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Abstract

In this paper we investigate the Erdös/Falconer distance conjecture for a natural class
of sets statistically, though not necessarily arithmetically, similar to a lattice. We prove
a good upper bound for spherical means that have been classically used to study this
problem. We conjecture that a majorant for the spherical means suffices to prove the
distance conjecture(s) in this setting. For a class of non-Euclidean distances, we show
that this generally cannot be achieved, at least in dimension two, by considering integer
point distributions on convex curves and surfaces. In higher dimensions, we link this
problem to the question about the existence of smooth well-curved hypersurfaces that
support many integer points.

1 Introduction

In this paper we study the Erdös/Falconer distance problems, introduced in [5] and [6],
respectively. In the discrete and continuous settings they ask whether an appropriate cardi-
nality/Hausdorff dimension condition on a subset of the Euclidean space guarantees that the
set of pair-wise distances determined by the set is also suitably large.

Both problems have been studied rather intensely in recent years using a diverse set of
methods and ideas. As a result, the best results available today do not necessarily relate to
each other immediately. In this paper we make an effort to address this problem.

In a precise form, the Erdös conjecture says that for a finite point set E ⊂ Rd, the distance
set

|∆(E)| ≥ C−1(|E|)|E| 2d , (1.1)

where
∆(E) = {‖x− y‖ : x, y ∈ E} (1.2)

and the “constant” quantity C(|E|) is only allowed to grow asymptotically slower than any
power of the cardinality |E| → ∞. In the sequel ‖ · ‖ is the Euclidean norm, the notation |E|
is used to denote the cardinality of a finite set or the Lebesgue measure of E ⊂ Rd.

The Falconer conjecture says that for a Borel set E ⊂ Rd,

dimH E >
d

2
⇒ |∆(E)| > 0, (1.3)
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where dimH is the Hausdorff dimension (and | · | is the Lebesgue measure).
The “critical exponent” d

2 and its reciprocal, featuring in both conjectures cannot be
improved, as can be demonstrated using constructions based on the Euclidean lattice. These
are at least implicitly present in the body of the paper.

In order to reformulate the Falconer conjecture, a problem in geometric measure theory
and harmonic analysis, by means of geometric combinatorics and thereby relate it to the
question of Erdös, an increasingly refined sequence of discretizations of the continuum set
engaged in the Falconer conjecture is necessary. Roughly speaking, instead of a continuous
set E ⊂ Rd, of Hausdorff dimension α, one would deal with a finite union of some δ−α balls of
small radius δ. The distance set, therefore, turns out to be a finite union of intervals of length
δ, and one would like to identify the largest possible discrete δ-separated subset therein, to
get an approximation of |∆(E)|.

This issue was studied in depth by Katz and Tao ([11]) who observe that a single dis-
cretization in the most general situation does not suffice to support the quantitative parallel
between the Falconer and Erdös conjectures, due to a counterexample. In order to bypass
this issue, Katz and Tao suggested multi-linear versions of the discretized Falconer conjec-
ture and some other related questions addressed in their paper. The state-of-the-art of this
approach combines ideas of ([11]) and Bourgain’s sum-product estimates ([1]), culminating
in the following conjecture (see [10]). There exists εd > 0, such that

dimH E ≥ d

2
⇒ dimH ∆(E) ≥ 1

2
+ εd. (1.4)

On the other hand, the best result in the context of the Erdös conjecture, accessible by
methods of discrete geometry, is due to Katz and Tardos ([12]) and says that for a discrete
E ⊂ R2,

|∆(E)| ≥ c|E|c2 , (1.5)

for some constant c and c2 ≈ .86. A direct comparison between the two results, considering
that today it is possible to vindicate only very small values of εd in (1.4) suggests that
to settle the conjectures, one should increase c2 by some .14, while εd almost by 1

2 . The
comparison suggests that the discrete-combinatorial methods that are partially based on the
Szemerédi-Trotter incidence theorem and its corollaries do not immediately transfer to the
discretized setting. The latter setting, however, may offer more structural information about
the distance set and the distances’ distribution as well. It can also be extended to embrace
the case of non-Euclidean metrics that are interesting in regard to lattice point distributions.

If one takes the above numerology as evidence to claim that the discretized results are
somewhat weaker than the discrete ones, this paper shows that Fourier analytic methods,
developed in some generality for the continuous setting, can be used successfully to study the
discrete problem as well. Applying the analytic methods does require some additional struc-
ture imposed on the discretization stage. The multi-linear set-up of Katz and Tao ([11]) gives
an example of such a structure, and they show that eventually, the multi-linear formulation
does enables one to come back to the general formulation of the Falconer conjecture (in the
setting they consider.) In fact, Katz ([10]) shows that the assumption of the distance set
being sufficiently small, added on top of the multi-linear formulation imposes an impossibly
strong non-degeneracy condition on the discretized set.

The assumption we use is well-distributivity, the condition which guarantees that sets in
question are statistically, though not necessarily arithmetically, analogous to the integer lat-
tice. Such sets were studied by several authors in the recent years. In particular, it is observed
in [9] and [7] that in this context the estimate for th continuous problem can be converted into
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a corresponding estimate for its discrete predecessor. Likewise the multi-linear formulation,
the well-distributed one rules out the above-mentioned counterexample. We shall see below
that the structure of well-distributed sets lends itself to elegant and relatively straightfor-
ward approach using Fourier analytic methods. We shall also use arithmetic considerations
to indicate limitations of these methods for Euclidean and non-Euclidean metrics, especially
the latter. The paper is concluded with an explicit synthesis of analytic, combinatorial and
number theoretic considerations in the context of incidence problems.

In the context of Fourier analytic methods, the main object in the approach to the distance
set problem, initiated by Mattila ([13]) is the L2 spherical average of the Fourier transform.
The two theorems of this paper deal with this object. In the positive direction we obtain
a good upper bound for these averages in the context of measures obtained by thickening
well-distributed sets. These estimates are stronger than the corresponding results previously
obtained by Wolff ([22]), Erdog̃an ([4]), and others in the context of general measures.

