
OPT Problem Sheet 5 Solutions

Duality and Sensitivity.

1. (a) False. c does not affect feasibility of Ax = b, x ≥ 0.

(b) True. The solution y = A−T
B cB is still feasible for the dual, so the basis remains optimal for the

primal, as long as it stays feasible.

(c) True. By weak duality. The value of the dual is always ≥ the value of the primal, for any pair
of feasible solutions (x, y) for the pair (Primal, Dual). So. if the values are equal, both must be
optimal.

2. This is just a matter of terminology. Reduced costs are slacks in the dual constraints, corresponding to
the slack variables introduced into the MP. These slacks equal the solution y of the dual. Namely,

MP: max c · x, Ax ≤ b, x ∈ Rn
+, b ∈ Rm.

Add slack variable s ∈ Rm
+ . Let x̃ = (x, s), Ã = [A I], c̃ = (c, 0), where I is m ×m identity matrix.

Canonical form:
Ãx̃ = b, x̃ ∈ Rn+m

+ , max c̃ · x̃.

Dual: ÃT y ≥ c̃, min b · y. The group of the dual inequalities, corresponding to the identity I in
Ã = [A I] simply reads y ≥ 0. This holds for any feasible solution y of the dual.

Now, by definition, if y is the optimal solution for the dual, then the difference between the left and
right-hand sides in the dual inequalities is called the reduced cost of the corresponding primal variable.
On the other hand, y itself has the dimension of b, i.e. the constraints’ vector, and y is called the
shadow price of the constraints. So the two notions – reduced cost of the slack variables, which is y−0
and the shadow price, which is y itself, coincide. In particular, if at the end of the day one of the slack
variables is basic, i.e. nonzero, so the corresponding inequality is realised with a slack, then its shadow
price equals zero (being the reduced cost of a basic variable).

Note: You can relate this to the dual simplex method: if there is a ≤ constraint, its slack variable
would invariably be basic for the initial tableau, as the corresponding column in the initial tableau will
invariably be the column of the identity matrix. The shadow price if the constraint will be what one
ends up having in the objective row in this column after the final tableau has been obtained.

As for the ≥ constraints, the reduced cost of the corresponding excess variable is NOT generally equal
to the constraint’s shadow price (see e.g. problem 1(a) in the first group). Instead, one has to read
out of the final tableau the objective row entry from the column, which in the original tableau was
the corresponding column of the unit matrix (this column would often be represented by an artificial
variable that one would keep track of, despite switching from Phase I to Phase II).

In other words, the shadow price of the ith constraint in the dual simplex method is given by the final
tableau objective row entry in the row that used to be the ith row of the identity matrix in the original
tableau.

3. MP: max c · x, Ax ≤ b, x ∈ Rn
+, b ∈ Rm.

Add slack variable s ∈ Rm
+ . Let x̃ = (x, s), Ã = [A I], c̃ = (c, 0), where I is m ×m identity matrix.

Canonical form:
Ãx̃ = b, x̃ ∈ Rn+m

+ , max c̃ · x̃.

Dual: ÃT y ≥ c̃, min b · y. Using the above form of Ã and c̃, the dual feasibility boils down to
AT y ≥ c, y ≥ 0, with the same objective min b · y.

DP: min c · x, Ax ≥ b, x ∈ Rn
+, b ∈ Rm.

Add excess variable e ∈ Rm
+ . Let x̃ = (x, e), Ã = [A − I], c̃ = (−c, 0). Canonical form:

Ãx̃ = b, x̃ ∈ Rn+m
+ , max c̃ · x̃.
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Dual: ÃT y ≥ c̃, min b · y. Using the above form of Ã and c̃, the dual feasibility boils down to
AT y ≥ −c, y ≤ 0. So, change y to −y, then the dual is AT y ≤ c, y ≥ 0, with the same objective
max b · y.

4. Write the dual min b · y, AT y ≥ c, y ∈ Rm, c ∈ Rn as canonical form by changing min b · y to
max − b · y, writing y = u− v, and adding the excess variable e:

max − b · u + b · v + 0 · e, AT u−AT v − Ie = c, u, v ∈ Rm
+ , e ∈ Rn

+,

where I is n× n identity matrix. The dual to this canonical form is

min c · z, Az ≥ −b, −Az ≥ b, −z ≥ 0.

Let now z = −x to get back the primal canonical form

max c · x, Ax = b, x ≥ 0.

5. Introduce a slack variable x6 and excess variable x7, put the problem into canonical form, with the
3× 7 matrix A. Check that the given solution implies x6 = x7 = 0.

Now consider the dual inequalities as equations for the basic components. The number of unknowns
should be the number of constraints, the coefficients in the system of equations in each equation -
simply the coefficients in the basic columns of A. The right-hand side are the basic components of
c = (1, 2, 3,−2, 8, 0, 0). I.e. solve the system of equations

y1 − y2 + 3y3 = 1,−y1 + 3y2 + y3 = 3, 2y1 + y2 − 2y3 = 8,

with the unknowns (y1, y2, y3). This results in a solution (y1, y2, y3) = (3, 2, 0).

