Problem Sheet 3 Solutions

1. See Figure 1. Answers: (a) unique minimum (1/2, 0), value 1/2; (b),(d) unbounded; (c) unfeasible; (e) alternative maxima P = (12, 0) and Q = (0, 14) and any point $S = \lambda P + (1 - \lambda)Q$, $0 < \lambda < 1$ in between, value 84.

Figure 1: Figures for Problem 1

- 2. The canonical forms are
 - (a) Minimise $u \tilde{v}$ subject to $2u 3\tilde{v} s_1 = 1$, $u + \tilde{v} s_2 = 0$; $u, \tilde{v}, s_1, s_2 \ge 0$. Above, $\tilde{v} = -v, s_1, s_2$ excess variables.
 - (b) Maximise $3 + \tilde{u} \tilde{v}$ subject to $-2\tilde{u} + 3\tilde{v} + s_1 = 7$, $\tilde{u} + \tilde{v} s_2 = 1$; $\tilde{u}, \tilde{v}, s_1, s_2 \ge 0$. Above, $\tilde{u} = u - 1$, $\tilde{v} = 2 - v$, s_1 - a slack and s_2 - an excess variable.
 - (c) Minimise $-\tilde{u}+x-y$ subject to $-2\tilde{u}+5x-5y-s_1=1$, $\tilde{u}+x-y+s_2=0$; $\tilde{u}, x, y, s_1, s_2 \ge 0$. Above, $\tilde{u}=-u$, v=x-y, s_1 an excess and s_2 a slack variable.

OPT2

- (d) Minimise $-\tilde{u} + v$ subject to $v + 2\tilde{u} s_1 = 2$, $\tilde{u} + 2v s_2 = 2$; $\tilde{u}, v, s_1, s_2 \ge 0$. Above, $\tilde{u} = -u, s_1, s_2$ excess variables.
- (e) Maximise 7a 7b + 6c 6d subject to $7a 7b + 2c 2d s_1 = 28$, $a b + 6c 6d s_2 = 12$, $14a 14b + 12c 12d + s_3 = 168$; $a, b, c, d, s_1, s_2, s_3 \ge 0$. Above, u = a b, v = c d, s_1, s_2 excess variables, s_3 a slack variable.
- 3. Let $A = [a^1 a^2 a^3]$.
 - Basic solutions:
 - b = (2,0): no solution, b = (3,3): x = (3,0,0),
 - $\boldsymbol{b} = (3,6): \boldsymbol{x} = (3,3,0) \text{ or } \boldsymbol{x} = (4.5,0,1.5), \boldsymbol{b} = (6,3): \text{ no solution},$

 $\boldsymbol{b} = (-2; 4): \ \boldsymbol{x} = (0, 3, 3) \text{ or } \boldsymbol{x} = (1, 0, 3), \quad \boldsymbol{b} = (0, 7): \ \boldsymbol{x} = (0, 7, 0) \text{ or } \boldsymbol{x} = (3.5, 0, 3.5),$

b = (-5, -5): no solution.

See Figure 2.

Feasible solutions will exist only for those \boldsymbol{b} , which lie within the shaded region on the plane. Indeed, given a pair of vectors $(\boldsymbol{a}^{\alpha}, \boldsymbol{a}^{\beta})$, representing a pair of columns of A, the basic solution $x_{\alpha}\boldsymbol{a}^{\alpha} + x_{\beta}\boldsymbol{a}^{\beta} = \boldsymbol{b}$, depending on these columns, with $x_{\alpha,\beta} \geq 0$ will exist if and only if \boldsymbol{b} lies within a sector of the plane, bounded by the rays in the directions of \boldsymbol{a}^{α} and \boldsymbol{a}^{β} . Then, the values of $\boldsymbol{b} = (2,0), (6,3), (-5,5)$ will not have feasible solutions, as they are outside the union of all the feasible sectors. On the other hand, $\boldsymbol{b} = (3,3)$ lies only in the sector spanned by $(\boldsymbol{a}^1, \boldsymbol{a}^2)$ (on the boundary) hence there is a unique BFS, corresponding to it. The values of $\boldsymbol{b} = (3,6), (-2,4)$ each belong to two sectors simultaneously, hence there are two corresponding different BFSs. Finally, $\boldsymbol{b} = (0,7)$ lies in all the three sectors (spanned by the pairs $\boldsymbol{a}^{1,2}, \boldsymbol{a}^{2,3}$ and $\boldsymbol{a}^{1,3}$). However, due to the degeneracy of the intersection of the first two sectors, which is only the vertical line, whereupon there sits the point $\boldsymbol{b} = (0,7)$, there are only two (rather than three) BFSs, corresponding to this value of \boldsymbol{b} .