Our results provide estimates of the exponential sum representing the spherical average.
Coarse upper bounds for this sum enable us to match the generally optimal bound of Wolff
([21]) in dimension two. In higher dimensions, they yield better estimates than the best
known general bounds due to Erdog̃an ([5]). As we note above, our gain, or rather its
technical transparency, is due to special features of the well-distributed set-up, whereas the
bounds of Wolff and Erdog̃an apply to general Frostman measures. To this end, one of
the key motives of this paper is that well-distributed sets provide a natural discretization
scenario that enables one to link together the conjectures of Erdös and Falconer and provide
a reasonably non-technical arena for testing the limits of some methods developed to study
them. Hence, we do expect that our improved bound in higher dimension should hold in the
general case, yet we do not have evidence on whether or not they should be optimal.

The fact that Wolff’s general bound in two dimensions cannot be improved is supported by
a counterexample of Sjölin ([17]) although the latter is highly not well-distributed. (Observe
that Katz and Tao ([11]) had to resort to multi-linearity precisely to rule out the same
counterexample.) There is no evidence that in the well-distributed setting, the spherical
average does not satisfy sufficient good bounds to imply the Erdös distance conjecture, and
we conjecture that this is indeed the case. Our conjecture is supported by the integer lattice
case, when the coarse upper bound for the aforementioned sum can be easily refined by using
the Poisson summation formula and elementary number theory. We conclude that the well-
distributed Erdös conjecture may well follow from obtaining sufficiently sharp estimates for
the sum in question.

Estimates for the spherical average provide lower bounds for the number of distinct dis-
tances regarding the Erdös conjecture. To this end, our coarse bound enables us to match
earlier results of Moser ([14]) Solymosi and Vu ([19]), and one of the authors ([8]) obtained
by purely combinatorial methods. Our result may be somewhat stronger, because it estab-
lishes the existence of a separated set of distances and applies to the case of non-Euclidean
distances as well.

Our second result, a lower bound, provides evidence that in a broader setting of non-
isotropic distances generated by well-curved smooth convex bodies, majorants for the analogs
of the spherical average alone, which are the Fourier L2 averages over dilates of the boundary
of the dual body, do not generally imply the Erdös conjecture even in the well-distributed case.
This makes the Euclidean distance special, as it is in the case of the single distance conjecture
in the plane which is generally false for non-Euclidean distances. Moreover, since the methods
used in the aforementioned papers of Mattila, Bourgain, Wolff and Erdogan do not distinguish
between spheres and smooth surfaces with non-vanishing curvature, our results will show that
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even the bounds for spherical averages in the Euclidean case are not likely to be obtained
using current methods. This is because our counterexample we present are built on the integer
lattice and show that sufficiently good upper bounds on the generalized spherical averages
imply deep unknown results in number theory pertaining to the distribution of lattice points
in the vicinity of dilated convex domains. A result of a similar nature pertaining to the
special case of a paraboloid, not based on the integer lattice, was independently obtained in
[2]. In the last section of the paper, these results are discussed in some detail in regard to
how the distance conjectures can be related to the problem of lattice points distributions on
dilates of convex curves and hypersurfaces.

2 Main result: a bound for the spherical average

Spherical averages and Mattila’s method for the Falconer conjecture

To motivate the results of this paper we give a brief summary of the Fourier analytic technique
developed by Mattila ([13]). Further C, c denote positive constants whose values may change
from one appearance of the specific notation to the other. To emphasize the nature of the
constants, apart from almost all of them depending on the dimension d (sometimes made
explicit like in (1.5) they are often given relevant subscripts.

For a set E ⊂ Rd, supporting a Borel probability measure µ, the distance measure νµ is
defined as the push-forward of µ× µ under the distance map E × E 7→ ∆(E) ⊂ R+.

Such a set E, with dimH(E) = α, supports for all s < α a Frostman measure µ (we do
not use the more explicit notation µs for µ to avoid further accumulation of indices) so that

∫

B(x,δ)
dµ ≤ Cµδs,∀x and all δ ¿ 1, (2.1)

and
Is(µ) =

∫ ∫
dµxdµy

‖x− y‖s
< ∞. (2.2)

If Ms is a class of such measures and µ ∈Ms, an important sub-problem in the Falconer
conjecture is to establish general asymptotic bounds for the spherical average

σµ(t) =
∫

Sd−1

|µ̂(tω)|2dω, (2.3)

in the form
σµ(t) ≤ Cµ,βt−β, ∀ t ≥ 1. (2.4)

Given s and µ ∈Ms, the best known results are as follows: the bound (2.4) holds for all

β <





s, for 0 < s ≤ d−1
2 ,

d−1
2 , for d−1

2 ≤ s ≤ d
2 ,

d+2s−2
4 , for d

2 ≤ s ≤ d+2
2 ,

s− 1, for d+2
2 ≤ s < d.

(2.5)

These results are due to Falconer ([6]), Mattila ([13]), Sjölin ([17]), Wolff ([21], Erdog̃an ([5]),
and others, see, for examples, the references contained in [5]. The crucial interval of the values
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of s where one would like to improve over (2.5) is for s ∈ [d
2 , d+1

2 ], and first and foremost at
the “critical” value s = d

2 .
Mattila observed that the Falconer conjecture would follow by the Cauchy-Schwartz in-

equality if the distance measure νµ has L2 density. The latter can be evaluated by using the
Plancherel theorem in polar coordinates, and a calculation shows that after (inconsequential)
scaling νµ → νµt

1−d
2 , one has

‖νµ‖2
L2(R+) = cd

∫ ∞

0
σ2

µ(t)td−1dt. (2.6)

Denoting the integral in the right-hand side of (2.6) as F (µ), the sufficient condition for the
Falconer conjecture is Fµ < ∞.

