
OPT2 Problem Sheet 8 Solutions

Equality constraints. Lagrange multipliers

1. (a) Lagrangian L(x, y, λ) = x2 + y2 − xy + x + y − 4 − λ(x + y + 3), a convex function of (x, y) for any λ, so a
local minimum is the absolute one.
Critical points: 2x − y + 1 − λ = 0, 2y − x + 1 − λ = 0, x + y = −3. Subtracting the second equation from
the first one yields x = y, so the solution x = y = −3/2, λ = −1/2 is easy to find. Thus it is the minimum
sought, where the objective z = −4.75.
On the other hand, you could express y from the constraint, plug it into the objective function and deal with
the case of one variable only.

(b) Lagrangian L(x, y, λ) = 1/x + 1/y − λ(x + y − 2), a convex function of nonzero (x, y) given λ.
Critical points: −1/x2 − λ = 0, −1/y2 − λ = 0, x + y = 2, subtracting the first two yields x = ±y, then by
the third one x = y, and thus x = y = 1, λ = −1 by the first one. It is a minimum, by convexity, where the
objective z = 2. Note that as x or y go to zero along the line x + y = 2, the objective goes to infinity.
On the other hand, you could express y from the constraint, plug it into the objective function and deal with
the case of one variable only.

(c) The objective function is the Euclidean distance, sought on the ellipsoid, so the minimum and the maximum
will correspond to the smallest and the largest semi-axes. Maxima: x = ±4, y = z = 0, where the objective
equals 16, minima z = ±2, x = y = 0, where the objective equals 4. Saddle points y = ±3, x = z = 0.
Of course, it can all be done with the Lagrange multipliers. You get

L(x, y, z, λ) = x2(1− λ/16) + y2(1− λ/9) + z2(1− λ/4) + λ.

First, restrict yourself to x, y, z ≥ 0, by symmetry: all the functions involved are quadratic, thus even.
Lagrange equations:

x(−λ + 16) = 0, y(−λ + 9) = 0, z(−λ + 4) = 0; plus x2/16 + y2/9 + z2/4 = 1.

Solutions (note that (x = y = z = 0) is unfeasible):

λ = 16, y = z = 0; or λ = 9, x = z = 0; or λ = 4, y = x = 0.

From the constraint, the first one yields x = ±4, the second y = ±3, the third one z = ±2.
To classify the critical points found as local minima/maxima, or saddles, observe that whenever a constraint
is satisfied the Lagrangian equals the objective function. To each critical point found, there corresponds
its own value of λ, and therefore in order to use he second derivative test for the given critical point, one
should fix the λ corresponding to it in the Lagrangian, and then look at the second derivative in the variables
(x, y, z).
Substitution of, say the value of λ = 16 into L eliminates the variable x from it, leaving −7y2/9− 3z2 + 16,
this is clearly a concave function, with a maximum at (y, z) = (0, 0).
The other values of λ get treated in the same way, and you conclude that λ = 4 yields a maximum and λ = 9
yields a saddle.

2. Suppose, x is the width of the tub, y is the length, and z is twice the height (to symmetrise the problem). Then
the optimisation problem is to minimize xz + yz + xy, given xyz = 2V .

Now comes the easiest solution: By the Young inequality xz + yz + xy ≥ 3 3
√

xzyzxy = 3 3
√

(2V )2. The left-hand
side is minimum when the equality occurs, and we know that this is only possible when xy = yz = xz, so
x = y = z = 3

√
2V .

With the Lagrange multipliers, let us proceed as follows.
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The Lagrangian is L(x, y, z, λ) = xz + yz + xy − λ(xyz − 2V ), the critical point equation is y + z − λyz = 0, the
same for other pairs of variables. Thus λ > 0 and

y + z

yz
=

x + z

xz
=

y + x

xy
, i.e.

1
y

+
1
z

=
1
z

+
1
x

=
1
x

+
1
y
, so x = y = z = 3

√
2V .

It’s will be obvious that this is a minimum if we show that whenever one of the coordinates goes to infinity (given
the volume V ), then the surface are also goes to infinity. In other words, the feasible set can be effectively treated
as closed and bounded, so that the Extreme value theorem applies. Then the critical point we have found cannot
be anything but the minimum we’re after.

Here is one way to see it. First off, the surface area is bounded from below by zero, and the domain is x, y, z > 0.
As one of the variables, say z goes to zero, to compensate for the nonzero volume V , one is forced to have a huge
area for the bottom of the tub. So the area is infinite if either x, y or z goes to zero. On the other hand, suppose
z goes to infinity. Then the bottom of the tub has a very small area V/z. But how about the area of the sides?
It is z times the perimeter of the base, and the latter will be about

√
V/z so the side area will be about z

√
V/z

and will go to infinity as z goes to infinity. So, the total surface area we are looking at is bounded from below,
and goes to infinity as either of the measurements x, y, z goes to zero or infinity. Then it must have a minimum
somewhere inside the domain x, y, z = 0. This minimum shall be given by some critical point of the Lagrangian,
and we have one critical point only. Thus, the critical point we have found IS this minimizer.

