
OPT2 Problem Sheet 7

Unconstrained extrema of functions of several variables

Find and classify the critical points of the following functions. Identify all local and global (if exist) extrema.

1. f(x1, x2) = x2
1 + x1x2 + x2

2 − 3x1 − 6x2;

2. Optional f(x1, x2) = x3
1 + 3x1x

2
2 − 15x1 − 12x2;

3. f(x1, x2) = (2x2
1 + x2

2)e
−(x2

1+x2
2);

4. f(x1, x2, x3) = x1 +
x2

x1
+

x3

x2
+

2
x3

.

5. Optional f(x1, x2) = 2− 3

√
x2

1 + x2
2;

6. Optional f(x1, x2, x3) = x1x
2
2x

3
3(1− x1 − 2x2 − 3x3), x > 0;

7. Optional 2x2 + 2y2 + z2 + 8yz − z + 8 = 0, for an implicit function z(x, y). HINT: differentiate im-
plicitly first w.r.t x and then y, find critical points by letting zx = zy = 0. Then differentiate implicitly
one more time, and find second the partials at critical points – do not forget that at critical points the
first partials are zero.

Convex Functions

1. What convexity properties (either convex, or concave, or none of the above) do the following functions
have:

(a) f(x) = x2 − 10x + 2, x ∈ R;

(b) f(x) = lnx, x > 0;

(c) Optional f(x) = ex, x ∈ R;

(d) f(x1, x2) = x2
1 + 3x2

2 − x1x2, x ∈ R2;

(e) Optional f(x1, x2, x3) = −x2
1 − x2

2 − 2x2
3 +

1
2
x1x2, x ∈ R3;

2. Show that the set {(x, y) : ex2+2y2 ≤ 100} is convex.

3. True or false (all the functions are of several variables, well defined on an open domain):

(a) If a function is convex, it cannot be concave.

(b) The sum of two convex functions is convex.

(c) The product of two convex functions is convex.

4. Prove the following inequalities either by appealing directly to the convexity properties of the function
involved or using one of the classical inequalities (Jensen, Cauchy-Schwartz, Cauchy, etc.):

(a)
1
2
(xp + yp) ≥

(
x + y

2

)p

, x, y > 0, p > 1;

(b) Optional:
1
3

(
x

1
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1
p + z

1
p

)
<

(
x + y + z

3

) 1
p

, x, y, z > 0, x 6= y, p > 1;

(c) 4
a−1+b−1+c−1+d−1 ≤ 4

√
abcd ≤ a + b + c + d

4
, a, b, c, d > 0;



(d)
5(1− a−1)
1− a−5

≤ 5a2 ≤ 1 + a + a2 + a3 + a4 =
1− a5

1− a
, a > 0;

(e)
n∑

i=1

xi ≤
√√√√n

n∑

i=1

x2
i , xi > 0, i = 1, . . . , n;

(f) Optional
n∑

i=1

xi ≤ n
1
p

(
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i=1

xq
i

) 1
q

, xi > 0, i = 1, . . . , n, p > 1, q =
p

p− 1
;

(g) Optional ln
(∫ 1

0
g(x)dx

)
≥

∫ 1

0
ln[g(x)]dx, for a continuous g(x) > 0 for x ∈ [0, 1].

When do these inequalities become strict?

5. Optional: Let A be a set of N positive reals. Let A + A denote the set of all pair-wise sums of
elements of A:

A + A = {a1 + a2 : a1, a2 ∈ A}.
The number of elements X in A + A can be anything between 2N − 1 and N(N + 1)/2, depending on
A. Suppose, however, we know that the number of ordered quadruples (a1, a2, a3, a4) that satisfy

a1 + a2 = a3 + a4

is bounded by some number E. Show that the Cauchy-Schwartz inequality implies that X ≥ N4

E
.

6. Optional -- I once explained it to Bristol six-formers: Prove the “fat elephant inequal-
ity”: a set S of N points in R3 has a projection on one of the coordinate planes, whose size is not
less than N2/3. (A fat elephant cannot look thin from all the three directions – it must have at last
one fat projection.) Assume for simplicity that all the points have integer coordinates in the interval
[1, .., M ].

Hint: introduce the characteristic function S(x, y, z) of the set S, which equals 1 if the point (x, y, z) ∈
S and S(x, y, z) = 0 otherwise. Let S1(x, y), S2(y, z), S3(z, x) be characteristic functions of the
projections of the set S onto the xy, yz, zx-planes, respectively. Then

S(x, y, z) ≤ S1(x, y)S2(y, z)S3(z, x).

(Why?) Besides,
∑

x,y,z S(x, y, z) = N . Use this and Cauchy-Scwartz applied twice to the above
inequality.