Using the Plancherel theorem and then passing to polar coordinates yields the following
energy estimate:

Is(µ) =
∫ ∫ dµxdµy

‖x−y‖s = cd

∫∞
0 σµ(t)ts−1dt, (2.7)

Hence, σµ(t) is on average O(t−s), but this is not enough for the integral F (µ) to converge.
However, if one has the bound (2.4), it follows that

F (µ) ≤ cµ

∫ ∞

0
σµ(t)td−β−1dt ≤ CµId−β(µ) < ∞, for d− β ≤ s. (2.8)

It follows from (2.1), (2.7) that with the notation

β̄(s) = sup
µ∈Ms

{β : (2.4) holds}, (2.9)

for s < α one always has β̄(s) ≤ α = dimH(E). In addition, by (2.8) the Falconer conjecture
holds if

α > d− β̄(α). (2.10)

An estimate β̄(α) ≥ α − 1 is implicit in [6], [13] and explicit in [17]). It implies that the
Falconer conjecture is true for α > d+1

2 , and hence the upper bound (2.4) is of major interest
for s ∈ [d2 , d+1

2 ], as was pointed out earlier.

Well-distributed sets

The Falconer conjecture can be regarded as the “continuous version” of the Erdös conjecture,
though a quantitative link, obtained in [7] and [9] is only known in the context of well-
distributed sets.

We say that an infinite point set A ⊂ Rd is class A well-distributed (sometimes also known
as homogeneous, or Delaunay which some authors spell as Delone) if it is separated in the
sense that for some cA, one has ‖a− a′‖ ≥ cA, ∀ a, a′ ∈ A : a 6= a′, as well as any cube of side
length CA has a non-empty intersection with A. Constants in the ensuing estimates related
to A ∈ A will bear the subscript A and in fact depend on cA, CA or their ratio.

For the truncations Aq = A ∩ B(0, q) of A ∈ A, with q À 1 and B(x, δ) denoting the
Euclidean ball of radius δ centered at x, the Erdös conjecture says that

|∆(Aq)| ≥ C−1(q)q2, (2.11)

where the quantity C(q) grows slower than any power of q as q → ∞. Further q plays
the rôle of the asymptotic parameter, and none of the constants, explicit or implicit in the
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standard notations X = O(Y ), X = Ω(Y ), and X = Θ(Y ), (indicating that a quantity X
is asymptotically bounded by a positive constant times Y from above, below, and on both
sides) are allowed to depend on q.

Note that the distance conjecture (2.11) in the well-distributed setting in d > 2 would
follow from the case d = 2 by restricting the set Aq ∈ Rd to a “horizontal” slab of thickness
O(1) in Rd−1. We do not know whether or not the general Falconer conjecture in any d > 2
should follow from the case d = 2.

Let us scale the truncation Aq into the unit ball and then thicken each point of Aq to
a ball of radius δ = qp, for some p > 1. The resulting set represents a δ-discretization of a
Cantor-like set E of dimension s = d/p, p > 1. The construction of such a set is described in
[6], [7] and [9].

We denote the resulting thickening of the set Aq, compressed into the unit ball, as Eq.
It follows that the distance set ∆(Aq) has a q−p+1-separated subset, whose cardinality is
Ω(qp|∆(Eq)|).

To put a smooth probability measure on Eq, on the technical level, let in what follows
φ(x), x ∈ Rd be a radial test function, whose support is contained in the unit ball. Suppose
that φ is positive in the interior of its support, φ(0) = 1,

∫
φ = 1, and the Fourier transform

φ̂ is non-negative. Let φqp(x) = qpdφ(qpx) and define

dµs(x) = ρs(x)dx, with ρs(x) = cAq−d
∑

a∈q−1Aq

φqp(x− a), (2.12)

where cA is the normalization constant, depending on how well-distributed the set A is which
is reflected in the values of the constants cA and CA. Heuristically,

ρs(x) ∼ q(p−1)d
∑

a∈q−1Aq

Ba,q−p(x), (2.13)

where the notation Ba,q−p for the ball centered at a, of radius q−p has been identified with
its characteristic function Ba,q−p(x).

The Lebesgue measure |∆(Eq)| can now be bounded from below by the above described
method for the Falconer distance problem. Our main theorem gives a bound on the spherical
average for the measure µs, specified by (2.12).

Theorem 2.1. Let A ∈ A be a well-distributed set, let the measure µs be defined by (2.12),
with p ∈ (1, 2]. Then µs ∈ Ms= d

p
and for some rapidly decaying cut-off function η(τ) ≤

Cn(1 + |τ |)−n, for any large n, one has the following bound:

σµs(t) = O

[
q−d+1η

(
t

qp

)]
. (2.14)

In addition, for s = d
2 and t = Ω(q),

σµd/2
(t) = O

(
t1−dΣd/2(t)

)
, (2.15)

where the quantity Σd/2(t), to be defined explicitly, satisfies the coarse bound

Σd/2(t) ≤ CAt
d−1
2 η

(
t

q2

)
. (2.16)
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Remark 2.2. The bound (2.16) for the quantity Σd/2(t) does not appear to be optimal, an
one can expect that it can be improved, by the factor of

√
t. This would then imply the

Erdös conjecture for well-distributed sets. The explicit expression for Σd/2(t) as well as a
conditional bound, which, as suggested by the integer lattice example discussed at the final
section of the paper, can indeed beat (2.15) by the factor

√
t are given by (2.39) below.

By (2.14) and the decay of the cut-off η therein, for s ≥ d
2 we have the following improve-

ment over the spherical average bounds (2.5):

σµs(t) ≤ CAt−
d−1

d
s, ∀ t ≥ 1. (2.17)

This implies the following corollary.

Corollary 2.3. The set Aq determines Ω
(
|Aq|

2
d
− 1

d2

)
distinct distances, separated by q

1−d
d .

Observe that |Aq| = cAqd, hence the exponent in Corollary (2.3) is 1
d2 off its conjec-

tured value. We remind the reader that the symbols cA, CA may indicate different constants
throughout their appearances. These constants depend, however, on the well-distributedness
constants cA and CA and the dimension d only.

2.1 Proof of Theorem2.1

We start out with a simple calculation showing that µs defined by (2.12) is in Ms.

Lemma 2.4. For s = d
p , we have Is(µs) = O(1).

Clearly, the approximate expression (2.13) is good enough to substitute for µs in the
energy computation, see (2.2). For any x in the support of µs, let us split

∫
dµs(y)
‖x− y‖s

= I1 + I2,

where the integral I1 is taken over the ball B(x, c
q ) and I2 over its complement. Then

I1 ≤ CAq(p−1)d

∫

B(0,q−p)

dy

‖y‖ d
p

= O(1).

