
Simplex Method in different guises

The Furniture problem

Max 60x1 + 30x2 + 20x3, subject to

x ≥ 0, 8x1 + 6x2 + 2x3 ≤ 48, 4x1 + 2x2 + 1.5x3 ≤ 20, 2x1 + 1.5x2 + .5x3 ≤ 8.

Canonical form: slack variables s = (s1, s2, s3) ≥ 0. Constraints now are

x, s ≥ 0, 8x1 + 6x2 + 2x3 + s1 = 48, 4x1 + 2x2 + 1.5x3 + s2 = 20, 2x1 + 1.5x2 + .5x3 + s3 = 8.

Introduce the objective variable z = 60x1 + 30x2 + 20x3. Write everything as the system of
equations, or tableau:, where the right-hand side is called Value,

BV\V z x1 x2 x3 s1 s2 s3 Val

s1 0 8 6 2 1 0 0 48

s2 0 4 2 1.5 0 1 0 20

s3 0 2 1.5 0.5 0 0 1 8

z 1 −60 −30 −20 0 0 0 0

This is the initial tableau, where the basic variables are s, z, free variables x. So, ”BV\ V” in
the tableau simply reads ”Basic Variables \ Variables”. Importantly, the columns, corresponding
to basic variables are columns of the unit matrix. I.e., the system equations represented by the
tableau gives expressions for basic variables via free variables, as free parameters. And above, the
rows have been marked by basic variables, according to this.

Now, the presence of negative numbers in the bottom row, reading z = 0 + 60x1 + 30x2 + 20x3

implies that making either of x’s positive, the rest being retained zero, will increase the objective.
So, the BFS, provided by the above tableau is not optimal. One sees that if one starts increasing,
say, x1, keeping x2, x3 = 0, every extra unit of x1 will increase the objective by 60. The question
now is – what is the largest feasible value of x1, provided that x2, x3 = 0, and still, each s ≥ 0.
This is seen from the first three equations: s3 becomes zero when x1 = 8/2 = 4; if this occurs,
s1 = 48− 8 · 4 = 16, s2 = 20− 4 · 4 = 4, and z = 0 + 4 · 60 = 240. This is a new, better BFS.

Now, we need a new tableau, where the columns, corresponding to the new basic set of variables
s1, s2, x1, z have become columns of the unit matrix. This tableau is obtained from the above
tableau by pivoting the entry 2, sitting in the x1 column/s3 row – it is x1 that is going to knock s3

out of the set of basic variables. The pivot entry sits at the intersection of the pivot column and
pivot row. The pivot column has been chosen by the negative-most entry in the objective row.
The pivot-row has been identified by the minimum positive ratio of the entry in the value column



to the coefficient in the pivot column:

BV\V z x1 x2 x3 s1 s2 s3 Val Rat

s1 0 8 6 2 1 0 0 48 48/8

s2 0 4 2 1.5 0 1 0 20 20/4

s3 0 2 1.5 0.5 0 0 1 8 8/2

z 1 −60 −30 −20 0 0 0 0

After the pivot, i.e. the sequence of EROs has been done, we have the new tableau:

BV\V z x1 x2 x3 s1 s2 s3 Val

s1 0 0 0 0 1 0 −4 16

s2 0 0 −1 .5 0 1 −2 4

x1 0 1 .75 .25 0 0 .5 4

z 1 0 15 −5 0 0 30 240

Observe that the submatrix, corresponding to the new basic variables x1, s1, s2, z is again the unit
matrix. I.e. now the new basic variables have been expressed via new free variables x2, x3, s3 as
free parameters.

The negative −5 in the bottom row tells us we have to proceed. Indeed, the last equation now
is z = 240− 15x2 + 5x3− 30s3. If x3 is made positive, while x2, s3 = 0, z will increase. So, x3 is to
become basic. To substitute which variable? Again, the first three equations above tell us that as
x2, s3 = 0, and x3 is being increased from zero, then as soon as it reaches the value 8, s2 will become
zero. When this happens, we will have s1 = 16−0·8 = 16, x1 = 4−.25·8 = 2, z = 240+5·8 = 280.
This is the new BFS, and we now need a tableau for it.

In other words, we have identified the pivot column by the negative entry in the bottom row
as the x3-column, and now the pivot row has been identified as the second, i.e. s2-row by looking
at the minimum positive ratio of the right-hand-side to the coefficient in the pivot column. This
ratio equals 2 and occurs in the s2-row. Here:

BV\V z x1 x2 x3 s1 s2 s3 Val Rat

s1 0 0 0 0 1 0 −4 16 16/0

s2 0 0 −1 .5 0 1 −2 4 4/.5

x1 0 1 .75 .25 0 0 .5 4 4/.25

z 1 0 15 −5 0 0 30 240



So, we pivot .5 in bold and arrive in the new tableau:

BV\V z x1 x2 x3 s1 s2 s3 Val

s1 0 0 0 0 1 0 −4 16

x3 0 0 −2 1 0 2 −4 8

x1 0 1 1.25 0 0 −.5 1.5 2

z 1 0 5 0 0 10 10 280

And this is a final tableau: we have z = 280 − 5x2 − 10s2 − 10s3, so making either of the free
variables x2, s2,3 positive will not increase, but rather decrease the objective.



Unbounded problem: Example

Max 36x1 + 30x2 − 3x3 − 4x4, subject to x ≥ 0, x3 + 5 ≥ x1 + x2, x4 + 10 ≥ 6x1 + 5x2.

Solution: There is a time-saving strategy: we know that the submatrix in the tableau, corre-
sponding to the basic variables, is the unit matrix. So, why writing it all the time? Not doing this
gives short tableaus.

