Problem Sheet 7 Solutions

OPT 2

Nonlinear programming: unconstrained extrema of functions of several variables.

- 1. $f(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2 3x_1 6x_2.$ Gradient $\nabla f = (2x_1 + x_2 - 3, x_1 + 2x_2 - 6).$ Critical point P = (0, 3). Hessian $D^2 f = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, positive definite. So, P is a strict local (and absolute) minimizer, where f = -9.
- 2. $f(x_1, x_2) = x_1^3 + 3x_1x_2^2 15x_1 12x_2$. Gradient $\nabla f = (3x_1^2 + 3x_2^2 15, 6x_1x_2 12)$. Critical points: intersection of a circle $x_1^2 + x_2^2 = 5$ and a hyperbola $x_1x_2 = 2$, i.e. $P_1 = (1, 2), P_2 = 0$ $(2,1); P_3 = (-1,-2), P_4 = (-2,-1).$ Hessian $D^2 f = 6 \begin{bmatrix} x_1 & x_2 \\ x_2 & x_1 \end{bmatrix}$. At the points P_1, P_3, P_2, P_4 respectively it is: $6 \begin{bmatrix} \pm 1 & \pm 2 \\ \pm 2 & \pm 1 \end{bmatrix}$: saddle points; $6 \begin{bmatrix} \pm 2 & \pm 1 \\ \pm 1 & \pm 2 \end{bmatrix}$: local min and max, with $f = \mp 28$, respectively.

There is no global min. or max.: setting $x_2 = 0$ makes f go to $\pm \infty$.

- 3. $f(x_1, x_2) = (2x_1^2 + x_2^2)e^{-(x_1^2 + x_2^2)}$. Gradient $\nabla f = \left(2x_1(2-2x_1^2-x_2^2)e^{-(x_1^2+x_2^2)}, 2x_2(1-2x_1^2-x_2^2)e^{-(x_1^2+x_2^2)}\right).$ Critical points: $P_0 = (0,0), P_1 = (0,1), P_2 = (0,-1); P_3 = (1,0), P_4 = (-1,0)$ (note that simultaneously one cannot have $2 - 2x_1^2 - x_2^2 = 0$ and $1 - 2x_1^2 - x_2^2 = 0$). Hessian $D^2 f = e^{-(x^2+y^2)} \begin{bmatrix} 4 - 20x^2 - 2y^2 + 4x^2(2x^2 + y^2) & 4xy(2x^2 + y^2 - 12) \\ 4xy(2x^2 + y^2 - 3) & 2 - 4x^2 - 10y^2 + 4y^2(2x^2 + y^2) \end{bmatrix}$. Thus, it's easy to check, as the non-diagonal entries vanish at each critical point, P_0 is a local minimum, with f = 0; P_3 and P_4 are local maxima with $f = 2e^{-1}$, the rest are saddles. As certainly we have $f \ge 0$, the origin is the absolute minimum. As f is continuous and away from the origin, due to the presence of the vanishing exponential, $f \rightarrow 0$, $P_{3,4}$ yield absolute maxima.
- 4. $f(x_1, x_2, x_3) = x_1 + \frac{x_2}{x_1} + \frac{x_3}{x_2} + \frac{2}{x_3}$. Gradient $\nabla f = (1 - x_2/x_1^2, 1/x_1 - x_3/x_2^2, 1/x_2 - 2/x_3^2).$ Critical points: $P_1 = (-\sqrt[4]{2}, \sqrt{2}, -\sqrt[4]{8}), P_2 = (\sqrt[4]{2}, \sqrt{2}, \sqrt[4]{8})$ Hessian $D^2 f = \begin{bmatrix} 2x_2/x_1^3 & -1/x_1^2 & 0\\ -1/x_1^2 & 2x_3/x_2^3 & -1/x_2^2\\ 0 & -1/x_2^2 & 4/x_3^3 \end{bmatrix}.$

Evaluating the Hessian at the points P_1 and P_2 and applying the Sylvestre criterion, one verifies that the Hessian is negative definite at P_1 and positive definite at P_2 , the former thus being a local maximizer and the latter a local minimizer with the values of $f = \pm 4\sqrt[4]{2}$, respectively. Note that the local maximum is actually smaller than the local minimum, as they occur on different branches of f, separated by the zero values of x_1, x_2, x_3 .

In addition, it is easy to see that f can be made arbitrary large positive/negative, so absolute min. or max. don't exist.

5. $f(x_1, x_2) = 2 - \sqrt[3]{x_1^2 + x_2^2}$. No analysis is necessary to see that $x_1 = x_2 = 0$ is the absolute maximum, where f = 2.

