
OPT 2 Problem Sheet 6 Solutions

Convexity and Farkas

1. In this example both sets X,Y are unbounded, and the infimum of the distance between points of
X, Y is zero. The role of the separating hyperplane is now played by the line y = x. Hence, a safe
restatement of the theorem should be: if X, Y are two disjoint, close and convex sets, there is a
hyperplane n · x = α, such that for all x ∈ X, n · x ≥ α, for all y ∈ Y , n · y ≤ α.

2. (a) By definition of a convex set, if y1 =
∑

θix
i, y2 =

∑
ηix

i, then the convex combination

λy1 + (1− λ)y2 =
∑

(λθi + (1− λ)ηi)xi,

and all the coefficients (λθi + (1− λ)ηi) ≥ 0 and sum up to 1:
∑

(λθi + (1− λ)ηi) = λ · 1 + (1− λ) · 1 = 1.

So, a convex hull is a convex set.

(b) Two points: line segment, three points not on the same line - a triangle, etc. Four points, not
on the same line: either a quadrangle or a triangle (if one of the points lies in the convex hull
of the remaining three).

(c) For two points: s = 2, θ2 = (1− θ1), the convex hull X is the line segment, connecting them.
Now the claim is as follows. Consider the convex hull X ′ of s− 1 points x2, . . . ,xs. Then X
contains all the points that lie between x1 and some point x′ ∈ X ′, including the endpoints.
Proof: Let x = θ1x

1 + θ2x
2 + . . . θsx

s. Then θ2 + . . . + θs = 1− θ1. If θ1 = 1, then x = x1.
If θ1 = 0, then x ∈ X ′. If θ1 ∈ (0, 1), do the following:

x = θ1x
1 + (1− θ1)

[
θ2

1− θ1
x2 + . . . +

θs

1− θ1
xs

]
.

Notice that
θ2

1− θ1
+

θ3

1− θ1
+ . . . +

θs

1− θ1
= 1, so in square brackets one has some x′ ∈ X ′.

(d) Use (iii) and induction. For the convex hull of two distinct points, they are extreme points,
the endpoints of the line segment. Assume the statement for the convex hull of s− 1 points.
When the sth point is added, it will only become an extreme point, provided that it does not
lie in the convex hull of the first s− 1 points. If it does, nothing happens. Otherwise, it is the
only extra extreme point added, although there may be a situation when one of the extreme
points of the convex hull of the first s− 1 points will thereafter cease beng an extreme point.
IN any case, there are no extreme points but “our” points.

3. Add slack variables s ≥ 0, so with Ã = [A, I] and x̃ = (x, s), the primal, or positive Farkas
alternative becomes Ãx̃ = b has a solution x̃ ≥ 0. The dual, or negative, side of the alternative
is then ∃n : n · b < 0 and ÃT n ≥ 0. The latter condition means that AT n ≥ 0 and n ≥ 0. So,
similar to LP duality, the condition n ≥ 0 gets added to the Farkas alternative for ≥ inequalities.
If the condition x ≥ 0 is dropped, then one has to replace x = u−v, where u, v ≥ 0. This means,
A gets replaced by [A − A], so on the dual Farkas side AT n ≥ 0 gets replaced by AT n ≥ 0 and
(−A)T n ≥ 0, i.e. AT n = 0.
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4. If Ax = 0, x 6= 0, where A ∈ Rm×n. We can assume that x1+x2+ . . .+xn = 1, because x is defined
up to a positive multiple. Then let Ã be obtained from A by adding an extra row [1 1 . . . 1], and
let b̃ ∈ Rm+1 arise from b = 0 by adding an extra component equal to one. The positive side of
Farkas is now Ãx = b̃ has a solution x ≥ 0. The opposite side is: there exists n ∈ Rm+1, such
that n · b̃ < 0 and ÃT n ≥ 0. Denote ñ = (y, r), where y ∈ Rm, r ∈ R. It follows that

y · 0 + r < 0, AT y ≥ −r1,

where 1 is a vector in Rn, whose every component equals 1. So, the alternative becomes ∃y such
that AT y > 0.