Note that $\boldsymbol{b} = (3,3)$ and (0,7) do not satisfy the non-degeneracy assumption, introduced in class: they can be expressed as linear combinations of *less than two* (namely one) columns of A.

- Most importantly, the equation x₁ + x₂ + x₃ = b₂, x ≥ 0 tells us that if b₂ < 0, there are no solutions, and if b₂ ≥ 0, each x_j is bounded by b₂. Hence, the feasible set is bounded, and therefore the LP is not unbounded, i.e. has optimal solutions (if it is feasible). So, to minimise x₂ x₃, for b = (0,7) it is enough to compare the former value for the pair of BFSs, corresponding to this b. Clearly, x = (3.5, 0, 3.5) makes x₂ x₃ smaller (value -3.5) than x = (0,7,0) (value 7).
- 4. Let $A = [a^1 \ a^2 \ a^3 \ a^4]$. It's the same as for the previous problem with the extra column $a^4 = (1,0)$.
 - The shaded region for the previous problem in Figure 2, plus an additional sector spanned by the pair of vectors (a^4, a^1) .
 - BFSs for different values of **b**:

- (a) $\boldsymbol{b} = (0,7)$, apart from the solutions in Problem 4 (extended to four components by letting $x_4 = 0$), also acquires a BFS $\boldsymbol{x} = (0,0,7,7)$.
- (b) $\boldsymbol{b} = (1, 1)$, apart from the solution (1, 0, 0, 0), also acquires BFSs $\boldsymbol{x} = (0, 1, 0, 1)$ and $\boldsymbol{x} = (0, 0, 1, 2)$.
- (c) $\boldsymbol{b} = (-1, 1)$ yields a unique BFS $\boldsymbol{x} = (0, 0, 1, 0)$, as it would be for the previous problem.
- (d) $\boldsymbol{b} = (-1, 0)$ yields no solutions, lying outside the union of all the sectors.
- Most importantly, the equation $x_1 + x_2 + x_3 + 0x_4 = b_2$, $x \ge 0$ tells us that if $b_2 < 0$, there are no solutions, and if $b_2 \ge 0$, each $x_{1,2,3}$ is bounded by b_2 . Although the feasible set is not bounded (x_4 may go to infinity), this LP is not unbounded, as long as x_4 does not appear in the objective function.

So to minimise x_1 , with $\mathbf{b} = (7,0)$, check the three BFSs, corresponding to it: the minimum value 0 is supplied by either $\mathbf{x}^1 = (0,7,0,0)$ or $\mathbf{x}^2 = (0,0,7,7)$. So, we are in the alternative optima case. Then any $\mathbf{x} = \lambda \mathbf{x}^1 + (1 - \lambda \mathbf{x}^2)$ for $0 < \lambda < 1$ would also be an optimal, but non-basic solution.

• To maximize x_2 , with $\boldsymbol{b} = (1, 1)$, inspecting the three BFSs above, corresponding to it, one sees that the unique optimal solution is $\boldsymbol{x} = (0, 1, 0, 1)$.