6. $f(x_1, x_2, x_3) = x_1 x_2^2 x_3^3 (1 - x_1 - 2x_2 - 3x_3), \ \boldsymbol{x} > 0.$ $\nabla f = (x_2^2 x_3^3 (1 - 2x_1 - 2x_2 - 3x_3), 2x_2 x_1 x_3^3 (1 - x_1 - 3x_2 - 3x_3), 3x_1 x_2^2 x_3^2 (1 - x_1 - 2x_2 - 4x_3)).$ The only critical point with $\boldsymbol{x} > 0$ is $x_1 = x_2 = x_3 = 1/7$. Evaluating the Hessian at this points shows that it is negative definite there, so this point is a maximizer, with $f(1/7, 1/7, 1/7) = 7^{-7}$. This is clearly the absolute maximum, in the domain $\boldsymbol{x} > 0$.

7. $2x^2 + 2y^2 + z^2 + 8yz - z + 8 = 0$, for an implicit function z(x, y). Implicit-differentiate with respect to x and with respect to y: $4x + 2zz_x + 8yz_x - z_x = 0$ and $4y + 2zz_y + 8z + 8yz_y - z_y = 0$. Critical points correspond to $\nabla z(x, y) = (z_x, z_y) = (0, 0)$, therefore x = 0 and y = -2z. Plugging it into the equation yields z = 1, -8/7, so y = -2, 16/7, respectively.

To characterise these critical points, differentiate the above expressions once again with respect to x and y and get: $4 + 2z_xz_x + 2zz_{xx} + 8yz_{xx} - z_{xx} = 0$, $2z_yz_x + 2zz_{xy} + 8z_x + 8yz_{xy} - z_{xy} =$ $0, 4 + 2z_yz_y + 2zz_{yy} + 8z_y + 8z_y + 8yz_{yy} - z_{yy} = 0$. Now plug in x = 0 and y = -2, 16/7, knowing then in this case $z_x = z_y = 0$ (these are critical points!) and z = 1, -8/7 respectively. Get $z_{xx} = z_{yy} \pm 4/15$ while $z_{xy} = 0$. Thus, the critical point (x, y) = (0, -2) is a local minimizer, yielding z = 1, the critical point (x, y) = (0, 16/7) is a local maximizer, yielding z = -8/7. The minimizer and the maximizer correspond to a pair of different branches of the surface z = z(x, y), defined implicitly.

Convex functions

- 1. What convexity properties do the following functions have:
 - (a) $f(x) = x^2 10x + 2, x \in \mathbb{R}$. Convex: f'' = 2 > 0.
 - (b) $f(x) = \ln x, x > 0$. Concave: $f'' = -1/x^2 < 0$.
 - (c) $f(x) = e^x$, $x \in \mathbb{R}$. Convex: $f'' = e^x > 0$.
 - (d) $f(x_1, x_2) = x_1^2 + 3x_2^2 x_1x_2, \ \boldsymbol{x} \in \mathbb{R}^2$. Convex: the Hessian is positive definite.
 - (e) $f(x_1, x_2, x_3) = -x_1^2 x_2^2 2x_3^2 + \frac{1}{2}x_1x_2, \ \boldsymbol{x} \in \mathbb{R}^3$. Concave: the Hessian is negative definite.
- 2. It suffices to show that $f(x,y) = e^{x^2+2y^2}$ is a convex function: we know that any is sublevel set $\{(x,y) : f(x,y) \le C\}$ is convex for any C. Now, $f_{xx} = (2+4x^2)e^{x^2+2y^2} > 0$, $f_{xy} = 8xye^{x^2+2y^2}$, $f_{yy} = (4+16y^2)e^{x^2+2y^2}$. So the Hessian, by the Sylvester criterion, is easily to be positive definite, and f is convex.
- 3. True-false questions:
 - (a) False: a linear function is both convex and concave.
 - (b) True: by definition, if $f(\theta_1 \boldsymbol{x}_1 + \theta_2 \boldsymbol{x}_2) \leq \theta_1 f(\boldsymbol{x}_1) + \theta_2 f(\boldsymbol{x}_2)$ and $g(\theta_1 \boldsymbol{x}_1 + \theta_2 \boldsymbol{x}_2) \leq \theta_1 g(\boldsymbol{x}_1) + \theta_2 g(\boldsymbol{x}_2)$, adding these two inequalities yields $[f+g](\theta_1 \boldsymbol{x}_1 + \theta_2 \boldsymbol{x}_2) \leq \theta_1 [f+g](\boldsymbol{x}_1) + \theta_2 [f+g](\boldsymbol{x}_2)$
 - (c) False in general: take $f = x^2$ and g = x 1 in \mathbb{R}^1 for a counterexample.
- 4. Inequalities problems.
 - (a) By convexity of $f(x) = x^p$ for p > 1 $(f''(x) = p(p-1)x^{p-2} > 0$ for x > 0) and definition of convex function. (with $\theta_1 = \theta_2 = \frac{1}{2}$.)
 - (b) By concavity of $f(x) = x^{1/p}$ for p > 1 (as f''(x) < 0 for x > 0, using the generalized definition of convexity with $\theta_1 = \ldots = \theta_3 = 1/3$).

- (c) Geometric mean is less than the arithmetic mean bug greater than the harmonic one (Cauchy inequality) with four terms.
- (d) Same, with five terms, using the formulae for the sum of the geometric and arithmetic progressions.

