
OPT Problem Sheet 1: Answers and Solutions1

General optimisation problems

1. Clearly, x∗ = 0, value 1.

2. One does not need a Simplex method to see that (1, 1) is an optimal solution, value 2.

3. No optimal solution: as (x, y) → (1, 1), the value approaches 2, never reaching it.

4. Clearly when x2 + y2 + z2 is minimal, i.e. (0, 0, 0), value e0 = 1. If Min is replaced by Max, then the
problem has no optimal solution, because the feasible set is an ellipsoid (3D ellipse) with major axes
1/

√
2, 1/

√
3, 1/2, the boundary not included, so the points (±1/

√
2, 0, 0) where x2 + y2 + z2 achieves

its supremum on the feasible set are not feasible.

5. The feasible set is a rhombus with vertices (1, 0), (0, 1), (−1, 0), (0,−1), the objective is the distance
from the origin. The maximum value 1 is attained at either vertex, as the rhombus is inscribed into
the unit circle.

6. On the plane, consider a line y − x = 0 and a hyperbola x2 − y2 = 1, which asymptotically approaches
it (see Fig.).

Then the feasible set is the right branch of the hyperbola and its interior, and so there is no optimal
solution, as y−x → 0 from below for a point on a hyperbola, going to infinity. Namely, a line x−y = C
for any C < 0 will end up entering the feasible set; however y = x is still unfeasible.

Linear programming

1. Variables: x1 - number of Grumpies, x2 - number of Sleepies, x3 - number of Bashfuls to be produced
per week. Let x = (x1, x2, x3).

Then the LP is:

max 4x1 + 2x2 + 5x3, such that x1 + 2x2 + x3 ≤ 40 Machine A constraint
3x1 + + 2x3 ≤ 50 Machine B constraint
x1 + 4x2 + ≤ 45 Machine C constraint

, x ≥ 0.

1Please, let me know if you spot any errors.
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Adding the extra equality constraint enables one to reduce the number of variables by one by expressing,
e.g. x2 = 360− x1 − x3. Plugging into the objective and constraints yields:

max 720 + 2x1 + 3x3, such that x1 + x3 ≥ 680
3x1 + 2x3 ≤ 50
3x1 + 4x3 ≥ 1395

, x ≥ 0.

The problem is clearly unfeasible, as one can see from the figure:

2. Variables: x1 - number of Pasture acres, x2 - number of Arable acres. Let x = (x1, x2).

Then the LP is:

max 10x1 + 15x2 (or 7x1 + 15x2 in case of £7 per acre Pasture profit), such that{
x1 + x2 ≤ 100 total area constraint

30x1 + 60x2 ≤ 4200 total hours constraint
, x ≥ 0.

By comparing the slopes of the lines on the figure, one can see that P = (60, 40) corresponds to the
optimal solution with value 1200 for the former profit function.

An extra acre changes the location of the optimal solution P to (62, 39) and brings an extra value of 5.
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For the second profit function, the optimal solution point ”jumps” to Q = (0, 70), with the value 1050.
Note that if the profit function were 7x + 14x2, both P,Q and any point in between would yield an
optimal value 980.

3. Unknowns in R+: e1; e2 ≤ 1000, e3 ≤ 500 and r1 ≤ 100, r2 ≤ 130 for the extracts to buy/remedies to
mix.

The objective is now Max 10r1 +13r2 − 3e1 − 4e2 − 5e3, (profit from remedies’ sales minus expenditure
for extracts)

The constraints are such the amount of each of the three components extracted is sufficient to make
the remedies: .25r1 + .2r2 − .2e1 − .3e2 − .1e3 ≤ 0,
.35r1 + .1r2 − .15e1 − .3e2 − .15e3 ≤ 0,
.15r1 + .3r2 − .25e1 − .45e3 ≤ 0.

4. Introduce 16 unknowns xij =

{
1 if the corresponding candidate is chosen,
0 otherwise.

The objective is now to maximize
∑

i,j=1,...,4 eijxij . The constraints are: xij ≥ 0, for all i, j, as well as

(i) for all i = 1, . . . , 4,
∑4

j=1 xij = 1 – this takes care that no two team members do the same degree

programme, as well as (ii) for all j = 1, . . . , 4,
∑4

i=1 xij = 1 – this takes care that no university provides
two team players.

There is a reasonable extra requirement that all xij be, in fact, integer, but it turns out to be superfluous
– if the LP in question is solved via the simplex method to be learned soon, there will be no way to get
non-integer values for the variables.

Linear algebra problems

1. While uTu = 12 + 22 + 32 = 14 - the square of the Euclidean length of u,

uuT =

 1 2 3
2 4 6
3 6 9

 .

If A is m × n, AT is n ×m, so ATA is n × n and AAT is m ×m, both symmetric. One can actually
prove that they are both positive definite.

