Simplex Method in different guises

The Furniture problem

$\operatorname{Max} 60 x_{1}+30 x_{2}+20 x_{3}$, subject to

$$
\boldsymbol{x} \geq 0, \quad 8 x_{1}+6 x_{2}+2 x_{3} \leq 48, \quad 4 x_{1}+2 x_{2}+1.5 x_{3} \leq 20, \quad 2 x_{1}+1.5 x_{2}+.5 x_{3} \leq 8
$$

Canonical form: slack variables $\boldsymbol{s}=\left(s_{1}, s_{2}, s_{3}\right) \geq 0$. Constraints now are
$\boldsymbol{x}, \boldsymbol{s} \geq 0, \quad 8 x_{1}+6 x_{2}+2 x_{3}+s_{1}=48, \quad 4 x_{1}+2 x_{2}+1.5 x_{3}+s_{2}=20, \quad 2 x_{1}+1.5 x_{2}+.5 x_{3}+s_{3}=8$.
Introduce the objective variable $z=60 x_{1}+30 x_{2}+20 x_{3}$. Write everything as the system of equations, or tableau:, where the right-hand side is called Value,

$\mathrm{BV} \backslash \mathrm{V}$	z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	Val
s_{1}	0	8	6	2	1	0	0	48
s_{2}	0	4	2	1.5	0	1	0	20
s_{3}	0	2	1.5	0.5	0	0	1	8
z	1	-60	-30	-20	0	0	0	0

This is the initial tableau, where the basic variables are \boldsymbol{s}, z, free variables \boldsymbol{x}. So, "BV V" in the tableau simply reads "Basic Variables \Variables". Importantly, the columns, corresponding to basic variables are columns of the unit matrix. I.e., the system equations represented by the tableau gives expressions for basic variables via free variables, as free parameters. And above, the rows have been marked by basic variables, according to this.

Now, the presence of negative numbers in the bottom row, reading $z=0+60 x_{1}+30 x_{2}+20 x_{3}$ implies that making either of x 's positive, the rest being retained zero, will increase the objective. So, the BFS, provided by the above tableau is not optimal. One sees that if one starts increasing, say, x_{1}, keeping $x_{2}, x_{3}=0$, every extra unit of x_{1} will increase the objective by 60 . The question now is - what is the largest feasible value of x_{1}, provided that $x_{2}, x_{3}=0$, and still, each $\boldsymbol{s} \geq 0$. This is seen from the first three equations: s_{3} becomes zero when $x_{1}=8 / 2=4$; if this occurs, $s_{1}=48-8 \cdot 4=16, s_{2}=20-4 \cdot 4=4$, and $z=0+4 \cdot 60=240$. This is a new, better BFS.

Now, we need a new tableau, where the columns, corresponding to the new basic set of variables s_{1}, s_{2}, x_{1}, z have become columns of the unit matrix. This tableau is obtained from the above tableau by pivoting the entry 2 , sitting in the x_{1} column $/ s_{3}$ row - it is x_{1} that is going to knock s_{3} out of the set of basic variables. The pivot entry sits at the intersection of the pivot column and pivot row. The pivot column has been chosen by the negative-most entry in the objective row. The pivot-row has been identified by the minimum positive ratio of the entry in the value column
to the coefficient in the pivot column:

$\mathrm{BV} \backslash \mathrm{V}$	z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	Val	Rat
s_{1}	0	8	6	2	1	0	0	48	$48 / 8$
s_{2}	0	4	2	1.5	0	1	0	20	$20 / 4$
s_{3}	0	$\mathbf{2}$	1.5	0.5	0	0	1	8	$8 / 2$
z	1	-60	-30	-20	0	0	0	0	

After the pivot, i.e. the sequence of EROs has been done, we have the new tableau:

$$
\begin{array}{ccrrrrrrr}
\mathrm{BV} \backslash \mathrm{~V} & z & x_{1} & x_{2} & x_{3} & s_{1} & s_{2} & s_{3} & \text { Val } \\
s_{1} & 0 & 0 & 0 & 0 & 1 & 0 & -4 & 16 \\
s_{2} & 0 & 0 & -1 & .5 & 0 & 1 & -2 & 4 \\
x_{1} & 0 & 1 & .75 & .25 & 0 & 0 & .5 & 4 \\
z & 1 & 0 & 15 & -5 & 0 & 0 & 30 & 240
\end{array}
$$

Observe that the submatrix, corresponding to the new basic variables x_{1}, s_{1}, s_{2}, z is again the unit matrix. I.e. now the new basic variables have been expressed via new free variables x_{2}, x_{3}, s_{3} as free parameters.