(e) By Cauchy-Shwartz inequality:
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i \cdot 1 \le \sqrt{\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} 1^2} = \sqrt{n \sum_{i=1}^{n} x_i^2}$$
.

(f) Same with the Hölder inequality:

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} 1 \cdot x_i \le \left(\sum_{i=1}^{n} 1^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} x_i^q\right)^{\frac{1}{q}} = n^{\frac{1}{p}} \left(\sum_{i=1}^{n} x_i^q\right)^{\frac{1}{q}}.$$

(g) Follows from generalised Jensen's inequality $f\left(\frac{\sum p_i x_i}{\sum p_i}\right) \ge \frac{\sum p_i f(x_i)}{\sum p_i}$ for a concave f. Take $f = \ln x, p_i = \Delta s_i, x_i = g(s_i)$ for a partition s_1, s_2, \ldots, s_n of [0, 1] (all $s_i \in (0, 1), s_{i+1} > s_i$), so $\sum p_i = 1$. Then get $\ln\left(\sum g(s_i)\Delta s_i\right) \ge \sum \ln[g(s_i)]\Delta s_i$,

and the integral inequality in question as $n \to \infty$.

5. Let $x \in A + A$ and n(x) the number of representations of x as $x = a_1 + a_2$. Given x, the number of ordered quadruples which are (a_1, a_2, a_3, a_4) solutions of the equation $x = a_1 + a_2 = a_3 + a_4$ equals $n^2(x)$, as independently $x = a_1 + a_2$ has n(x) choices and $x = a_3 + a_4$ has n(x) choices. So, the total number of solutions of the equation $a_1 + a_2 = a_3 + a_4$ is

$$\sum_{x \in A+A} n^2(x)$$

By Cauchy-Schwartz (the version in (e) above) we have

$$|A+A|\sum_{x\in A+A}n^2(x) \ge \left(\sum_{x\in A+A}n(x)\right)^2$$

But in the right-hand side $\sum_{x \in A+A} n(x) = N^2$, since this is just the total number of *all* ordered pairs (a_1, a_2) from A – each such pair gives *some* sum $x = a_1 + a_2$, and then summation is taken over all possible x.

So, in the problem's notation we have

$$XE \ge N^4$$
,

this does it.

6. Introduce the characteristic function S(x, y, z) of the set S, which equals 1 if the point $(x, y, z) \in S$ and S(x, y, z) = 0 otherwise. Let $S_1(x, y)$, $S_2(y, z)$, $S_3(z, x)$ be characteristic functions of the projections of the set S onto the xy, yz, zx-planes, respectively. Then

$$S(x, y, z) \le S_1(x, y)S_2(y, z)S_3(z, x).$$

Indeed, S(x, y, z) = 1 only if $S_1(x, y), S_2(y, z), S_3(z, x)$ are all equal to 1. Besides, $\sum_{x,y,z} S(x, y, z) = N$. Use this and Cauchy-Scwartz applied twice: First, we apply it to summation in (x, y):

$$N \le \sum_{x,y} S_1(x,y) \left(\sum_z S_2(y,z) S_3(z,x) \right) \le \left(\sum_{x,y} S_1^2(x,y) \right)^{1/2} \cdot \left(\sum_{x,y} \left(\sum_z S_2(y,z) S_3(z,x) \right)^2 \right)^{1/2}.$$

In the first multiplier,

$$\sum_{x,y} S_1^2(x,y) = \sum_{x,y} S_1(x,y) = |P_{xy}(S)|,$$

where $|P_{xy}(S)|$ denotes the size of the projection of S onto the xy-plane. In the second multiplier, apply Cauchy-Scwartz to the summation in z:

$$\left(\sum_{z} S_2(y,z) S_3(z,x)\right)^2 \le \sum_{z} S_2^2(y,z) \cdot \sum_{z} S_3^2(z,x) = \sum_{z} S_2(y,z) \cdot \sum_{z} S_3(z,x)$$

So, we have

$$\sum_{x,y} \left(\sum_{z} S_2(y,z) S_3(z,x) \right)^2 \le \sum_{x,y} \sum_{z} S_2(y,z) \cdot \sum_{z} S_3(z,x) = \sum_{y,z} S_2(y,z) \cdot \sum_{x,z} S_3(z,x) = |P_{yz}(S)| |P_{xz}(S)|,$$

where $|P_{yz}(S)|$, $|P_{xz}(S)|$ denote the size of the projection of S onto the yz and xz-planes respectively. Thus, altogether

$$N^2 \le |P_{xy}(S)||P_{uz}(S)||P_{xz}(S)|,$$

the product of the sizes of the three projections, hence one of them must be is greater than $N^{2/3}$. Note, the inequality is sharp, take S as the "lattice cube" $[1, \ldots, M] \times [1, \ldots, M] \times [1, \ldots, M]$. The size of each projection is M^2 , while S itself has size M^3 .