Here is how to do it using the second derivative test, by the way. You can eliminate the constraint by expressing
z = 2V

xy , and plug it into the objective function, which will become 2V
(

1
x + 1

y

)
+xy. The Hessian of this function

of two variables is equal to
( 4V

x3 1
1 4V

y3

)
. With x = y = 3

√
2V it is positive definite, so we have found the

above critical point is a local minimum of the objective function, where the value is 3 3
√

4V 2. As there are no
other critical points and the surface area is bounded form below by zero, it is possible to conclude that this is an
absolute minimum.

In terms of the original problem it corresponds to the tub with the square base, and the height equal to one half
the width.
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Kuhn-Tucker conditions

Sketches are given on the last page.

1. (a) The feasible set F is Sketch 2 on the Figure below, the maximizer is the point x = (1, 0), where the objective
x1 = 1.

(b) At x = (1, 0) the constraints x2 ≥ 0, (1 − x1)5 − x2 ≥ 0 are tight, the functions in the left-hand side have
nonzero gradients at x, directed vertically upwards and downwards, respectively. Hence the set FD(x) of
feasible directions at (x) (direction vectors v forming angles of no more than 90 degrees with all the gradient
involved); consists of two vectors (±1, 0). The feasible direction (1, 0) in not a true feasible one: there is no
path contained in the feasible set, to which (1, 0) would be tangent at x. Thus at the point (1, 0) the CQ
non-degeneracy assumption is not satisfied.

(c) Let us denote the Lagrange multipliers, corresponding to x ≥ 0 as µ. The Lagrangian is L(x, λ, µ) =
x1 + λ[(1− x1)5 − x2] + µ1x1 + µ2x2. Differentiate the Lagrangian w.r.t. x1. Then 1− 5λ(1− x1)4 + µ1 = 0
for some λ, µ ≥ 0.
Let us show that KT conditions above have no solutions.

1− 5λ(1− x1)4 + µ1 = 0,
µ2 = λ,

λ[(1− x1)5 − x2 = µ1x1 = µ2x2 = 0.
(1)

We cannot have λ = 0, as the first equation then would yield µ1 = −1, unfeasible. If λ > 0, then µ2 > 0 and
the corresponding two constraints must be tight: (1 − x1)5 − x2 = x2 = 0. Which means again, µ1 = −1,
unfeasible. Hence, due to the fact that CQ are not satisfied at (1, 0), KT equations for the max x1 problem
have no solution.

(d) Adding the constraint x1 ≤ 1 adds the additional term +ν(1−x1) to the Lagrangian, with the new Lagrange
multiplier ν ≥ 0. So (1) now has ν in the right-hand side of the first equation, in addition ν(1 − x1) = 0.
We know that there are no solutions for ν = 0, so must have x1 = 1, and then, from the first equation,
ν = 1. Which means the new constraint must be tight: x1 = 1, then µ1 = 0 and x2 = 0 (from the constraints
themselves). The Lagrange multipliers λ = µ2 can be anything in R+.
CQ are now satisfied, because the vector (1, 0) is no longer a feasible direction at x: the arrival of the new
constraint requires v · (−1, 0) ≥ 0 for a feasible direction v, which v = (1, 0) fails to satisfy.

(e) Changing the objective to Max x2 in the initial problem gives KT conditions

−5λ(1− x1)4 + µ1 = 0,
1 + µ2 = λ,

λ[(1− x1)5 − x2 = µ1x1 + µ2x2 = 0.

The second equation necessitates λ > 0 (because µ ≥ 0). So (1 − x1)5 = x2. From the first equation, if
µ1 = 0, we must have x1 = 1, so x2 = 0, µ2 ≥ 0 and λ = 1 + µ2. This is a one-parameter family of solutions
of KT conditions, which does not give us a maximizer, however. Instead, it gives us the point (1, 0), where
as we know CQ fails.
Nothing unusual about it: The KT theorem is only a necessary condition: it says, the maximizer must be a
solution of Kuhn-Tucker/Lagrange conditions (provided that the non-degeneracy assumption CQ is satisfied).
Consider then µ1 > 0, then we must have x1 = 0, so as the constraint is tight (and we still must have λ > 0)
x2 = 1. We then get another, in fact two-parameter family of solutions x1 = 0, x2 = 1, µ1 > 0, µ2 ≥ 0, λ =
1 + µ2. This family gives us the true maximizer x = (0, 1).

2. (a) The feasible set F is Sketch 3 on the Figure below, the minimiser is the origin x = (0, 0), where the objective
is zero.

