition coefficients of chosen candidates.

HINT: Introduce the unknowns xij =
{

1 if the corresponding candidate is chosen,
0 otherwise.
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Optional section: Some review problems in linear algebra

This section is a bit lengthy. Its purpose, however, is to bring back the key notions and techniques from
linear algebra that this course needs. The problems are followed by some brief theoretical overview
that may be useful for solving them.

Notation – important to avoid confusion! The vector-notation x = (x1, . . . , xn) ∈ Rn is identified
with the matrix column-vector notation

x =


x1

x2

...
xn

 .

The same vector can be, of course, represented by the single-column matrix, or the row-vector

xT = [x1 x2 . . . xn],

the superscript T to be read as transpose. There are no comas separating the components in the
matrix notation and the brackets are square. All this is just a matter of bookkeeping: the matrix
notation is undoubtedly convenient, but one can certainly jot down the components of the vector x
either one under the other – as a column-matrix x – or one after the other – as the row-matrix xT .
On the other hand, the rules of matrix multiplication are unambiguous. So, the dot product x · y of
two vectors can be represented using the matrix notation as

x · y = xT y = yT x = y · x.

On the other hand, if one looks at the expression xyT (a column-matrix, multiplied by a row-matrix,
then the result, according to the rules of matrix multiplication, is a n×n matrix, whose ij-components
equal xiyj .

Problems:

1. For a vector u = (1, 2, 3) find the products u uT and uT u.

Argue that no matter what the size of a matrix A, the product AAT (and thus AT A) is always
defined. If A is m× n, what are the sizes of AT A and AAT ?

For a pair of matrices

A =
[

1 2 3
4 5 6

]
, B =

[
1 −1
0 5

]
,

find the products AAT , AT A, BBT , BT B, AB, BA, A2, B2 or state that they are not defined.

2. Suppose A is a 4 × 5 matrix. Find a 4 × 4 matrix B, such that the product BA is a matrix,
whose third row is the sum of the first and the third rows of A, while the rest of the rows are
the same as the corresponding rows of A.

Find a 5×5 matrix C, such that the product AC equals a matrix, obtained from A by swapping
the second and the fifth columns.
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3. Find all the solutions (if any) of the following systems of linear equations by Gaussian elimination:
2x1 + 2x2 + x3 = 9
2x1 − x2 + 2x3 = 6
x1 − x2 + 2x3 = 5

,

{
2x1 − x2 + x3 + x4 = 6
x1 + 2x2 + 3x3 + 4x4 = 8

,


x1 − x2 + x3 = 5
x1 + 2x2 − x3 = 3

2x1 + x2 = 7
.

4. Let

A =

 2 2 1
2 −1 2
1 −1 2

 .

Argue that any number of systems of linear equations Ax = b with the same matrix A, the
unknown x = (x1, x2, x3), and different right-hand sides b1, b2, . . . ∈ R3, can be solved simulta-
neously as the result of the following procedure.

Write an “extended” matrix
Ã = [A |b1 b2 . . .]

and apply the Gaussian elimination algorithm to it (certainly (if possible) pivot only the (non-
zero) entries positioned to the left of the vertical bar, e.g. those on the main diagonal). There-
upon, the columns to the left of the vertical bar will contain the solutions x1, x2, . . . correspond-
ing to the right-hand sides b1, b2, . . ..

Argue that in fact, by doing this you are solving a linear equation AX = B for the unknown
matrix X, whose columns are the vectors x1, x2, . . ., the right-hand side being a matrix B, whose
columns are the vectors b1, b2, . . .. In particular, for the matrix A above, if b1 = (1, 0, 0), b2 =
(0, 1, 0), b3 = (0, 0, 1), the unknown matrix X is the inverse A−1 of A.

Hence, find the inverse of A by the Gauss-Jordan method. Find the determinant of A.

5. Find rankA for

A =

 1 2 3
4 5 6
7 8 9

 .