Long Tableau Short Tableau

BV\V z x1 x2 x3 x4 x5 x6 Val R

x5 0 1 1 −1 0 1 0 5 5
1

x6 0 6 5 0 −1 0 1 10 10
6

z 1 −36 −30 3 4 0 0 0

BV\FV x1 x2 x3 x4 Val R

x5 1 1 −1 0 5 5
1

x6 6 5 0 −1 10 10
6

z −36 −30 3 4 0

BV\V z x1 x2 x3 x4 x5 x6 Val R

x5 0 0 1
6
−1 1

6
1 −1

6
10
3

20

x1 0 1 5
6

0 −1
6

0 1
6

5
3

−

z 1 0 0 3 −2 0 6 60

BV\FV x6 x2 x3 x4 Val R

x5 −1
6

1
6
−1 1

6
10
3

20

x1
1
6

5
6

0 −1
6

5
3

−

z 6 0 3 −2 60

How has the new short tableau been obtained? The variable x1 has replaced x6 in the basis. By
looking at the short tableau above, one realises that pivoting the 6 will consist of the following
independently done EROs: (i) adding to the first row −1/6 times the second row; (ii) multiplying
the second row by 1/6; (iii) adding to the third row the ”old” second row multiplied by 6. In the
long tableau, this has also been done to the x1 column, which is the column of the unit matrix.
The result, which is simply the summary of the three used multipliers: −1/6, 1/6, 6 is exactly what
becomes the new x1 column in the short tableau.

BV\V z x1 x2 x3 x4 x5 x6 Val R

x4 0 0 1 −6 1 6 −1 20 −

x1 0 1 1 −1 0 1 0 5 −

z 1 0 2 −9 0 12 4 100

BV\FV x6 x2 x3 x5 Val R

x4 −1 1 −6 6 20 −

x1 0 1 −1 1 5 −

z 4 2 −9 12 100

Conclusion: The last tableau indicates that a free x3 can be taken arbitrarily large without
violating the feasibility of basic x1 and x4, yielding an arbitrarily large z. Indeed, there are no
positive ratios: if x6 = 22 = x5 = 0, we have x4 = 20 + 6x3, x1 = 5 + x3, z = 100 + 9x3. Making
x3 → +∞ creates a family of feasible solutions, effecting arbitrarily large objective. Note, that
these solutions are not basic.



Alternative solutions: Example

This is the same old furniture problem, after table have grown in price up to £35. Now it makes
sense to manufacture them, but instead of desks or chairs? Max 60x1 + 35x2 + 20x3, subject to
x ≥ 0 and 8x1 + 6x2 + 2x3 ≤ 48, 4x1 + 2x2 + 1.5x3 ≤ 20, 2x1 + 1.5x2 + .5x3 ≤ 8, x2 ≤ 5.

Long Tableau Short Tableau

BV\V z x1 x2 x3 x4 x5 x6 Val R

x4 0 8 6 2 1 0 0 48 6

x5 0 4 2 1.5 0 1 0 20 5

x6 0 2 1.5 .5 0 0 1 8 4

z 1 −60 −35 −20 0 0 0 0

BV\FV x1 x2 x3 Val R

x4 8 6 2 48 6

x5 4 2 1.5 20 5

x6 2 1.5 .5 8 4

z −60 −35 −20 0

BV\V z x1 x2 x3 x4 x5 x6 Val R

x4 0 0 0 0 1 0 −4 16 ∞

x5 0 0 −1 .5 0 1 −2 4 8

x1 0 1 .75 .25 0 0 .5 4 16

z 1 0 10 −5 0 0 30 240

BV\FV x6 x2 x3 Val R

x4 −4 0 0 16 ∞

x5 −2 −1 .5 4 8

x1 .5 .75 .25 4 16

z 30 10 −5 240

Long Tableau Short Tableau

BV\V z x1 x2 x3 x4 x5 x6 Val R

x4 0 0 0 0 1 0 −4 16 ∞

x3 0 0 −2 1 0 2 −4 8 −

x1 0 1 1.25 0 0 −.5 1.5 2 8
5

z 1 0 0 0 0 10 10 280

BV\FV x6 x2 x5 Val R

x4 −4 0 0 16 ∞

x3 −4 −2 2 8 −

x1 1.5 1.25 −.5 2 8
5

z 10 0 10 280

Alarm: accidentally, x2 is a free variable, and as long as other free variables, x5 = x6 = 0, we have
z = 280 − 0 · x2. In other words, x2 can be made positive, and z will not change. Then, as soon
as x2 knocks out a basic variable x1, which happens for x2 = 8/5, we’ll have a new BFS, where



in addition x3 = 8 + 2 · 1.6 = 11.2, x4 = 16. And still z = 280. So, if in the final tableau there is
a free variable, such that the coefficient in the objective row is zero, this indicates that there are
alternative solutions. Here is the new tableau, after x2 has been brought into the basis:

BV\V z x1 x2 x3 x4 x5 x6 x7 Val

x4 0 0 0 0 1 0 −4 0 16

x3 0 1.6 0 1 0 1.2 −1.6 0 11.2

x2 0 .8 1 0 0 −.4 1.2 0 1.6

z 1 0 0 0 0 10 10 0 280

BV\FV x6 x1 x5 Val

x4 −4 0 0 16

x3 −1.6 1.6 1.2 11.2

x2 1.2 .8 −.4 1.6

z 10 0 10 280

Conclusion: A pair (x1,x2) of basic solutions x1 = 2, x2 = 0, x3 = 8 and x1 = 0, x2 = 1.6, x3 =
11.2 both yield the optimal z = 280. So is any convex combination xθ = θx1+(1−θ)x2, 0 ≤ θ ≤ 1.