(b) As there is only one constraint, for λ ≥ 0, let L(x, y, λ) = x− λ(x3 − y2). KTL conditions:

0 = Lx = 1− 3λx2, 0 = Ly = 2λy,
λ(x3 − y2) = 0, λ ≥ 0, x3 − y2 ≥ 0.
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If λ = 0, the first equation is absurd. Then λ > 0, whence y = 0 from the second equation, so x = 0 by the
third one. As a result, the first equation is absurd again. Contradiction!
This tells us that the mimimiser (which must exist, since the constraint requires x ≥ 0 and the objective
does not decrease as x goes to infinity, but increases, so we can treat the feasible set as if it were closed and
bounded.) may occur only where the non-degeneracy condition CQ fails. At this point, since there is only one
constraint, we must have its gradient vanish. The gradient of g(x, y) = x3 − y2 is zero only at the origin. So,
the conclusion is the origin must be the mimimiser. CQ is not satisfied at the origin, because the gradient of
the constraint at (0, 0) is the zero vector. To this end, any direction is feasible at (0, 0) (indeed, v · (0, 0) ≥ 0
for any v), while only v = (1, 0) is a true feasibledirection.

(c) Now, with the extra constraint x ≥ 0, we have L(x, y, λ) = x− λ(x3 − y2)− µx, with µ ≥ 0. CQ are still not
satisfied: any v = (α, β), with α ≥ 0 any β - the only requirement for v to be in FD(0, 0) is v · (1, 0) ≥ 0.
As for the formal KT equations: The first line of the KT above changes to

0 = Lx = 1− 3λx2 − µ, 0 = Ly = 2λy.

If λ = 0, get µ = 1, x = 0, y = 0.

If λ > 0, again µ = 1, x = 0, y = 0. Over all, λ ≥ 0 becomes a parameter. So the solutions of KT are given
by (x, y, λ, µ) = (0, 0, λ, 1), for any λ ≥ 0. The opitmizer (x, y) = (0, 0) is thereby unambiguously fixed, but
λ is undetermined.
So, failure of CQ does not necessarily fail KT completely, but it very well may.

Note however that if the constraints are rewritten in a slightly different, yet geometrically equivalent form y ≤
|x|3/2, y ≥ −|x|3/2, x ≥ 0, then CQ will be satisfied in problem P ′, but not P .

3. The sketch is essentially the same as Sketch 3 below. The constraints are x5 − y ≥ 0 and x5 + y ≥ 0. Their
gradients at the origin are (0,−1) and (0, 1), pointing in the opposite vertical directions. The vector v = (1, 0)
gives the only true feasible direction. The feasible directions without the constraint x ≥ 0 are both v and −v, so
CQ is not satisfied. It is satisfied, however with the additional constraint x ≥ 0, because this requires v · (1, 0) ≥ 0,
ruling the vector −v out.

Without the constraint x ≥ 0 the Lagrangian is

L = x− λ1(x5 − y)− λ2(x5 + y), λ1,2 ≥ 0

and the KT conditions

1− 5x4λ1 − 5x4λ2 = 0, λ1 = λ2, λ1(x5 − y) + λ2(x5 + y) = 0

are absurd, because the last two require that either x or λ1 = λ2 be zero, and in both cases this means 1 = 0 in
the first equation.

With the constraint x ≥ 0 the Lagrangian is

L = x− λ1(x5 − y)− λ2(x5 + y)− µx, λ1,2, µ ≥ 0

and the KT conditions are

1− 5x4λ1 − 5x4λ2 = µ, λ1 = λ2, λ1(x5 − y) + λ2(x5 + y) = 0, µx = 0.

This is fine now, because as it has been shown one must have µ > 0 (otherwise we are in the situation above), so
x = 0, then y = 0 because this is the only feasible y corresponding to x = 0, and λ1 = λ2 can be any non-negative
number.

4. The Lagrangian is L(x,λ, µ) = 1
2x ·Cx + c ·x + λ · (Ax− b) + [−]µ ·x with λ ∈ Rm (equality constraints Ax = b

impose no sign constraint on λ) and µ ≥ 0 (square brackets refer to the min problem).

One can assume that C is symmetric, since x · Cx = 0 for an antisymmetric C. (In other words x · Cx is a
quadratic form in x.)
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(a) Rewrite KT as inequalities, using µ, x ≥ 0:

Cx + c + AT λ = ±µ, x · Cx + c · x + λ ·Ax = 0, Ax = b, x ≥ 0.

The second equation is, in fact µ · x = 0. These equations are central for quadratic programming.

(b) KT is sufficient for the maximizer [minimizer] that L(x,λ, µ) be a concave [convex] function of x alone, i.e
whenever the matrix C is negative [positive] definite.
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Figure 1: Sketches for Kuhn-Tucker Problems 1,2. Sketch 1 is old stuff, disregard it. Sketches 2,3 correspond to Problems
1,2.
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