5. See the handout on Farkas, the asset pricing example. Anyway, here is the solution.

Observe that the condition of positivity of some component (Ax)i and non-negativity of the rest of
the components, as x there is defined up to a positive multiplier, can be interpreted as e ·Ax = 1,
where e = (1, . . . , 1) ∈ Rm+1. Now, as x ≥ 0 is not required, we have to let x = u − v, with
u, v ∈ Rn

+. In addition, the condition Ax ≥ 0 is equivalent to Ax−Is = 0, where s ∈ Rm+1
+ and I is

the identity matrix. Putting it all together, the front side of the Farkas alternative, corresponding
is Ãw = b has a solution w ≥ 0, with w = (u, v, s) ∈ R2n+(m+1)

+ , b = (1,0) ∈ R1+m, and

Ã =
(

eT A −eT A 0
A −A −I

)
.

The opposite side of Farkas is: there exists n = (z, y) ∈ R1+m, such that z < 0 and




zAT e + AT y ≥ 0,
−zAT e−AT y ≥ 0,
y ≤ 0.

This means −AT (y + ze) = 0, with y ≤ 0, z < 0. Changing y to −(y + ze) > 0 now proves the
claim.

Zero-sum two-person games

1. Find optimal strategies for the games with the following payoff matrices:

(i)
(

5 −9
−7 4

)
, (ii)

(
2 1 −1

−1 −2 3

)
.

As the games are small, avoid doing the simplex method for the underlying LPs, solving them e.g.
graphically (or just guessing) and then using complementary slackness to solve the dual and verify
optimality.

Solutions: (i) Add 10 to each entry of A to get

Ã =
(

15 1
3 14

)
,

now consider the problem for the row player: ÃT x ≤ 1, max x1 + x2 i.e. x ≥ 1, 15x1 + 3x2 ≤ 1,
x1 + 14x2 ≤ 1. Optimal solution is when both constraints are tight: x1 = 11/207, x2 = 14/207,
so the optimal strategy q = x

x1+x2
, i.e. q1 = 11/(11 + 14) = 11/25, q2 = 14/25. The value of the

game is V = −10 + 1
x1+x2

= −43/25.
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For the column player we have (tight) dual constraints 15y1 + y2 = 1, 3y1 + 14y2 = 1, so y1 =
13/207, y2 = 12/207, thus p1 = 13/25, p2 = 12/25.

(ii) To simplify the solutions, observe that the column player should never paly the second pure
strategy, because it is always worse for him than the first one. In other words, p2 = 0. This
observation is not necessary, but saves some work. (Equivalently, if this is not used, the second
dual constraint in the following row player’s LP A′y ≤ 1, max y1 + y2 will be slack, and therefore
p2 = 0). So, we are in fact dealing with the payoff matrix

A =
(

2 −1
−1 3

)
, Ã =

(
4 1
1 5

)

after adding 2 to each entry, and all it really takes is to solve ÃT x ≤ 1 for the row player and
Ãy ≥ 1 for the column one, where the constraints, are, in fact, tight. So x = y = (4/19, 3/19), and
the value of the game is V = −2 + 1

4/19+3/19 = 5
7 . The best strategies are q = y

y1+y2
= (4/7, 3/7)

for the row player, and the same for the column player for the pair (p1, p3), i.e. p = (4/7, 0, 3/7).

2. (a) The payoff matrix for P as column player.

A =
( −1 2 −3

2 −3 4

)

(b) The expected payoff to P , if he plays the strategy p = (1
3 , 1

3 , 1
3) and Q plays the strategy

q = (1
2 , 1

2) is

q ·Ap =
1
6

(c) Add 4 to every element of A, get

B =
(

3 6 1
6 1 8

)

Now the problem for Q is Max y1 + y2, such that BT y ≤ 1, and the problem for P is Min
x1 + x2 + x3, such that Bx ≤ 1. Solve for Q first, then use complementary slackness.
Solve graphically. To avoid drawing pictures here, let’s do it by hand, by considering three
2× 2 systems as equalities and checking the remaining constraint:

3y1+6y2 = 1, 6y1+y2 = 1 or 6y1+y2 = 1, y1+8y2 = 1or 3y1+6y2 = 1 = 1, y1+8y2 = 1.