6. Prove (AB)T = BT AT , (AB)−1 = B−1A−1, the latter for square invertible matrices.

7. Let A be a square n×n matrix. Present an argument that the rows of A are linearly dependent,
if and only if the columns of A (the rows of AT ) are also linearly dependent (you may use a
geometric argument, or use determinants, or talk about an inverse).

Linear algebra: a review

This section is to review some basic notions of linear algebra to be used throughout this course. It
gives a compendium of remarks on notation in the above problems, as well as some brief theoretical
statements. However, it may be necessary for you to consult the Linear algebra section of your last
year notes for Core Mathematics B or one of the texts, recommended for that course.
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Notation and theory

• Matrices are denoted by capital letters. An m×n matrix is a table of real numbers with m rows
and n columns. A table is put into square brackets, e.g.

A =
[

1 2 3
4 5 6

]
.

A matrix, consisting of one column only is called a column-vector, or a vector. A matrix,
consisting of a single row is called a row-vector, or a covector. Vectors are usually denoted by
bold lowercase letters. For a vector x with n components, one writes x ∈ Rn. Components of
x ∈ Rn are marked by subscripts, i.e.

x =


x1

x2

...
xn

 .

Thus, an m× n matrix A can be written as A = [a1 a2, . . . an], where aj , j = 1, 2, . . . , n are the
columns of A, each one being an m-vector: aj ∈ Rm.

• A transpose AT of an m × n matrix A is an n ×m matrix, whose respective columns are the
rows of A. For instance, for the above A and x,

AT =

 1 4
2 5
3 6

 , xT = [x1 x2 ... xn].

In particular, for any matrix A, [AT ]T = A; a transpose of a vector is a covector, a transpose of
a covector is a vector.

• To save some paper, to denote column-vectors we will also use the notation x = (x1, x2, . . . , xn) ∈
Rn, round brackets and commas indicating that this is just an economical way to write a column-
vector, but not a row vector. Thus, (x1, x2, . . . , xn) = [x1 x2 . . . , xn]T .

• An identity or unit matrix of size m (often denoted as Id, I, Im, whatever happens to be un-
ambiguous) is a square m ×m matrix, such that the main diagonal elements aii, i = 1, . . . ,m
equal 1, while the rest of the elements aij , i 6= j, i, j = 1, . . . ,m, equal 0. One sometimes writes
Im = diag(1, . . . , 1), emphasising that this is a diagonal matrix.

• For any matrix A, let us define three types of elementary row operations (alias eros):

1. interchange any pair of rows;

2. multiply a row by a nonzero real number;

3. add a multiple of one row to another row.

Note: a single ero leaves the rows, which are not involved unchanged. Also, each ero is invertible,
i.e. can be undone by some other ero. E.g. multiplying a row by 2 can be further undone by
multiplying the same row by .5, etc. A single ero, applied to a matrix results in a new matrix
of the same size. The result of fulfilling a sequence of eros in general depends on the order in
which these eros are to be performed.

Also note that applying a single ero to a matrix A can be described as the result of multiplying
this matrix by some specific matrix B, corresponding to this specific ero, from the left, i.e.
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computing BA. For instance, multiplying the second row of an m×n matrix A by 2 boils down
to taking the matrix product BA of a square m×m matrix B = diag(1, 2, 1, . . . , 1) with A (so,
B is just an identity matrix Im, whose element at the intersection of the second row and the
second column has been changed from 1 to 2).

• For a matrix, pivoting a non-zero element aij (or pivoting about or around the element aij),
located at the intersection of the ith row and the jth column, referred to as a pivot row and a
pivot column (another common notation for aij is ai

j , to easier distinguish the row, upper and
the column, lower indices) is a sequence of the following eros:

1. divide the pivot row by aij , whereupon the latter becomes one;

2. by adding an appropriate multiple of the pivot row to all other rows, ensure that all the
rest of the entries in the pivot column become zero.

Thus, a pivot transforms the pivot column into a column of the unit matrix.