The negative -5 in the bottom row tells us we have to proceed. Indeed, the last equation now is $z=240-15 x_{2}+5 x_{3}-30 s_{3}$. If x_{3} is made positive, while $x_{2}, s_{3}=0, z$ will increase. So, x_{3} is to become basic. To substitute which variable? Again, the first three equations above tell us that as $x_{2}, s_{3}=0$, and x_{3} is being increased from zero, then as soon as it reaches the value $8, s_{2}$ will become zero. When this happens, we will have $s_{1}=16-0 \cdot 8=16, x_{1}=4-.25 \cdot 8=2, z=240+5 \cdot 8=280$. This is the new BFS, and we now need a tableau for it.

In other words, we have identified the pivot column by the negative entry in the bottom row as the x_{3}-column, and now the pivot row has been identified as the second, i.e. s_{2}-row by looking at the minimum positive ratio of the right-hand-side to the coefficient in the pivot column. This ratio equals 2 and occurs in the s_{2}-row. Here:

$\mathrm{BV} \backslash \mathrm{V}$	z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	Val	Rat
s_{1}	0	0	0	0	1	0	-4	16	$16 / 0$
s_{2}	0	0	-1	.5	0	1	-2	4	$4 / .5$
x_{1}	0	1	.75	.25	0	0	.5	4	$4 / .25$
z	1	0	15	-5	0	0	30	240	

So, we pivot .5 in bold and arrive in the new tableau:

$$
\begin{array}{crrrrrrrr}
\mathrm{BV} \backslash \mathrm{~V} & z & x_{1} & x_{2} & x_{3} & s_{1} & s_{2} & s_{3} & \text { Val } \\
s_{1} & 0 & 0 & 0 & 0 & 1 & 0 & -4 & 16 \\
x_{3} & 0 & 0 & -2 & 1 & 0 & 2 & -4 & 8 \\
x_{1} & 0 & 1 & 1.25 & 0 & 0 & -.5 & 1.5 & 2 \\
z & 1 & 0 & 5 & 0 & 0 & 10 & 10 & 280
\end{array}
$$

And this is a final tableau: we have $z=280-5 x_{2}-10 s_{2}-10 s_{3}$, so making either of the free variables $x_{2}, s_{2,3}$ positive will not increase, but rather decrease the objective.

Unbounded problem: Example

Max $36 x_{1}+30 x_{2}-3 x_{3}-4 x_{4}$, subject to $\boldsymbol{x} \geq 0, x_{3}+5 \geq x_{1}+x_{2}, x_{4}+10 \geq 6 x_{1}+5 x_{2}$.
Solution: There is a time-saving strategy: we know that the submatrix in the tableau, corresponding to the basic variables, is the unit matrix. So, why writing it all the time? Not doing this gives short tableaus.

Long Tableau

| $\mathrm{BV} \backslash \mathrm{V}$ | z | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | Val | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x_{5} | 0 | 1 | 1 | -1 | 0 | 1 | 0 | 5 | $\frac{5}{1}$ |
| x_{6} | 0 | $\mathbf{6}$ | 5 | 0 | -1 | 0 | 1 | 10 | $\frac{10}{6}$ |
| z | 1 | -36 | -30 | 3 | 4 | 0 | 0 | 0 | |
| BV\V | z | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | Val | R |
| x_{5} | 0 | 0 | $\frac{1}{6}$ | -1 | $\frac{1}{6}$ | 1 | $-\frac{1}{6}$ | $\frac{10}{3}$ | 20 |
| x_{1} | 0 | 1 | $\frac{5}{6}$ | 0 | $-\frac{1}{6}$ | 0 | $\frac{1}{6}$ | $\frac{5}{3}$ | - |
| z | 1 | 0 | 0 | 3 | -2 | 0 | 6 | 60 | |