Furthermore,

AAT =

[
14 32
32 77

]
, ATA =

 17 22 27
22 29 36
27 36 45

 , BBT =

[
2 −5

−5 25

]
,

BTB =

[
1 −1

−1 26

]
, BA =

[
−3 −3 −3
20 25 30

]
, B2 =

[
1 −6
0 25

]
;

the products AB and A2 are not defined.

2. B is a 4 × 4 identity matrix, for the only change that b31 = 1, rather than 0. C is a 5 × 5 identity
matrix, for the following changes: c22 = c55 = 0, instead of 1 and c52 = c25 = 1 instead of 0. That is

B =


1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

 , C =


1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0

 .
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3. First system: x = (1, 2, 3), unique solution;
Second system: infinitely many solutions, e.g. x = (4−x3−1.2x4, 2−x3−1.4x4, x3, x4), basic solution
x = (4, 2, 0, 0), or x = (2 + x2 + .2x4, x2, 2− x2 − 1.4x4, x4), basic solution x = (2, 0, 2, 0);
Third system: inconsistent, as adding the first two equations and subtracting the third one results in
0 = 1.

4. When solving a single system of equations Ax = b, one does a succession of pivots in the extended
matrix [A|b], pivoting only the elements, which sit to the left of the vertical bar. No matter what b, the
succession of pivots is the same, targeting eventually to get the identity to the left of the vertical bar:

[A |b] → [Id |x].

As the pivots are being made, each column is transformed independently, which enables one to add as
many columns to the right of the vertical bar as desired, doing the same eros, but with longer rows,
the algorithm yielding:

[A |b1 b2 . . .] → [Id |x1 x2 . . .],

where xi solves a linear system Axi = bi, i = 1, 2, . . .. As a matrix product, it can be compactly written
as AX = B, the columns of X being x1, x2, . . ., while the columns of B are b1, b2, . . .. Indeed, in the
example of the 3× 3 matrix in question, it boils down to solving 2 2 1

2 −1 2
1 −1 2

  x1
1 x2

1 x3
1

x1
2 x2

2 x3
2

x1
3 x2

3 x3
3

 =

 1 0 0
0 1 1
0 0 1

 ,

or AX = Id, thus by definition X = A−1. The Gauss-Jordan method yields: 2 2 1 | 1 0 0
2 −1 2 | 0 1 0
1 −1 2 | 0 0 1

 →

 1 0 0 | 0 1 −1
0 1 0 | .4 −.6 .4
0 0 1 | .2 −.8 1.2

 .

Finally, det A = −5, as a calculation shows. Note that for a 3 × 3 matrix, one can compute the
determinant by the template on the Fig. 1.

Figure 1: How to compute the determinant of a 3× 3 matrix

One adds products of elements in triples, connected by fat lines and subtracts products of elements in
triples, connected by thin lines, e.g. for the matrix A in question
det A = 2 ∗ (−1) ∗ 2 + 2 ∗ 2 ∗ 1 + 2 ∗ (−1) ∗ 1 − 1 ∗ (−1) ∗ 1 − 2 ∗ 2 ∗ (−1) − 2 ∗ 2 ∗ 2 = −5.

5. rankA = 2, because det A = 0, however it contains a non-degenerate 2× 2 submatrix, for instance

A =

[
1 2
4 5

]
,

whose determinant is nonzero.
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6. Let C = AB. Let the elements of A be aij , the elements of AT be a∗ij = aji, the elements of B be bij ,

the elements of bT be b∗ij = bji, the elements of C be cij , the elements of CT = (AB)T be c∗ij = cji. By
the multiplication rule

c∗ij = cji =
∑
k

ajkbki =
∑
k

bkiajk =
∑
k

b∗ika
∗
kj ,

but the right-hand side is nothing but the multiplication rule for the product BTAT .

For the inverses:
(B−1A−1)AB = B−1(A−1A)B = B−1B = Id,

so by definition of an inverse, the matrix (B−1A−1) is an inverse for the matrix AB, that is (AB)−1.

7. Rows → Columns: if the rows of an n× n matrix A are linearly dependent, there exists a sequence of
eros, which being applied to A produce a matrix B, whose last row is zero. Each single ero consists in
multiplying A from the left by a very simple and non-degenerate matrix (Problem 2). Thus CA = B
for some non-degenerate matrix C (i.e. such that its inverse C−1 exists). In B the zero row can be
omitted, whereupon there remains some matrix Â with n columns and n− 1 rows. So, the columns of
Â are vectors in Rn−1, and their number is n. But more than n− 1 vectors in Rn−1 are always linearly
dependent, by definition of dimension! A

 →

 Â

0 . . . 0

 = B

Thus the columns of B are also linearly dependent. But A = C−1B, hence ai = C−1bi, for the columns
of A and B respectively. Then, because the columns of B are linearly dependent, so are the columns
of A. Namely, if λ1b

1 + . . . + λnb
n = 0 for some array of numbers (λ1, . . . , λn) ̸= (0, . . . , 0), then

λ1a
1 + . . .+ λna

n = C(λ1b
1 + . . .+ λnb

n) = 0.

An argument Columns → Rows follows by transposition.
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