
OPT 2 Problem Sheet 7 Solutions

Nonlinear programming: unconstrained extrema of functions of several variables.

1. f(x1, x2) = x2
1 + x1x2 + x2

2 − 3x1 − 6x2.
Gradient ∇f = (2x1 + x2 − 3, x1 + 2x2 − 6).
Critical point P = (0, 3).

Hessian D2f =
[

2 1
1 2

]
, positive definite.

So, P is a strict local (and absolute) minimizer, where f = −9.

2. f(x1, x2) = x3
1 + 3x1x

2
2 − 15x1 − 12x2.

Gradient ∇f = (3x2
1 + 3x2

2 − 15, 6x1x2 − 12).
Critical points: intersection of a circle x2

1 +x2
2 = 5 and a hyperbola x1x2 = 2, i.e. P1 = (1, 2), P2 =

(2, 1); P3 = (−1,−2), P4 = (−2,−1).

Hessian D2f = 6
[
x1 x2

x2 x1

]
. At the points P1, P3, P2, P4 respectively it is:

6
[
±1 ±2
±2 ±1

]
: saddle points; 6

[
±2 ±1
±1 ±2

]
: local min and max, with f = ∓28, respectively.

There is no global min. or max.: setting x2 = 0 makes f go to ±∞.

3. f(x1, x2) = (2x2
1 + x2

2)e−(x2
1+x2

2).

Gradient ∇f =
(

2x1(2− 2x2
1 − x2

2)e−(x2
1+x2

2), 2x2(1− 2x2
1 − x2

2)e−(x2
1+x2

2)
)
.

Critical points: P0 = (0, 0), P1 = (0, 1), P2 = (0,−1); P3 = (1, 0), P4 = (−1, 0) (note that simulta-
neously one cannot have 2− 2x2

1 − x2
2 = 0 and 1− 2x2

1 − x2
2 = 0).

Hessian D2f = e−(x2+y2)

[
4− 20x2 − 2y2 + 4x2(2x2 + y2) 4xy(2x2 + y2 − 12)
4xy(2x2 + y2 − 3) 2− 4x2 − 10y2 + 4y2(2x2 + y2)

]
.

Thus, it’s easy to check, as the non-diagonal entries vanish at each critical point, P0 is a local
minimum, with f = 0; P3 and P4 are local maxima with f = 2e−1, the rest are saddles.

As certainly we have f ≥ 0, the origin is the absolute minimum. As f is continuous and away from
the origin, due to the presence of the vanishing exponential, f → 0, P3,4 yield absolute maxima.

4. f(x1, x2, x3) = x1 +
x2

x1
+
x3

x2
+

2
x3
.

Gradient ∇f = (1− x2/x
2
1, 1/x1 − x3/x

2
2, 1/x2 − 2/x2

3).
Critical points: P1 = (− 4

√
2,
√

2,− 4
√

8), P2 = ( 4
√

2,
√

2, 4
√

8).

Hessian D2f =

 2x2/x
3
1 −1/x2

1 0
−1/x2

1 2x3/x
3
2 −1/x2

2

0 −1/x2
2 4/x3

3

 .
Evaluating the Hessian at the points P1and P2 and applying the Sylvestre criterion, one verifies
that the Hessian is negative definite at P1 and positive definite at P2, the former thus being a local
maximizer and the latter a local minimizer with the values of f = ∓4 4

√
2, respectively. Note that

the local maximum is actually smaller than the local minimum, as they occur on different branches
of f , separated by the zero values of x1, x2, x3.

In addition, it is easy to see that f can be made arbitrary large positive/negative, so absolute min.
or max. don’t exist.

5. f(x1, x2) = 2− 3

√
x2

1 + x2
2. No analysis is necessary to see that x1 = x2 = 0 is the absolute maxi-

mum, where f = 2.
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6. f(x1, x2, x3) = x1x
2
2x

3
3(1− x1 − 2x2 − 3x3), x > 0.

∇f =
(
x2

2x
3
3(1− 2x1 − 2x2 − 3x3), 2x2x1x

3
3(1− x1 − 3x2 − 3x3), 3x1x

2
2x

2
3(1− x1 − 2x2 − 4x3)

)
.