Figure 2: Illustration for Problems 4,5

5. $\boldsymbol{x} = \sum_{k=1}^{N} \theta_k \boldsymbol{x}^k$, where for all k = 1, 2, ..., N, $0 \le \theta_k \le 1$ and $\sum_{k=1}^{N} \theta_k = 1$, where $\boldsymbol{x}^1, \boldsymbol{x}^2, ..., \boldsymbol{x}^N$ list all the BFSs of $A\boldsymbol{x} = \boldsymbol{b}, \ \boldsymbol{x} \ge 0$. Compute the quantity $A\boldsymbol{x}$:

$$A\boldsymbol{x} = A\sum_{k=1}^{N} \theta_k \boldsymbol{x}^k = \sum_{k=1}^{N} \theta_k (A\boldsymbol{x}^k) = \left(\sum_{k=1}^{N} \theta_k\right) \boldsymbol{b} = \boldsymbol{b}.$$

So \boldsymbol{x} is feasible indeed, as one clearly has $\boldsymbol{x} \geq 0$..

6. (a) Initial tableau, the columns labeled by $(z, x_1, \ldots, x_5, \text{Val})$ (for *value*).

$$T0 = \begin{bmatrix} 0 & -1 & 2 & 1 & 0 & 0 & 4 \\ 0 & 3 & 2 & 0 & 1 & 0 & 14 \\ 0 & \mathbf{1} & -1 & 0 & 0 & 1 & 3 \\ 1 & -3 & -2 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Pivot $T0_{32}$:

$$T1 := \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 1 & 7 \\ 0 & 0 & 1 & 0 & \frac{1}{5} & \frac{-3}{5} & 1 \\ 0 & 1 & -1 & 0 & 0 & 1 & 3 \\ 1 & 0 & -5 & 0 & 0 & 3 & 9 \end{bmatrix}$$

Pivot $T1_{23}$:

$$T2 = \begin{bmatrix} 0 & 0 & 0 & 1 & \frac{-1}{5} & \frac{8}{5} & 6 \\ 0 & 0 & 1 & 0 & \frac{1}{5} & \frac{-3}{5} & 1 \\ 0 & 1 & 0 & 0 & \frac{1}{5} & \frac{2}{5} & 4 \\ 1 & 0 & 0 & 0 & 1 & 0 & 14 \end{bmatrix}$$

Optimal value z = 14, achieved by $x_4 = 0$, $x_1 = 4 - .4x_5$, $x_2 = 1 + .6x_5$, $x_3 = 6 - 1.6x_5$, $0 \le x_5 \le 3.75$: multiple solutions.

(b) Initial tableau, the columns labeled by $(z, x_1, \ldots, x_5, \text{Val})$.

	0	3	1	0	1	0	18
T0 =	0	0	2	1	0	1	7
T0 =	1	-2	8	5	0	0	0

Pivot $T0_{23}$:

$$T1 = \begin{bmatrix} 0 & 3 & 0 & \frac{-1}{2} & 1 & \frac{-1}{2} & \frac{29}{2} \\ 0 & 0 & 1 & \frac{1}{2} & 0 & \frac{1}{2} & \frac{7}{2} \\ 1 & -2 & 0 & 1 & 0 & -4 & -28 \end{bmatrix}$$

Pivot $T2_{24}$:

$$T2 = \begin{bmatrix} 0 & 3 & 1 & 0 & 1 & 0 & 18 \\ 0 & 0 & 2 & 1 & 0 & 1 & 7 \\ 1 & -2 & -2 & 0 & 0 & -5 & -35 \end{bmatrix}$$

Optimal value -35, with a BOS $x_4 = 18$, $x_3 = 7$, $x_1 = x_2 = x_5 = 0$. Note: pivoting $T0_{24}$ in the original tableau would have completed the procedure in one step, as x_3 had a reduced cost 8, with a minimum ratio 3.5, while x_4 had a minimum ratio 7 with reduced cost 5, i.e. 7 units of x_4 reduce the cost by more than 3.5 units of x_3 .