OPT2

1. See Figure 1. Answers: (a) unique minimum ($1 / 2,0$), value $1 / 2$; (b),(d) unbounded; (c) unfeasible; (e) alternative maxima $P=(12,0)$ and $Q=(0,14)$ and any point $S=\lambda P+(1-$入) $Q, 0<\lambda<1$ in between, value 84 .

(e)

Figure 1: Figures for Problem 1
2. The canonical forms are
(a) Minimise $u-\tilde{v}$ subject to $2 u-3 \tilde{v}-s_{1}=1, u+\tilde{v}-s_{2}=0 ; u, \tilde{v}, s_{1}, s_{2} \geq 0$. Above, $\tilde{v}=-v, s_{1}, s_{2}$ - excess variables.
(b) Maximise $3+\tilde{u}-\tilde{v}$ subject to $-2 \tilde{u}+3 \tilde{v}+s_{1}=7, \tilde{u}+\tilde{v}-s_{2}=1$; $\tilde{u}, \tilde{v}, s_{1}, s_{2} \geq 0$. Above, $\tilde{u}=u-1, \tilde{v}=2-v, s_{1}$ - a slack and $s_{2}-$ an excess variable.
(c) Minimise $-\tilde{u}+x-y$ subject to $-2 \tilde{u}+5 x-5 y-s_{1}=1, \tilde{u}+x-y+s_{2}=0 ; \tilde{u}, x, y, s_{1}, s_{2} \geq$ 0 . Above, $\tilde{u}=-u, v=x-y, s_{1}-$ an excess and $s_{2}-$ a slack variable.
(d) Minimise $-\tilde{u}+v$ subject to $v+2 \tilde{u}-s_{1}=2, \quad \tilde{u}+2 v-s_{2}=2 ; \tilde{u}, v, s_{1}, s_{2} \geq 0$. Above, $\tilde{u}=-u, s_{1}, s_{2}$ - excess variables.
(e) Maximise $7 a-7 b+6 c-6 d$ subject to $7 a-7 b+2 c-2 d-s_{1}=28, a-b+6 c-6 d-s_{2}=$ $12,14 a-14 b+12 c-12 d+s_{3}=168 ; a, b, c, d, s_{1}, s_{2}, s_{3} \geq 0$. Above, $u=a-b, v=c-d$, s_{1}, s_{2} - excess variables, s_{3} - a slack variable.
3. Let $A=\left[\boldsymbol{a}^{1} \boldsymbol{a}^{2} \boldsymbol{a}^{3}\right]$.

- Basic solutions:

$$
\begin{array}{ll}
\boldsymbol{b}=(2,0): \text { no solution, } & \boldsymbol{b}=(3,3): \boldsymbol{x}=(3,0,0), \\
\boldsymbol{b}=(3,6): \boldsymbol{x}=(3,3,0) \text { or } \boldsymbol{x}=(4.5,0,1.5), & \boldsymbol{b}=(6,3): \text { no solution, } \\
\boldsymbol{b}=(-2 ; 4): \boldsymbol{x}=(0,3,3) \text { or } \boldsymbol{x}=(1,0,3), & \boldsymbol{b}=(0,7): \boldsymbol{x}=(0,7,0) \text { or } \boldsymbol{x}=(3.5,0,3.5), \\
\boldsymbol{b}=(-5,-5): \text { no solution. } &
\end{array}
$$

See Figure 2.