Besides, as A is well-distributed, and the µs-mass of each peak centered at a ∈ q−1A in (2.13)
is approximately q−d, one has

I2 ≤ CAq−d
∑

a∈q−1Aq\B(0,cq−1)

1
‖a‖s

= CAq−d+s
∑

a∈Aq\B(0,c)

1
‖a‖s

= O(1).

Let us further in the proof drop the s subscript for µs and ρs from (2.12), to avoid having
too many indices. The proof of Theorem 2.1 contains three steps, and we start out with two
preliminary observations. Since

ρ̂(ξ) = cAφ̂(q−
d
s ξ)

∑

a∈q−1Aq

e−2πia·ξ, (2.18)

the “dimension” s characterizing the thickening µs of the atomic measure
∑

a∈q−1Aq
δ(x− a)

appears only in the cut-off φ̂(q−
d
s ξ). Hence, given s, it suffices to consider t = Θ(q

d
s ) only.
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This is assumed throughout Step 1 of the proof. Indeed, instead of considering t ¿ q
d
s , one

can rather increase s (it is assumed that t À q). In Step 2 we verify the estimate (2.15) for
s = d

2 and t = O(q2). Technically, in the end, we will consider separately the “endpoint case”
given s ∈ [d

2 , d) and t = Nq
d
s , for N → ∞. In this case, φ̂(q−

d
s ξ), with ‖ξ‖ = t satisfies the

standard decay estimate O((1 + N)−n), for any n, and this accounts for the pre-factor η in
the estimates of Theorem 2.1. This is carried out in Step 3 of the proof.

The second standard preliminary observation is that the density ρ in (2.12) can be mul-
tiplied by any test function that equals one in the unit ball, reflecting the fact that µ is
compact. This implies that µ̂ changes slowly on the length scale Θ(1). Namely, if A(t, c)
denotes the spherical shell of radius t and width 2c, we have (for some C)

C−1 td−1σµ(t) ≤ ∫
A(t,c) |ρ̂(ξ)|2dξ

= supf : ‖f‖2=1, supp f∈A(t,c)

(∫
ρ̂(ξ)f(ξ)dξ

)2

≡ (Mµ[f ])2

(2.19)

Step 1. Take any such f . Let Pq be a maximum c1q
t separated set on Sd−1, for some

sufficiently small c1. For p ∈ Pq, let fp be the restriction of f on the intersection of A(t, c)
with the cone, emanating from the origin and built upon the Voronoi cell of Sd−1 centered
at p1. (The latter is defined as the set of all points on Sd−1 that are closer to p than to any
other point of Pq.) Decompose

f =
∑

p

fp, (2.20)

clearly,

|Pq| = cd

(
t

c1q

)d−1

. (2.21)

By choosing a small c1, we can ensure that for c2 as small as necessary (in terms of the
bounding constants cA, CA characterizing the well-distributed set class A) the support of
fp is contained in some d-dimensional rectangle (henceforth simply rectangle) of the size
c2(q2/t × q × . . . × q), which is centered at tp and the first measurement is taken in the
direction of p.

By orthogonality,
1 = ‖f‖2

2 =
∑

p

‖fp‖2
2. (2.22)

Then

(Mµ[f ])2 ≤
(∑

p

|Mµ[fp]|
)2

. (2.23)

To prove (2.14), we are going to show that for each p ∈ Pq,

|Mµ[fp]| ≤ CA‖fp‖2, uniformly in p, (2.24)

as a coarse estimate. This will imply by Cauchy-Schwartz and (2.22) that

(Mµ[f ])2 ≤ CA‖f‖2
2 ·

∑

p∈Pq

1 = O

[(
t

q

)d−1
]

. (2.25)

1We warn the reader that the symbol p that in the main body of the paper appears as p = d
s

is used

throughout the proof of Theorem 2.1 as the summation index over the partition of Sd−1.
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Let us first prove (2.24). Without loss of generality, assume that p = (1, 0, . . . , 0), relative
to the coordinates (ξ1, ξ2), where ξ1 is one-dimensional and ξ2 is (d− 1)-dimensional.

By the Plancherel theorem we have

Mµ[fp] =
∫

f̂p(x, y)ρ(x, y)dxdy, (2.26)

where x is one-dimensional and y is (d− 1)-dimensional.
The function fp is supported in the translate by tp of the rectangle R̄p, where R̄p –

with the above choice of p = (1, 0) – is a “vertical” rectangle centered at the origin in
the (ξ1, ξ2) “plane”, of width c2q

2/t and height (meaning the ξ2-directions) c2q. Let us write
fp(ξ) = hp(ξ−tp), i.e. hp is supported in R̄p. All the rectangles involved are further identified
with their characteristic functions.

By the uncertainty principle, as hp = hp · R̄p, its Fourier transform ĥp is approximately
constant in the translates of the dual to R̄p rectangle Rp of size C2(t/q2 × q−1 × . . .× q−1),
relative to the coordinates (x, y). More precisely, if r̄p(ξ1, ξ2) is a test function which is one
in R̄p and vanishes outside, say 2R̄p, then ĥp = ĥp ∗ ̂̄rp.

Accordingly, let us decompose

ĥp =
∑

j

ĥpRp,j ≡
∑

j

ĥp,j : ‖ĥp‖2
2 =

∑

j

‖ĥp,j‖2
2. (2.27)

Above, Rp,j are the translates of Rp, covering Rd. In the remaining part of the proof, however,
we will need only those values of j, such that Rp,j intersects the support of µ. In other
words, we are not claiming that the Fourier transform of a compactly supported function
has compact support, we are simply restricting its support by integrating it against the
compactly supported measure µ. As before, Rp,j is identified with its characteristic function.
The constant C2 can be made as large as necessary by decreasing c1 above. We shall further
use well-distributedness of the set A, by claiming that each Rp,j supports qdΘ(|Rp|) members
of q−1A.