Now check optimality of x = (2.75, 0, 4.75, 0, 4.5, 0, 0), i.e. whether the solution found satisfies the dual
inequalities, for the free components of A. These inequalities are:

3y1 − y2 + 2y3 ≥ 1, 2y1 − y3 ≥ −2, y2 ≥ 0, y3 ≤ 0.

They are clearly satisfied by the above (y1, y2, y3) = (3, 2, 0).

Conclusion: the solution x of the primal is optimal, the shadow prices of the constraints are (y1, y2, y3) =
(3, 2, 0), the reduced costs of the free variables (x2, x4) equal (6, 6) (the margin in the corresponding
free dual inequalities), and of (x5, x6) are (2, 0). Note that the reduced cost of a slack variable is always
non-negative and equal to the shadow price of the underlying constraint; for an excess variable its
reduced cost is always non-positive and equal to the shadow price of the underlying constraint.

6. See solutions to set 4.

Geometry of LP

1. Interior: {(x, y) : x2 + y2 > 1}, boundary {(x, y) : x2 + y2 = 1}. There are at least two ways to prove
that the set X = {(x, y) : x2 + y2 ≥ 1} is closed.

First way: prove that its complement Xc = {(x, y) : x2+y2 < 1} is open. I.e., for any (x, y) : x2+y2 < 1
show that there is a small disk around (x, y) which is fully contained in Xc. This is certainly true: for
any (x, y) ∈ Xc let δ = 1 − (x2 + y2). Then 1 ≥ δ > 0, and now take the disk around (x, y) with the
radius δ/100. Then this disk lies fully in Xc, as

(x± δ/100)2 + (y ± δ/100)2 ≤ 1− δ + δ/25 + δ2/5000 < 1.

Second way – the limit point argument. Prove that any for any sequence (xn, yn), converging to (x, y),
and such that ∀n, x2

n +y2
n ≥ 1, the same is true for (x, y). This follows from general properties of limits.

Let an = x2
n + y2

n. Then a = lim an = x2 + y2. And as every an ≥ 1, then a ≥ 1.

2. The set of all limit points is the closure of the set, i.e. {(x, y) : x2 − y2 ≥ 1}.
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3. Closure: the whole unit circle. Interior: empty – there is no open disk contained in the unit circle.
Boundary=closure\interior=the whole unit circle.

Note: to prove the fact that the closure is the whole unit circle is a bit tricky, and you need to use
irrationality of 2π for that, as well as compactness of the circle. Indeed, let Pn be the point on the unit
circle, the member of the sequence. We have to prove that for any point P on the unit circle, there is
some Pn arbitrarily close to P . Suppose, this is not true. Then there is a P on the unit circle and some
interval G around P , with no points of the sequence {Pn} inside this interval. Call such an interval a
gap. Now, of all gaps take the largest, call it G0. If G0 is a gap, then G0, rotated by the angle 1 is
also a gap. Call it G1. Rotate again – get the gap G2, and so on. If you do it many enough times,
there are two options. The first one is that for some N , G0 = GN , i.e. after rotating the gap N times,
it has come back straight onto itself. This is impossible, however, because it would mean that 2π is a
rational number. So, the gap would never come back exactly onto itself. But then, for large enough
N , the gaps G0 and GN will overlap, thus creating a bigger gap, whose size is strictly greater than the
size of G0, which is a contradiction with how G0 has been chosen.

4. The closure of X is: (i) the set of all limit points of X, and (ii) the smallest (in the sense of set-theoretical
inclusion) closed set, containing X.

Let’s first prove that there is no closed X ′ containing X which is smaller than the set of all limit points
of X. Indeed, otherwise X ′ contains X, but does not contain some limit point P of X. The complement
of X ′ is open, so X ′ also does not contain some open neighbourhood of P , of radius, say δ. But then
P cannot be a limit point of X, because no point of X gets closer than the distance δ to P .

Now let’s show that the set of all limit points of X is actually closed then. Take the closure X̄ of X as
the smallest closed set containing X. We already know now that it should contain all the limit points
of X. If it contains anything else, i.e. some point P which is not a limit point of X, then once again
there is a little open ball B(P, δ) of radius δ around P , containing no points of X. Let B̄(P, δ/2) be the
closed ball centered at P , of radius δ/2. Then X ′ = X̄ \ B̄(P, δ/2) is a closed set, and we have proper
inclusions X ⊂ X ′ ⊂ X̄. This violates the premise that X̄ is the smallest closed set containing X.