The only critical point with x > 0 is x1 = x2 = x3 = 1/7. Evaluating the Hessian at this points
shows that it is negative definite there, so this point is a maximizer, with f(1/7, 1/7, 1/7) = 7−7.

This is clearly the absolute maximum, in the domain x > 0.

7. 2x2 + 2y2 + z2 + 8yz − z + 8 = 0, for an implicit function z(x, y).
Implicit-differentiate with respect to x and with respect to y:
4x+ 2zzx + 8yzx − zx = 0 and 4y + 2zzy + 8z + 8yzy − zy = 0.
Critical points correspond to ∇z(x, y) = (zx, zy) = (0, 0), therefore x = 0 and y = −2z. Plugging
it into the equation yields z = 1,−8/7, so y = −2, 16/7, respectively.

To characterise these critical points, differentiate the above expressions once again with respect
to x and y and get: 4 + 2zxzx + 2zzxx + 8yzxx − zxx = 0, 2zyzx + 2zzxy + 8zx + 8yzxy − zxy =
0, 4 + 2zyzy + 2zzyy + 8zy + 8zy + 8yzyy − zyy = 0. Now plug in x = 0 and y = −2, 16/7, knowing
then in this case zx = zy = 0 (these are critical points!) and z = 1,−8/7 respectively. Get
zxx = zyy ± 4/15 while zxy = 0. Thus, the critical point (x, y) = (0,−2) is a local minimizer,
yielding z = 1, the critical point (x, y) = (0, 16/7) is a local maximizer, yielding z = −8/7. The
minimizer and the maximizer correspond to a pair of different branches of the surface z = z(x, y),
defined implicitly.

Convex functions

1. What convexity properties do the following functions have:

(a) f(x) = x2 − 10x+ 2, x ∈ R. Convex: f ′′ = 2 > 0.

(b) f(x) = lnx, x > 0. Concave: f ′′ = −1/x2 < 0.

(c) f(x) = ex, x ∈ R. Convex: f ′′ = ex > 0.

(d) f(x1, x2) = x2
1 + 3x2

2 − x1x2, x ∈ R2. Convex: the Hessian is positive definite.

(e) f(x1, x2, x3) = −x2
1 − x2

2 − 2x2
3 +

1
2
x1x2, x ∈ R3. Concave: the Hessian is negative definite.

2. It suffices to show that f(x, y) = ex
2+2y2

is a convex function: we know that any is sublevel set
{(x, y) : f(x, y) ≤ C} is convex for any C. Now, fxx = (2 + 4x2)ex

2+2y2
> 0, fxy = 8xyex

2+2y2
,

fyy = (4 + 16y2)ex
2+2y2

. So the Hessian, by the Sylvester criterion, is easily to be positive definite,
and f is convex.

3. True-false questions:

(a) False: a linear function is both convex and concave.

(b) True: by definition, if f(θ1x1 + θ2x2) ≤ θ1f(x1) + θ2f(x2) and g(θ1x1 + θ2x2) ≤ θ1g(x1) +
θ2g(x2), adding these two inequalities yields [f+g](θ1x1+θ2x2) ≤ θ1[f+g](x1)+θ2[f+g](x2)

(c) False in general: take f = x2 and g = x− 1 in R1 for a counterexample.

4. Inequalities problems.

(a) By convexity of f(x) = xp for p > 1 (f ′′(x) = p(p − 1)xp−2 > 0 for x > 0) and definition of
convex function. (with θ1 = θ2 = 1

2 .)

(b) By concavity of f(x) = x1/p for p > 1 (as f ′′(x) < 0 for x > 0, using the generalized definition
of convexity with θ1 = . . . = θ3 = 1/3).
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(c) Geometric mean is less than the arithmetic mean bug greater than the harmonic one (Cauchy
inequality) with four terms.

(d) Same, with five terms, using the formulae for the sum of the geometric and arithmetic pro-
gressions.