Short Tableau

$\mathrm{BV} \backslash \mathrm{FV} \quad x_{6} \quad x_{2} \quad x_{3} \quad x_{4}$ Val R

$$
\begin{array}{lllllll}
x_{5} & -\frac{1}{6} & \frac{1}{6} & -1 & \frac{1}{6} & \frac{10}{3} & 20
\end{array}
$$

$$
\begin{array}{lllllll}
x_{1} & \frac{1}{6} & \frac{5}{6} & 0 & -\frac{1}{6} & \frac{5}{3} & -
\end{array}
$$

$$
\begin{array}{llllll}
z & 6 & 0 & 3 & -2 & 60
\end{array}
$$

How has the new short tableau been obtained? The variable x_{1} has replaced x_{6} in the basis. By looking at the short tableau above, one realises that pivoting the 6 will consist of the following independently done EROs: (i) adding to the first row $-1 / 6$ times the second row; (ii) multiplying the second row by $1 / 6$; (iii) adding to the third row the "old" second row multiplied by 6 . In the long tableau, this has also been done to the x_{1} column, which is the column of the unit matrix. The result, which is simply the summary of the three used multipliers: $-1 / 6,1 / 6,6$ is exactly what becomes the new x_{1} column in the short tableau.

| $\mathrm{BV} \backslash \mathrm{V}$ | z | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | Val | R | $\mathrm{BV} \backslash \mathrm{FV}$ | x_{6} | x_{2} | x_{3} | x_{5} | Val | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x_{4} | 0 | 0 | 1 | -6 | 1 | 6 | -1 | 20 | - | x_{4} | -1 | 1 | -6 | 6 | 20 | - |
| x_{1} | 0 | 1 | 1 | -1 | 0 | 1 | 0 | 5 | - | x_{1} | 0 | 1 | -1 | 1 | 5 | - |
| z | 1 | 0 | 2 | -9 | 0 | 12 | 4 | 100 | | z | 4 | 2 | -9 | 12 | 100 | |

Conclusion: The last tableau indicates that a free x_{3} can be taken arbitrarily large without violating the feasibility of basic x_{1} and x_{4}, yielding an arbitrarily large z. Indeed, there are no positive ratios: if $x_{6}=2_{2}=x_{5}=0$, we have $x_{4}=20+6 x_{3}, x_{1}=5+x_{3}, z=100+9 x_{3}$. Making $x_{3} \rightarrow+\infty$ creates a family of feasible solutions, effecting arbitrarily large objective. Note, that these solutions are not basic.

Alternative solutions: Example

This is the same old furniture problem, after table have grown in price up to $£ 35$. Now it makes sense to manufacture them, but instead of desks or chairs? Max $60 x_{1}+35 x_{2}+20 x_{3}$, subject to $\boldsymbol{x} \geq 0$ and $8 x_{1}+6 x_{2}+2 x_{3} \leq 48,4 x_{1}+2 x_{2}+1.5 x_{3} \leq 20,2 x_{1}+1.5 x_{2}+.5 x_{3} \leq 8, x_{2} \leq 5$.

Long Tableau
Short Tableau

$\mathrm{BV} \backslash \mathrm{V}$	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	Val	R	$\mathrm{BV} \backslash \mathrm{FV}$	x_{1}	x_{2}	x_{3}	Val	R
x_{4}	0	8	6	2	1	0	0	48	6	x_{4}	8	6	2	48	6
x_{5}	0	4	2	1.5	0	1	0	20	5	x_{5}	4	2	1.5	20	5
x_{6}	0	2	1.5	.5	0	0	1	8	4	x_{6}	$\mathbf{2}$	1.5	.5	8	4
z	1	-60	-35	-20	0	0	0	0		z	-60	-35	-20	0	

$$
\begin{array}{cccccccccc}
\text { BV } \backslash \mathrm{V} & z & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \text { Val } & \mathrm{R} \\
x_{4} & 0 & 0 & 0 & 0 & 1 & 0 & -4 & 16 & \infty \\
x_{5} & 0 & 0 & -1 & .5 & 0 & 1 & -2 & 4 & 8 \\
x_{1} & 0 & 1 & .75 & .25 & 0 & 0 & .5 & 4 & 16 \\
z & 1 & 0 & 10 & -5 & 0 & 0 & 30 & 240 &
\end{array}
$$