Feasible solutions will exist only for those \boldsymbol{b}, which lie within the shaded region on the plane. Indeed, given a pair of vectors ($\boldsymbol{a}^{\alpha}, \boldsymbol{a}^{\beta}$), representing a pair of columns of A, the basic solution $x_{\alpha} \boldsymbol{a}^{\alpha}+x_{\beta} \boldsymbol{a}^{\beta}=\boldsymbol{b}$, depending on these columns, with $x_{\alpha, \beta} \geq 0$ will exist if and only if \boldsymbol{b} lies within a sector of the plane, bounded by the rays in the directions of \boldsymbol{a}^{α} and \boldsymbol{a}^{β}. Then, the values of $\boldsymbol{b}=(2,0),(6,3),(-5,5)$ will not have feasible solutions, as they are outside the union of all the feasible sectors. On the other hand, $\boldsymbol{b}=(3,3)$ lies only in the sector spanned by $\left(\boldsymbol{a}^{1}, \boldsymbol{a}^{2}\right)$ (on the boundary) hence there is a unique BFS, corresponding to it. The values of $\boldsymbol{b}=(3,6),(-2,4)$ each belong to two sectors simultaneously, hence there are two corresponding different BFSs. Finally, $\boldsymbol{b}=(0,7)$ lies in all the three sectors (spanned by the pairs $\boldsymbol{a}^{1,2}, \boldsymbol{a}^{2,3}$ and $\boldsymbol{a}^{1,3}$). However, due to the degeneracy of the intersection of the first two sectors, which is only the vertical line, whereupon there sits the point $\boldsymbol{b}=(0,7)$, there are only two (rather than three) BFSs, corresponding to this value of \boldsymbol{b}.
Note that $\boldsymbol{b}=(3,3)$ and $(0,7)$ do not satisfy the non-degeneracy assumption, introduced in class: they can be expressed as linear combinations of less than two (namely one) columns of A.

- Most importantly, the equation $x_{1}+x_{2}+x_{3}=b_{2}, \boldsymbol{x} \geq 0$ tells us that if $b_{2}<0$, there are no solutions, and if $b_{2} \geq 0$, each x_{j} is bounded by b_{2}. Hence, the feasible set is bounded, and therefore the LP is not unbounded, i.e. has optimal solutions (if it is feasible).
So, to minimise $x_{2}-x_{3}$, for $\boldsymbol{b}=(0,7)$ it is enough to compare the former value for the pair of BFSs, corresponding to this \boldsymbol{b}. Clearly, $\boldsymbol{x}=(3.5,0,3.5)$ makes $x_{2}-x_{3}$ smaller (value -3.5) than $\boldsymbol{x}=(0,7,0)$ (value 7).

4. Let $A=\left[\begin{array}{llll}\boldsymbol{a}^{1} & \boldsymbol{a}^{2} & \boldsymbol{a}^{3} & \boldsymbol{a}^{4}\end{array}\right]$. It's the same as for the previous problem with the extra column $\boldsymbol{a}^{4}=(1,0)$.

- The shaded region for the previous problem in Figure 2, plus an additional sector spanned by the pair of vectors ($\boldsymbol{a}^{4}, \boldsymbol{a}^{1}$).
- BFSs for different values of \boldsymbol{b} :
(a) $\boldsymbol{b}=(0,7)$, apart from the solutions in Problem 4 (extended to four components by letting $\left.x_{4}=0\right)$, also acquires a $\operatorname{BFS} \boldsymbol{x}=(0,0,7,7)$.
(b) $\boldsymbol{b}=(1,1)$, apart from the solution $(1,0,0,0)$, also acquires BFSs $\boldsymbol{x}=(0,1,0,1)$ and $\boldsymbol{x}=(0,0,1,2)$.
(c) $\boldsymbol{b}=(-1,1)$ yields a unique $\operatorname{BFS} \boldsymbol{x}=(0,0,1,0)$, as it would be for the previous problem.
(d) $\boldsymbol{b}=(-1,0)$ yields no solutions, lying outside the union of all the sectors.
- Most importantly, the equation $x_{1}+x_{2}+x_{3}+0 x_{4}=b_{2}, \boldsymbol{x} \geq 0$ tells us that if $b_{2}<0$, there are no solutions, and if $b_{2} \geq 0$, each $x_{1,2,3}$ is bounded by b_{2}. Although the feasible set is not bounded (x_{4} may go to infinity), this LP is not unbounded, as long as x_{4} does not appear in the objective function.
So to minimise x_{1}, with $\boldsymbol{b}=(7,0)$, check the three BFSs, corresponding to it: the minimum value 0 is supplied by either $\boldsymbol{x}^{1}=(0,7,0,0)$ or $\boldsymbol{x}^{2}=(0,0,7,7)$. So, we are in the alternative optima case. Then any $\boldsymbol{x}=\lambda \boldsymbol{x}^{1}+\left(1-\lambda \boldsymbol{x}^{2}\right)$ for $0<\lambda<1$ would also be an optimal, but non-basic solution.
- To maximize x_{2}, with $\boldsymbol{b}=(1,1)$, inspecting the three BFSs above, corresponding to it, one sees that the unique optimal solution is $\boldsymbol{x}=(0,1,0,1)$.