By Young’s inequality

‖ĥp,j‖∞ ≤ cd
1√|Rp|

‖ĥp,j‖2, (2.28)

moreover as ĥp = ĥp ∗ ̂̄rp, we can write

ĥp,j =

(
1√|Rp|

‖ĥp,j‖2

)
Rp,jψp,j . (2.29)

Above, ψp,j is a smooth function which is O(1) and can be made to vanish outside 2Rp,j ; in
addition one has uniform bounds

|∂xψp,j(x, y)| = O

(
q2

t

)
, |∂yψp,j(x, y)| = O(q). (2.30)

Clearly
f̂p = e−2πitxĥp. (2.31)

I.e. f̂p is the rapid phase e−2πitx that does not depend on y times ĥp (this is specific for the
spherical average, versus non-isotropic ∂K-averages) which is approximately constant in each
rectangle Rp,j , with the sharp bound (2.28).

By (2.26) we have then
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Mµ[fp] =
∑

j

∫
ĥpRp,j(x, y)e−2πitxρ(x, y)dydx

≡ ∑
j

(
1√
|Rp|

)
‖ĥp,j‖2

̂̃µp,j(t),
(2.32)

where
µ̃p,j(x) =

∫
Rp,j(x, y)ψp,j(x, y)ρ(x, y)dy. (2.33)

Now the desired inequality
|Mµ[fp]|2 = O(‖fp‖2

2) (2.34)

follows by the Cauchy-Schwartz inequality from the trivial bound

∀j,
∫

Rp,j(x, y)ρ(x, y)dxdy ≤ CA|Rp|, (2.35)

by well-distributedness of A and the fact that there are O(|Rp|−1) terms in the summation
in j. This proves (2.24).

Step 2. Naturally, cf. (2.32), similar to (2.33), one is tempted to define

µp,j(x) =
∫

Rp,j(x, y)ρ(x, y)dy, (2.36)

and have µ̂p,j(t) substitute ̂̃µp,j(t) in the second line of (2.32). The two can be related
point-wise however only if the x-measurement C2

t
q2 of the rectangle Rp is Ω(1), to ensure

|∂xψp,j(x, y)| = O(1) rather than the first bound in (2.30).
It is easy to achieve this by changing the partition (2.20), (2.21) and essentially repeating

the argument up to this point. In this part of the proof, we assume s = d
2 and t = O(q2). Let

us use a slightly different decomposition of the sphere Sd−1, with P√t denoting a maximum
c1√

t
separated subset of Sd−1. Similar to (2.20) and (2.21), decompose

f =
∑

p

fp, p ∈ P√t, |P√t| = Θ
(
t

d−1
2

)
.

Now fp is supported inside the rectangle R̄p of the size c2(1 ×
√

t × . . . × √t). Accordingly,
its dual Rp has the size C2(1× 1√

t
× . . .× 1√

t
).

We repeat the argument from (2.27) through (2.33), with the same notations, relative to
the new partition {fp}, only now we can write

µ̃p,j(x) = ϕp,j(x)µp,j(x), (2.37)

for some test function ϕp,j(x) of a single variable, which is supported on [−C2, C2], and
is O(1), together with is derivative. Above, the quantities µ̃p,j(x) and µp,j(x) have been
defined respectively by (2.33) and (2.36), only relative to the rectangles Rp,j of the size
C2(1× 1√

t
× . . .× 1√

t
), hence the desired properties of ϕp,j(x) that arise after integration in

y in (2.33), in view of the bound |∂xψp,j(x, y)| = O(1).
Thus we have ̂̃µp,j = µ̂p,j ∗ ϕ̂p,j , and this implies the bound

|̂̃µp,j(t)| ≤ cd sup
τ
|µ̂p,j(t− τ)| η(cC2τ), (2.38)

10



where c is independent of the governing constants c1, C2, and the quantity η has been defined
in the statement of Theorem 2.1.

In view of this, we can give a more refined bound than (2.34) following (2.32). Using
(2.38) and the fact that now |Rp| = Θ(t

1−d
2 ), we obtain, essentially repeating the argument

in Step 1, that

|Mµ[f ]|2 ≤ Σd/2(t) ≡ cd
∑

p∈P√q

(
1
|Rp|

∑
j |̂̃µp,j(t)|2

)

≤ Cd
∑

p∈P√q

(
t

d−1
2

∑
j supτ |µ̂p,j(t− τ)|2 η(cC2τ)

)
.

(2.39)

A coarse bound (2.16) follows in exactly the same way as (2.14) on Step 1. I.e. for both
partitions of Sd−1, we have

|Mµ[f ]|2 ≤ Cd

∑
p


 1
|Rp|

∑

j

|̂̃µp,j(t)|2

 . (2.40)

Step 3. So far, the bounds (2.14) – (2.16) of Theorem 2.1 have been justified only for
t = O(q

d
s ), with s ∈ [d

2 , d) on Step 1 and s = d
2 on Step 2. Suppose now that t = Θ(Nq

d
s ),

where N increases. The impact of this shall be compensated by the choice of the constant c1,
increasing the number of Voronoi cells on Sd−1, to ensure that C2 remains sufficiently large.
Hence, the constants hidden in (2.34) as well as in (2.39) will increase as Nd−1. On the
other hand, built into (2.18), we have the decay of φ̂(q−

d
s ξ). This clearly enables one to use

|Rp|φ̂(q−
d
s ξ), with ‖ξ‖ = t as a coarse bound for |̂̃µp,j(t)|, i.e. multiply |Rp| by Cn(1 + N)−n

for any n, and t = Θ(Nq
d
s ). This accounts for the presence of the quantity η in (2.14) and

(2.16) and completes the proof of Theorem 2.1.

Proof of Corollary 2.3

Theorem 2.1 implies that the measure µs defined by (2.12) satisfies (2.4) for β = d−1
d s. Hence,

by (2.8), the Falconer conjecture is satisfied by the support of µs, provided that s ≥ d2

2d−1 .
Therefore, the number of distinct q−p+1 separated distances generated by the set Aq, where
p = d

s , is bounded from below by a constant times

qp = q
2d−1

d = Θ
(
|Aq|

2
d
− 1

d2

)
. (2.41)

This proves Corollary 2.3. Let us point out here that this is precisely the lower bound
obtained by Moser ([14]) in the case d = 2 (see also [8] for higher-dimensional generalization of
this method), and Solymosi and Vu ([19]) for well-distributed sets using methods of geometric
combinatorics. Recently Solymosi and Tóth ([20]) made further progress in that direction,
having improved the margin 1

d2 in (2.41) to 2
d(d2+1)

.