Long Tableau
$\begin{array}{lllllllllllllll}\mathrm{BV} \backslash \mathrm{V} & z & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & \mathrm{Val} & \mathrm{R} & \mathrm{BV} \backslash \mathrm{FV} & x_{6} & x_{2} & x_{5} & \mathrm{Val} \\ \mathrm{R}\end{array}$

x_{4}	0	0	0	0	1	0	-4	16	∞
x_{3}	0	0	-2	1	0	2	-4	8	-
x_{1}	0	1	$\mathbf{1 . 2 5}$	0	0	-.5	1.5	2	$\frac{8}{5}$
z	1	0	0	0	0	10	10	280	

$\mathrm{BV} \backslash \mathrm{FV} \quad x_{6} \quad x_{2} \quad x_{3}$ Val R
$\begin{array}{llllll}x_{4} & -4 & 0 & 0 & 16 & \infty\end{array}$
$\begin{array}{llllll}x_{5} & -2 & -1 & .5 & 4 & 8\end{array}$
$\begin{array}{llllll}x_{1} & .5 & .75 & .25 & 4 & 16\end{array}$
$\begin{array}{lllll}z & 30 & 10 & -5 & 240\end{array}$

Short Tableau
$\begin{array}{llllll}x_{4} & -4 & 0 & 0 & 16 & \infty\end{array}$
$\begin{array}{llllll}x_{3} & -4 & -2 & 2 & 8 & -\end{array}$
$\begin{array}{llllll}x_{1} & 1.5 & 1.25 & -.5 & 2 & \frac{8}{5}\end{array}$
$\begin{array}{lllll}z & 10 & 0 & 10 & 280\end{array}$

Alarm: accidentally, x_{2} is a free variable, and as long as other free variables, $x_{5}=x_{6}=0$, we have $z=280-0 \cdot x_{2}$. In other words, x_{2} can be made positive, and z will not change. Then, as soon as x_{2} knocks out a basic variable x_{1}, which happens for $x_{2}=8 / 5$, we'll have a new BFS, where
in addition $x_{3}=8+2 \cdot 1.6=11.2, x_{4}=16$. And still $z=280$. So, if in the final tableau there is a free variable, such that the coefficient in the objective row is zero, this indicates that there are alternative solutions. Here is the new tableau, after x_{2} has been brought into the basis:

$\mathrm{BV} \backslash \mathrm{V}$	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	Val	$\mathrm{BV} \backslash \mathrm{FV}$	x_{6}	x_{1}	x_{5}	Val
x_{4}	0	0	0	0	1	0	-4	0	16	x_{4}	-4	0	0	16
x_{3}	0	1.6	0	1	0	1.2	-1.6	0	11.2	x_{3}	-1.6	1.6	1.2	11.2
x_{2}	0	.8	1	0	0	-.4	1.2	0	1.6	x_{2}	1.2	.8	-.4	1.6
z	1	0	0	0	0	10	10	0	280	z	10	0	10	280

Conclusion: A pair $\left(\boldsymbol{x}^{1}, \boldsymbol{x}^{2}\right)$ of basic solutions $x_{1}=2, x_{2}=0, x_{3}=8$ and $x_{1}=0, x_{2}=1.6, x_{3}=$ 11.2 both yield the optimal $z=280$. So is any convex combination $\boldsymbol{x}_{\theta}=\theta \boldsymbol{x}^{1}+(1-\theta) \boldsymbol{x}^{2}, 0 \leq \theta \leq 1$.