• The Gaussian elimination algorithm (alias the Gauss-Jordan method) of solving a system of
linear equations Ax = b, where A is m× n, x ∈ Rn, b ∈ Rm, consists in the following:

1. write down an ”extended” matrix
Ã = [A |b]

(note, Ã is m × (n + 1); the first n columns can be labeled by x1, x2, . . . , xn, as the en-
tries ãij = aij in these columns are the coefficients, multiplying xj in the ith equation,
i = 1, . . . ,m, j = 1, . . . , n; the vertical bar has no mathematical meaning and is drawn ex-
clusively for convenience, to separate the last column of Ã, corresponding to the equations’
right-hand sides);

2. perform any succession of pivots, all the pivot elements sitting in different rows, to the left
of the vertical bar;

3. read out the solution (see below).

Note: the most convenient sequence of elements to pivot are those, sitting on the main diagonal
of A, i.e those whose row and column indices are the same, like a11. However, this can be done
only if these elements are non-zero (in due time throughout the fulfillment of the algorithm).
The pivoting stage ends after either in each row a pivot has been done about some non-zero
element in this row, or if after you’ve done a number of pivots, all the elements in yet not pivoted
rows to the left of the vertical bar have accidentally become zeroes (which means that the rows
of A are linearly dependent). Besides, note that if pivot some element in a specific column, all
the rest of the elements in this column will have become zeroes, so one cannot further pivot
any other element in this column. Hence, to solve a system of m linear equations, it suffices to
complete at most m pivots.

• After completion of the Gaussian elimination procedure, one calls basic the components of x,
marking those columns of A, which contain the positions ij , which have been pivoted. The rest
(if any) of the components of x are called free. Usually one deals with free components only in
the case when the number of variables n exceeds the number of equations m. For instance, if
there is a system of three equations with four unknonwns (x1, x2, x3, x4), having done pivots in
the corresponding extended matrix about the elements, sitting at positions 11, 22, 33 means that
x1, x2, x3 have been chosen as basic variables, and have all been expressed in terms of a single
free variable x4. I emphasize have been chosen, because one can further express x4 via x1 from
the first relation, and plug it into the rest of the equations (that is pivot an element sitting at
the position 14), whereupon then the basic variables will be x2, x3, x4, leaving x1 as a free one.
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• In general, the last step of the Gaussian elimination procedure means reading out the expressions
for the basic components of x in terms of the right-hand side (where b is transformed after the
pivots) and the free components (if any), which can attain any values. Let me repeat that in
case n > m (usually), the choice of the basic and free components is not unique (e.g. x1 +x2 = 1
can be solved as x1 = 1−x2 or x2 = 1−x1, in the former case x1 being basic and x2-free, and in
the latter case - the other way around.) The only invariant is the number of basic components,
which equals rankA; this can actually be taken for the definition of the rank (if n ≥ m), being
also pretty much the only way to practically determine it.

• A basic solution corresponds to assigning a zero value to all the free variables, if any (e.g. for a
single equation x1 + x2 = 1, basic solutions are (x1, x2) = (1, 0) or (0, 1).)

• On the last step of the elimination algorithm one can conclude, whether the system of linear
equations either has a unique solution (which is the case if m = n = rankA), or infinitely many
solutions, or no solutions. If the last possibility takes place, the system is said to be inconsistent;
pivoting it eventually results in an equation 0 = 1 (that is a row of zeroes to the left of the vertical
bar and a nonzero entry to the right of the bar in the extended matrix).

• A linear system Ax = b has a solution if and only if the vector b is a linear combination of the
columns a1, a2, . . . ,an of the matrix A. This is a tautology: indeed, x1, x2, . . . , xn correspond
to the coefficients in this linear combination. A linear combination Ax = x1a

1 + x2a
2 + . . . +

xnan is non-trivial if at least one component of x = (x1, x2, . . . , xn) is nonzero (a trivial linear
combination always equals zero). Thus, a homogeneous system of linear equations Ax = 0 has
a non-zero (non-trivial) solution if and only if the columns of A are linearly dependent. In other
words, a bunch of vectors is linearly dependent if one of them is a linear combination of the
others. Note: more than m vectors in Rm (with m components) are always linearly dependent.
E.g. if one has four (or more) vectors in R3, one of them can be expressed as a linear combination
of the others.
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