The first system has solution y1 = (5/33, 3/33), with the value 8/33. Does it satisfy y1+8y2 ≤
1? Yes, it does.
The second one has solution y2 = (7/47, 5/47), with the value 12/47 > 8/33. Does it satisfy
3y1 + 6y2 ≤ 1.? No, it does not.
The third system has the solution y3 = (1/9, 1/9), with the value 2/9 < 8/33.
So, the optimiser for Q, is the solution (5/33, 3/33), with the value 8/33, the constraint
y1 + 8y2 ≤ 1 being slack. Now the value of the game is −4 + 1

8/33 = 1/8. The best mixed
strategy for Q is (33

8 (5/33, 3/33) = (5/8, 3/8). The third Q’s constraint is slack, hence P
never plays the third move.
Now the problem for P is just min x1 + x2 such that 3x1 + 6x2 ≥ 1, 6x1 + 3x2 ≥ 1, with the
solution, coincidentally, (5/33, 3/33), so the best strategy for P is (5/8, 3/8, 0).
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(d) To punish Q for not playing his best strategy, but rather q = (1
2 , 1

2), P should maximize
p · (1/2,−1/2, 1/2) (the latter vector is AT q, with the given q = (1

2 , 1
2). This clearly happens

if he plays the first or the third strategy, or any combination of the two; with the expected
payoff 1

2 .

3. Optional: A variant of the Morra game (Google it!). As a single act of the game, two players
will independently show each other one or two fingers. Before this is done, each tries to guess
how many fingers the opponent will show. The payoff is zero if both players guess right or wrong.
Otherwise, the player who guessed in the wrong pays his opponent the sum equal to the total
number of fingers shown by both players.

(a) Describe the pure strategies and the payoff matrix A.
The pure strategies are pairs (S,G) (show,guess) where both G,S ∈ {1, 2}. So there
are four pure strategies, and the payoff matrix, with the rows/columns labeled by
(1, 1), (1, 2), (2, 1), (2, 2) is

A =




0 −2 3 0
2 0 0 −3
−3 0 0 4
0 3 −4 0




(b) Show that the strategy p = (0, 7/12, 5/12, 0) is optimal – use the fact the game is symmetric.
All it takes is to verify that Ap ≥ 0, as the game is symmetric, so its value is zero.

(c) Show that any strategy (0, p2, p3, 0) with 4/3 ≤ p2/p3 ≤ 3/2) is, in fact, optimal, and there
are no others.
The above solves the inequalities −2p2 + 3p3 ≥ 0, 3p2 − 4p3 ≥ 0. This is what Ap ≥ 0 boils
down to as long as p1 = p4 = 0.
On the other hand, the second and third constraints read 2p1 − 3p4 ≥ 0, −3p1 + 4p4 ≥ 0,
which is inconsistent, except p1 = p4 = 0.

(d) How much would you expect to win per game if your opponent plays a mixed strategy
(.1, .4, .3, .2)?
To punish the row player for playing a wrong strategy q, the column player should solve
max q ·Ap for p, such that

∑
pi = 1.

So the objective with q = (.1, .4, .3, .2) becomes

q ·Ap = (AT q) · p = −.1p1 + .4p2 − .5p3,

which is clearly maximised by a pure strategy p2 = 1, with the value .4.

4. Optional: A game of “hide and seek” is played as follows. Player H chooses a place to hide in
the matrix below— that is, chooses a particular entry. Player S chooses either a row or a column
in which to seek player H. The choices are made simultaneously and independently. If it turns
out that Player H is in Player S’s row or column, then Player H pays Player S x pence, where x
equals the value of the entry in which Player H is hiding; if not, Player S pays Player H 1 pence.

1 2 3
2 4 3

Identify pure strategies, set up the payoff matrix, the LP, and then get the optimal strategies using
the on-line solver. What is the value of this game?
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Solution.

Player H has pure strategies which can be labeled ij (meaning choose the entry in the ith row
and jth column). Write them in the order 11,12, 13,21,22,23. List Player S’s pure strategies as
r1,r2,c1,c2,c3. Then Player S’s payoff matrix is




1 2 3 −1 −1 −1
−1 −1 −1 2 4 3
1 −1 −1 2 −1 −1
−1 2 −1 −1 4 −1
−1 −1 3 −1 −1 3




.

Add 1 to each entry to give a matrix A′ with non-negative entries, and solve the resulting LP
online. The optimal mixed strategy for Player S is then p = 1

45(22, 12, 8, 0, 3).

with value 1/3. Likewise Player H’s optimal mixed strategy is q = 1
3(2, 0, 0, 0, 1).
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