(e) By Cauchy-Shwartz inequality:
n∑

i=1

xi =
n∑

i=1

xi · 1 ≤

√√√√ n∑
i=1

x2
i

n∑
i=1

12 =

√√√√n

n∑
i=1

x2
i .

(f) Same with the Hölder inequality:

n∑
i=1

xi =
n∑

i=1

1 · xi ≤

(
n∑

i=1

1p

) 1
p

·

(
n∑

i=1

xq
i

) 1
q

= n
1
p

(
n∑

i=1

xq
i

) 1
q

.

(g) Follows from generalised Jensen’s inequality f
(∑

pixi∑
pi

)
≥
∑
pif(xi)∑
pi

for a concave f . Take

f = lnx, pi = ∆si, xi = g(si) for a partition s1, s2, . . . , sn of [0, 1] (all si ∈ (0, 1), si+1 > si),
so
∑
pi = 1. Then get

ln
(∑

g(si)∆si

)
≥
∑

ln[g(si)]∆si,

and the integral inequality in question as n→∞.

5. Let x ∈ A+A and n(x) the number of representations of x as x = a1 +a2. Given x, the number of
ordered quadruples which are (a1, a2, a3, a4) solutions of the equation x = a1 + a2 = a3 + a4 equals
n2(x), as independently x = a1 + a2 has n(x) choices and x = a3 + a4 has n(x) choices. So, the
total number of solutions of the equation a1 + a2 = a3 + a4 is∑

x∈A+A

n2(x)

By Cauchy-Schwartz (the version in (e) above) we have

|A+A|
∑

x∈A+A

n2(x) ≥

( ∑
x∈A+A

n(x)

)2

But in the right-hand side
∑

x∈A+A n(x) = N2, since this is just the total number of all ordered
pairs (a1, a2) from A – each such pair gives some sum x = a1 + a2, and then summation is taken
over all possible x.

So, in the problem’s notation we have
XE ≥ N4,

this does it.

6. Introduce the characteristic function S(x, y, z) of the set S, which equals 1 if the point (x, y, z) ∈ S
and S(x, y, z) = 0 otherwise. Let S1(x, y), S2(y, z), S3(z, x) be characteristic functions of the
projections of the set S onto the xy, yz, zx-planes, respectively. Then

S(x, y, z) ≤ S1(x, y)S2(y, z)S3(z, x).

Indeed, S(x, y, z) = 1 only if S1(x, y), S2(y, z), S3(z, x) are all equal to 1. Besides,∑
x,y,z S(x, y, z) = N . Use this and Cauchy-Scwartz applied twice:
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First, we apply it to summation in (x, y):

N ≤
∑
x,y

S1(x, y)

(∑
z

S2(y, z)S3(z, x)

)
≤

(∑
x,y

S2
1(x, y)

)1/2

·

∑
x,y

(∑
z

S2(y, z)S3(z, x)

)2
1/2

.

In the first multiplier, ∑
x,y

S2
1(x, y) =

∑
x,y

S1(x, y) = |Pxy(S)|,

where |Pxy(S)| denotes the size of the projection of S onto the xy-plane.

In the second multiplier, apply Cauchy-Scwartz to the summation in z:(∑
z

S2(y, z)S3(z, x)

)2

≤
∑

z

S2
2(y, z) ·

∑
z

S2
3(z, x) =

∑
z

S2(y, z) ·
∑

z

S3(z, x)

So, we have

∑
x,y

(∑
z

S2(y, z)S3(z, x)

)2

≤
∑
x,y

∑
z

S2(y, z)·
∑

z

S3(z, x) =
∑
y,z

S2(y, z)·
∑
x,z

S3(z, x) = |Pyz(S)||Pxz(S)|,

where |Pyz(S)|, |Pxz(S)| denote the size of the projection of S onto the yz and xz-planes respec-
tively. Thus, altogether

N2 ≤ |Pxy(S)||Puz(S)||Pxz(S)|,

the product of the sizes of the three projections, hence one of them must be is greater than N2/3.

Note, the inequality is sharp, take S as the “lattice cube” [1, . . . ,M ]× [1, . . . ,M ]× [1, . . . ,M ]. The
size of each projection is M2, while S itself has size M3.

4