3 The case of K-distances

It is interesting to broaden the scope of the distance conjectures by generalizing the Euclidean
distance ‖ · ‖ as ‖ · ‖K , the Minkowski functional of a strictly convex body K ⊂ Rd, with the
smooth boundary ∂K. Let K be described a class of such bodies, whose volume equals the
volume of the unit ball, and the Gaussian curvature is bounded in some interval [cK, CK].
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The spherical average generalizes accordingly by replacing the domain of integration Sd−1 in
(2.3) by ∂K, substituting Sd−1.

Mattila’s formalism extends to the case of K-distances, concerning the surface average
σµ,K(t), defined in (3.3). Then, see [7], the Mattila formulation of the Falconer conjecture
for non-isotropic distances ‖ · ‖K is equivalent to proving that

FK(µ) =
∫ ∞

0
σ2

µ,K∗(t)td−1dt < ∞, (3.1)

where
K∗ = {x : sup

y∈∂K
x · y ≤ 1}

is the dual body of K ∈ K.
By following step-by-step the proof of Theorem 2.1, one concludes that the bound (2.17)

and hence Corollary 2.3 are still true in the case of K-distances, with the constants depending
now on cK, CK as well.

In addition, we have the following conditional result.

Theorem 3.1. Let τ À 1, γ ∈ [0, 1), and suppose there exists a convex body K ∈ K, such
that

|{τ∂K ∩ Zd}| ≥ CK τd−2+γ . (3.2)

For any s ∈ (0, d), there exists a measure µ ∈ Ms, supported in the unit ball, such that for
p = d

s and t = τ
p

p−1 , one has

σµ,K(t) ≡
∫

∂K
|µ̂(tω)|2dωK ≥ cK t

−s+( 2s
d
−1)+γ p−1

p , (3.3)

where dωK is the Lebesgue measure on ∂K.

In the case when K is a compact piece of a paraboloid, this result, with the exponents
corresponding to γ = 1 is established in [?]

Corollary 3.2. In dimension 2, there exists K ∈ K, such that for a sequence of values of t
going to infinity, there exists a measure µt ∈Ms, supported in the unit ball, such that

∫

∂K
|µ̂t(tω)|2dωK ≥ cK t−

1
2
− s

4 . (3.4)

We remark that (3.3), even for γ = 0, is always non-trivial for s > d
2 , while (3.4) is

non-trivial for s > 2
3 . This indicates the impossibility of the equality β̄(α) = α, see (2.9), in

this range of parameters. Such an equality is the case for α ≤ d−1
2 , see [13], as well as (2.5).

Proof of Theorem 3.1

Let us modify the measure µs in (2.12) slightly, keeping the same notation, with now again
p = d

s :
dµs(x) = ρs(x)dx, with ρs(x) = cA φ(x) q−d

∑

a∈q−1A

φ(a)φqp(x− a). (3.5)

Lemma 2.4 clearly remains true, although in comparison with the expression (2.13), the pre-
factor φ(x) has enabled to extend the summation over the whole q−1A; besides each peak at
a ∈ q−1Aq has been weighted by φ(a).

12



The analog of (2.18) is now

ρ̂s(ξ) = cA φ̂(ξ) ∗

φ̂(q−pξ)

∑

a∈q−1A

φ(a)e−2πia·ξ


 . (3.6)

We now consider the special case A = Zd and apply the Poisson summation formula to
the sum in a, which results in the summation over the dual to q−1Zd lattice qZd, at each of
whose elements b there sits a bump φ̂(ξ − b). I.e.

ρ̂s(ξ) = cAφ̂(ξ) ∗

φ̂(q−pξ)

∑

b∈qZd

φ̂(ξ − b)


 . (3.7)

Consider now the average
∫

∂K
|µ̂s(tω)|2dωK ∼ t1−d

∫

AK(t,c)
|µ̂s(ξ)|2dξ,

where AK(t, c) = (t+ c)K \ (t− c)K. Strictly speaking in the above relation one should have
the O-symbol in the right-hand side. However, in this particular case the right-hand side
suffices for the lower bound as well.

Indeed, if K is such as stated by Theorem 3.1, t∂K contains Ω
(
( t

q )γ
)

points of the lattice

qZd, and hence by (3.7), there are Ω
(
( t

q )γ
)

bumps, each of the hight approximately one and
with an Ω(1)-overlap with the shell A(t, c) or the dilated boundary t∂K itself.

Therefore, ∫

∂K
|µ̂s(tω)|2dωK = Ω

[
t1−d

(
t

q

)γ]
,

and the proof of Theorem 3.1 is complete by choosing q = t
s
d , with τ = t

q in the condition
(3.2).

To prove Corollary 3.2 in the case d = 2, it is easy to see that some τ -dilates of a piece of
the parabola {y = ±√x, x ∈ [0, 1]} would contain Θ(τ

1
2 ) integer points. Indeed, the dilate in

question can be written as {(x,±√x
√

τ), x ∈ [0, τ ]}, and if τ is a square, the dilate obviously
contains an integer point whenever x is a square. The above parabola can be made part of
the boundary ∂K of the body K determining the metric ‖ · ‖K . This proves the corollary.

Remark 3.3. Observe that the condition (3.2) can be relaxed by having the points of qZd

located c-close to tK, rather than immediately on it. In other words, it suffices to take the
right-hand side of (3.2) as the lower bound for the number of integer points located cτ

1
1−p

close to τ∂K. In the case p = 2, s = d
2 , we have τ = q.