Figure 2: Illustration for Problems 4,5
5. $\boldsymbol{x}=\sum_{k=1}^{N} \theta_{k} \boldsymbol{x}^{k}$, where for all $k=1,2, \ldots, N, 0 \leq \theta_{k} \leq 1$ and $\sum_{k=1}^{N} \theta_{k}=1$, where $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{N}$ list all the BFSs of $A \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq 0$. Compute the quantity $A \boldsymbol{x}$:

$$
A \boldsymbol{x}=A \sum_{k=1}^{N} \theta_{k} \boldsymbol{x}^{k}=\sum_{k=1}^{N} \theta_{k}\left(A \boldsymbol{x}^{k}\right)=\left(\sum_{k=1}^{N} \theta_{k}\right) \boldsymbol{b}=\boldsymbol{b}
$$

So \boldsymbol{x} is feasible indeed, as one clearly has $\boldsymbol{x} \geq 0$..
6. (a) Initial tableau, the columns labeled by $\left(z, x_{1}, \ldots, x_{5}\right.$, Val) (for value).

$$
T 0=\left[\begin{array}{rrrrrrr}
0 & -1 & 2 & 1 & 0 & 0 & 4 \\
0 & 3 & 2 & 0 & 1 & 0 & 14 \\
0 & \mathbf{1} & -1 & 0 & 0 & 1 & 3 \\
1 & -3 & -2 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Pivot $T 0_{32}$:

$$
T 1:=\left[\begin{array}{rrrrrcc}
0 & 0 & 1 & 1 & 0 & 1 & 7 \\
0 & 0 & \mathbf{1} & 0 & \frac{1}{5} & \frac{-3}{5} & 1 \\
0 & 1 & -1 & 0 & 0 & 1 & 3 \\
1 & 0 & -5 & 0 & 0 & 3 & 9
\end{array}\right]
$$

Pivot $T 1_{23}$:

$$
T 2=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 1 & \frac{-1}{5} & \frac{8}{5} & 6 \\
0 & 0 & 1 & 0 & \frac{1}{5} & \frac{-3}{5} & 1 \\
0 & 1 & 0 & 0 & \frac{1}{5} & \frac{2}{5} & 4 \\
1 & 0 & 0 & 0 & 1 & 0 & 14
\end{array}\right]
$$

Optimal value $z=14$, achieved by $x_{4}=0, x_{1}=4-.4 x_{5}, x_{2}=1+.6 x_{5}, x_{3}=6-1.6 x_{5}, 0 \leq$ $x_{5} \leq 3.75$: multiple solutions.
(b) Initial tableau, the columns labeled by $\left(z, x_{1}, \ldots, x_{5}, \mathrm{Val}\right)$.

$$
T 0=\left[\begin{array}{rrrrrrr}
0 & 3 & 1 & 0 & 1 & 0 & 18 \\
0 & 0 & \mathbf{2} & 1 & 0 & 1 & 7 \\
1 & -2 & 8 & 5 & 0 & 0 & 0
\end{array}\right]
$$

Pivot $T 0_{23}$:

$$
T 1=\left[\begin{array}{ccccccc}
0 & 3 & 0 & \frac{-1}{2} & 1 & \frac{-1}{2} & \frac{29}{2} \\
0 & 0 & 1 & \frac{\mathbf{1}}{\mathbf{2}} & 0 & \frac{1}{2} & \frac{7}{2} \\
1 & -2 & 0 & 1 & 0 & -4 & -28
\end{array}\right]
$$

Pivot $T 2_{24}$:

$$
T 2=\left[\begin{array}{rrrrrrr}
0 & 3 & 1 & 0 & 1 & 0 & 18 \\
0 & 0 & 2 & 1 & 0 & 1 & 7 \\
1 & -2 & -2 & 0 & 0 & -5 & -35
\end{array}\right]
$$

Optimal value -35 , with a $\operatorname{BOS} x_{4}=18, x_{3}=7, x_{1}=x_{2}=x_{5}=0$. Note: pivoting $T 0_{24}$ in the original tableau would have completed the procedure in one step, as x_{3} had a reduced cost 8 , with a minimum ratio 3.5 , while x_{4} had a minimum ratio 7 with reduced cost 5 , i.e. 7 units of x_{4} reduce the cost by more than 3.5 units of x_{3}.