5. Take two points with radius vectors r1 = (x1, y1, z1) and r2 = (x2, y2, z2). A point between them has
a radius vector r = θr1 + (1 − θ)r2 = (θx1 + (1 − θ)x2, θy1 + (1 − θ)y2, θz1 + (1 − θ)z2). Check that
it is inside the set, that is |θx1 + (1 − θ)x2| + |θy1 + (1 − θ)y2| + |θz1 + (1 − θ)z2| < 3. To do this use
|a + b| ≤ |a|+ |b|, so

|θx1 + (1− θ)x2|+ |θy1 + (1− θ)y2|+ |θz1 + (1− θ)z2| ≤
θ(|x1|+ |y1|+ |z1|) + (1− θ)(|x2|+ |y2|+ |z2|) < 3(θ + (1− θ)) = 3.

6. Take two points with radius vectors r1 = (x1, y1) and r2 = (x2, y2). A point between them has a radius
vector r = θr1 +(1−θ)r2 = (θx1 +(1−θ)x2, θy1 +(1−θ)y2). It is inside the circle if ‖r‖ =

√
r · r ≤ 1.

Compute it (this is essentially the theorem of cosines):

r · r = θ2r1 · r1 + (1− θ)2r2 · r2 + 2θ(1− θ)r1 · r2 ≤ θ2‖r1‖2 + (1− θ)2‖r2‖2 + 2θ(1− θ)‖r1‖|r2‖,
as |r1 · r2| ≤ ‖r1‖|r2‖. Continue: the right hand side equals (θ‖r1‖ + (1 − θ)‖r2‖)2. Thus, as
‖r1‖, ‖r2‖ ≤ 1, one has ‖r‖ ≤ θ + (1− θ) = 1. Done.

7. The set |x|+ |y|+ |z| < 3 has no extreme points, because it is open, so at its each point one can centre
a small enough ball, an therefore a short enough line segment, all contained in the set. If the inequality
were not strict, the extreme points would be the eight corners – whenever two out of (x, y, z) are zero
and one is ±3.

For the circle x2 + y2 ≤ 1, all the boundary points of the circle are extreme points – by definition.

8. (a) False. Counterexample: take the union of two intersecting lines.

(b) True. For any pair of points in the intersection, a line segment connecting them belongs to each of
the sets, forming the intersection. Then it belongs to the intersection of these sets, by definition
of the set intersection.
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(c) True. If x1 ≥ 0 and x2 ≥ 0 (component-wise), then θx1 + (1− θ)x2 ≥ 0, for 0 ≤ θ ≤ 1.

(d) True. A point y ∈ Rm belongs to CA if and only if has a pre-image in Cn, namely if there
exists x ∈ Cn, such that y = Ax. If y1, y2 ∈ CA, then there exist x1,x2 ∈ Cn, such that
yk = Axk, k = 1, 2. Then a point θx1 + (1 − θ)x2 ∈ Cn (the set Cn is convex) is a pre-image of
y = θy1 + (1− θ)y2, therefore y ∈ CA.

(e) True: A[θx1 + (1− θ)x2] = θAx1 + (1− θ)Ax2 = b.

(f) Convex: Take any y1, y2 ∈ Y . Then y1 = Ax1, y2 = Ax2, for some x1,2 ∈ X. Any point
yθ = θy1 + (1− θ)y2 between y1 and y2 then arises as

yθ = θAx1 + (1− θ)Ax2 = A[θx1 + (1− θ)x2] ≡ Axθ.

As X is convex, xθ ∈ X, and therefore yθ ∈ Y , because we’ve found a pre-image xθ ∈ X for it.
Closed – a bit tricky. Take any convergent sequence {yn} in Y , such that lim yn = y. Y will be
closed if y ∈ Y , i.e. for some x, y = Ax. As for each yn – we know it: yn = Axn for some
xn ∈ X. So, if the sequence xn has a limit point x, in X, we will have found a pre-image x for y,
so y = Ax and be done. But what if {xn} has no limit point?
Consider the set K of all x ∈ Rn such that Ax = 0. This set is a linear subspace of Rn, and for
every xn we can write xn = xn

K + xn
⊥, where xn

K ∈ K and the vector xn
⊥ is normal to K. Then,

by linearity, Axn = Axn
⊥. Let K⊥ be a subspace of Rn, consisting of all vectors orthogonal to

K, so each xn
⊥ ∈ K⊥. Let us denote S⊥ all vectors from K⊥ whose length equals one. Then, as

the set S⊥ is closed and bounded, for any d ∈ K⊥, the length ‖Ad‖ ≥ ε > 0, for some positive
number ε, because otherwise would imply that S⊥ contains a vector from K, which cannot be.
Now we can conclude the sequence xn

⊥ is bounded, for otherwise we could find an xn
⊥ of arbitrary

large length L, and then the length of yn = Axn
⊥ would be at least Lε, with L going to ∞. But

the limit y = lim xn
⊥ is finite, so it has finite length. Therefore, the sequence xn

⊥, being bounded,
must have a limit point x⊥. It is in X ∩K⊥, as X is closed, as well as K⊥, and now y = Ax⊥,
so Y is closed.
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