4 Implications for distance conjectures and lattice point dis-
tributions

This section does not contain new results, but poses some open questions that arise from
Theorems 2.1, 3.1.
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General bounds for the spherical average

The strongest general spherical average bounds summarized in (2.5) cannot be improved in
dimension 2 beyond the endpoint, because Sjölin ([17]) used a Knapp-type example to show
that for s ≥ 1, there are measures in Ms that satisfy

σµ(t) ≥ cµt−( s
2
+ d−2

2 )Is(µ). (4.1)

Namely, in the notation (2.9) one has the following general relation between the Hausdorff
dimension α and the “Spherical Fourier dimension” β̄(α):

α

2
≤ β̄(α) ≤ α, for α ≥ 1 and d = 2. (4.2)

Observe that the estimate (4.1) provides non-trivial information only in the range of
Hausdorff dimensions α > d− 2.

Sjölin’s example shows that in dimensions 2 and 3, the Falconer conjecture cannot be
resolved in full generality merely by proving a sharp power majorant (2.4) for the spherical
average σµ(t), but leaves open the question whether this may be possible for d ≥ 4. This
question has been recently asked by Erdog̃an ([4]) who generalized Wolff’s result to d ≥ 2,
obtaining the best known general upper bounds (2.5). Let us restate the part of the above
estimate in the form relevant to this discussion:

β̄(α) ≥ d + 2α− 2
4

, for α ∈
[
d

2
,
d

2
+ 1

]
. (4.3)

Our bound (2.17) is an improvement over (4.3), and it appears reasonable to ask the following.

Question 4.1. Does the bound (2.17) generalize to the class of Frostman measures µ ∈ Ms

(at least in the important case s ∈ [d2 , d+1
2 ]) in the case d ≥ 3, and if it does, is it generally

best possible?

We believe that the first part of the question can be answered affirmatively, and the
presence of different space scales in the general problem would only cause one to lose the
endpoint in (2.17). The discretization component of the possible proof should probably take
advantage of the relevant techniques of [11], and eventually, after dyadic localization and
pigeonholing, one should be able to effectively assume that µ is a density supported on a
union of disjoint balls of radius t−1, so that the µ-mass of each ball is O(t−s), and the total
number of balls is O(ts).

Then the quantity q = t
s
d arises as a natural partition parameter, in the sense that

a subcube of diameter q−1 contains on average one of the union of balls whereupon µ is
supported. Therefore, the partition in the proof of Theorem 2.1 of the sphere of radius t
onto pieces of diameter O(q) also arises naturally, and would yield the analog of the double
sum given by (2.40) in the general case as well. The trivial estimate that has been applied
to the double sum, which claimed that the expression in brackets there was O(1) for each
partition angle p, will be no longer applicable however. Indeed, given p, the mass µ may not
be distributed between the tiles Rp,j uniformly. Then one will have to tackle the whole double
sum in (2.40). This creates a reasonably accessible combinatorial problem, which would most
importantly still ignore the phases in (2.32). Thus the estimates (2.17), (4.3), and in fact
(2.5) are in essence coarse estimates.

We see no cogent reason to believe or disbelieve whether the bound (2.17) may be tight
in higher dimensions, for the lack of a geometric concept that would underly a possible
counterexample. From the point of view of the proof of Theorem 2.1, Sjölin’s example can be
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rendered essentially one-dimensional. The discretized version thereof is as follows (see also
[11]). In the plane, one takes points with coordinates (x, y) = (j/q, 0), j = 0,±1, . . . ,±q,
thickens them into rectangles of width q−

d
s and height q−1, puts a uniform probability measure

thereon and uses the one-dimensional Poisson summation formula to look at the Fourier side
at t = Θ(q

d
s ). In the decomposition framework of Theorem 2.1, it is tantamount to having a

single direction p in the double sum (2.40). This alone does not suffice to match the upper
bound (2.17) in the case d = 3, and even less so in higher dimensions. It also indicates that
cancelations for different values of p are inherent in the problem. More precisely, the measures
µp,j(x), defined by (2.36), and localizing µ in different directions p, cannot all resonate with
fast plane waves in these directions, all having the same frequency t. Hence targeting the
sharp bounds for the sum in (2.40), one cannot simply ignore the presence of the phase factors
in (2.32).

The estimate (2.15) of Theorem 2.1 is conditional on the term Σd/2(t) which is given
explicitly by (2.39). Naturally, the estimate (2.15) poses a question of estimating the quantity
Σd/2(t) by taking the phase factors into account. Observe that if s = d

2 , then t = Θ(q2), and
the underlying well-distributed set A is the lattice Zd, the number of nonzero terms in the
summation over p in (2.39) will be approximately qd−2 (modulo a slowly growing function
of q in the case d = 2). Indeed, any such p would correspond to a point of the lattice qZd

lying in the O(1) neighborhood of the sphere of radius t = Θ(q2). The number of such points
cannot exceed O(qd−2) in dimensions three and higher, with an additional slowly growing
term in dimension two. This implies that in this specific case, for s = d

2 , the bound (2.39)
improves from t−

d−1
2 to t−

d
2 (modulo a slowly growing function of q in the case d = 2) which

is precisely what one needs to settle the distance conjecture.

Question 4.2. Is it true that for the measures (2.12) on thickenings of well-distributed sets
and s = d

2 , one actually has

σµd/2(t) ≤ Cµ(t)t−
d
2 , (4.4)

where the quantity Cµ(t) grows slower than any power of t?

This cannot be true for s > d
2 by Theorem 3.1, cf. 3.3 with K = Sd−1 and γ = 0.

Besides, the answer may possibly be in the positive only for the Euclidean distance, as for
the generalized quantity σµs,K this is impossible by Corollary (3.2). By (2.10), the affirmative
answer to Question 4.2 would imply the Erdös conjecture for well-distributed sets. In this
sense, as a special feature of the Euclidean, or spherical distance, this question is similar to
the Erdös single distance conjecture discussed next.

Single distance conjecture and the spherical average

The Erdös single distance conjecture in the case d = 2, in the well-distributed setting can be
written as

sup
u∈∆(Aq)

|{(x, y) ∈ Aq ×Aq : ‖x− y‖ = u}| ≤ C(q)q2, (4.5)

where the quantity C(q) asymptotically grows slower than any power of q. Using (4.9), with
d = 2 and s = d

2 = 1, it follows that in terms of the measure (2.12) and its spherical average
(2.3) it is equivalent to asking for any τ ∈ (0, 1), whether

∫ ∞

0
tJ0(τt)σµd/2

(t)dt ≤ C(q). (4.6)
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(We have retained the notation σµd/2
without specifying that d = 2 as we would like soon to

pass on to all d ≥ 2.) At the same time, the Mattila criterion (2.6) is
∫ ∞

0
td−1σ2

µd/2
(t)dt ≤ C(q). (4.7)

Note that by (2.18), it is essentially sufficient to integrate up to q2. The affirmative answer
to Question 4.2 implies (4.7), but not (4.6) which requires more regularity than merely the
majorant (4.4) for the spherical average σµd/2

(t). By using the asymptotics of the Bessel
function J0, the well-distributed set single distance conjecture reduces to the estimate, with
d = 2: ∫ 2q2

q2

t
d−1
2 e−2πiτtσµd/2

(t)dt ≤ C(q),∀τ ∈ (0, 1). (4.8)

Hence, (4.8) asserts a special property of the Euclidean distance, which is more stringent than
(4.4) in Question 4.2. This certainly adds to the credibility of the conjectured affirmative
answer to the latter question.

Observe that the standard counterexample to the single distance conjecture in dimensions
d ≥ 4 is not valid in the well-distributed setting, and therefore (4.5) whose main component in
the right-hand side, see also (2.11), does not depend on the dimension should generalize to any
d ≥ 2. Retracing the steps that have lead to (4.8), we conclude that the latter formulation
yields the single distance conjecture for thickenings of well-distributed sets, regardless of
the dimension. Combining it with the earlier claim that the support of the distance measure
νµd/2

should contain almost q2 separated intervals of length q−2, we may formulate the general
conjecture that distance measures νµd/2

generated by thickenings of well-distributed sets are
quasi-uniform.

Observe that the single distance conjecture, as well as (4.4), are generally not true in the
distance class ‖ · ‖K∈K, the counterexample to the former conjecture being constructed in
essentially the same way as it has been done to prove Corollary 3.2.

The best known single distance conjecture bound of the form (4.5) is q
8
3 and is due to

Spencer, Szemerédi, and Trotter ([18]). It arises as an immediate corollary of the Szemerédi-
Trotter theorem. In light of the discussion in this paper, the latter theorem can be formulated
as follows. Given a set P of points and the set J of translates Tj∈J of K, with |P | = Θ(|J |) =
Θ(q2), one has the following bound for the number of incidences:

|{(p, j) ∈ P × J : p ∈ Tj∂K}| ≤ Cq
8
3 . (4.9)

The single distance conjecture then claims that the bound in (4.9) can be improved to q2

(modulo a slowly growing function of q) in the special case ∂K = S1. If one believes in
optimality of the parabola example used to prove Corollary 3.2, a reasonable question to ask
is as follows.

Question 4.3. Is this true that for a general K ∈ K, the bound q
8
3 in (4.9) can be improved

to q
5
2 (modulo a slowly growing function of q)?

The parabola example mentioned above shows that the exponent 5
2 cannot be improved.

Non-isotropic surface means and lattice point distributions

Theorem 3.1 implies that the Falconer conjecture for a class of distances ‖ · ‖K∈K cannot be
resolved by proving best possible majorants for the quantity σµ,K alone, provided that for
any fixed ε > 0 and arbitrarily large τ, there exists K ∈ K such that the condition (3.2) holds
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for any γ > 0. Let us address the issue how large γ can possibly be. Much more is known to
this end in d = 2 than in higher dimensions.

In the case d = 2, by the result of Bombieri and Pila ([3]) there are no C∞ bodies K,
such that (3.2) holds for γ = 1

2 + ε, for any ε > 0. (More recently, the result of Bombieri
and Pila has been given more refinement under additional assumptions which are beyond the
scope of this paper.) The conjecture of Schmidt ([16]) states that this is actually the case for
the class C2. Observe that so far, for the analysis of ∂K means in the literature dedicated
to the Falconer conjecture a finite order of differentiability of ∂K suffices.

In higher dimensions, to our best knowledge, there are no explicit examples of K satisfying
(3.2) with γ > 0. An upper bound for γ can be derived, for instance, from the results
concerning the lattice point distributions error term. We now quote the estimate due to
Müller ([15]). Let N(τ) = |{τK ∩ Zd}|, d > 2, suppose N(τ) = |K|τd + E(τ). Then

|E(τ)| = O
(
τd−2+γd

)
, with γd =





20
43 , d = 3,

d+4
d2+d+2

, d ≥ 4.
(4.10)

Clearly (4.10) implies γ ≤ γd for the condition (3.2) for otherwise one could construct an
immediate counterexample to (4.10).

Returning to L2 surface averages, the above quoted upper bounds (4.2) and (4.3) of Wolff
and Erdog̈an, as well as the coarse bounds (2.14) and (2.17) of Theorem 2.1 are applicable to
the quantity σµ,K defined in (3.3) as well (with the bounding constants now also depending
on K.) If one attempts to use these bounds for the specific case A = Zd, they lead to a trivial
estimate γ ≤ 1. In other words, τ∂K contains no more than τ integer points thereon or in
its 1

τ -vicinity.
Observe that the affirmative answer to Question 4.2 would imply that τSd−1 contains no

more than C(τ) – the quantity growing slower than any power of τ – integer points, which
is indeed known to be true. Such an improvement could in principle come from taking the
phase factors in (2.32), (2.39) into account. The fact that these phase factors appear in their
present form is the special feature of the Euclidean case. We conclude the paper with the
following generalization of Question 4.2.

Question 4.4. Are the bounds for the number of lattice points on or near the dilates of the
boundaries of K ∈ K a particular case of general asymptotic bounds for the quantity σµ,K(t),
for measures arising as thickenings of well-distributed sets and not necessarily lattices? Is it
true, in particular, that in the case d = 2, cf. (2.13),

σµd/2,K(t) ≤ C(t)t−
3
4 , (4.11)

where C(t) grows slower than any power of t →∞?
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