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Abstract. We show that the equation

si1 + si2 + · · ·+ sid
= sid+1 + · · ·+ si2d

has O
�
N2d−2+2−d+1

�
solutions for any strictly convex sequence {si}N

i=1 without any ad-

ditional arithmetic assumptions. The proof is based on weighted incidence theory and an
inductive procedure which allows us to effectively deal with higher dimensional interactions.

The terminology ”combinatorial complexity” is borrowed from [CEGSW90] where much of
our higher dimensional incidence theoretic motivation comes from.

Section 1: Introduction and statement of results

Consider a sequence of real numbers {si}N
i=1. It is a classical problem in number theory

to determine the number Nd = Nd(N) of solutions of the equation

(1.1) si1 + si2 + · · ·+ sid
= sid+1 + · · ·+ si2d

.

The number of solutions Nd will certainly depend on geometric and arithmetic properties
of the sequence {si}. A trivial example is if si = i, when the number of solutions of (1.1)
is approximately N2d−1. Here and throughout the paper the notations a . b, or a = O(b)
means that there exists C > 0 such that a ≤ Cb, and a ≈ b means that a . b and b . a.
Besides, a / b, with respect to a large parameter N , means that for every ε > 0 there exists
Cε > 0 such that a ≤ CεN

εb.
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More interesting bounds are available if the sequence {si} is a strictly convex in the sense
that the sequence of differences {si+1 − si} is strictly increasing, or, equivalently, the set of
points {(i, si)} lies on a strictly convex curve in R2. For example, if si = i2 and d ≥ 4, one
has Nd . N2d−2. The same estimate with an appropriate power of log(N) holds in the case
d = 2 and d = 3. This example shows that for a general strictly convex sequence, the best
general upper bound for Nd one can hope for is Nd / N2d−2.

Under additional arithmetic assumptions, the situation may change drastically. For ex-
ample, it is known that if si = ik and k >> d, Nd ≈ Nd, and in fact the equation (1.1)
only has trivial solutions. See [HB02] and the references contained therein. A non-integer
example is given by si =

√
ki, where {ki} is a sequence of square-free positive integers. A

theorem due to Besicovitch ([Bes40]) says that these numbers are linearly independent over
the field of rationals Q. It follows that Nd ≈ Nd in this case as well.

The examples of the previous paragraph are misleading in the sense that they lead to
good estimates for Nd based on specific arithmetic properties of the sequence. The main
thrust of this paper is to obtain the best possible upper bound on Nd under the assumption
of strict convexity only, without any additional arithmetic or curvature hypotheses. This is
achieved using geometric combinatorics.

As we indicate above, it is reasonable to conjecture that for every strictly convex se-
quence {si}N

i=1, Nd / N2d−2. We prove that this estimate is asymptotically true with an
exponentially vanishing error in the exponent as d tends to infinity. More precisely, we show
(see Theorem 1 below) that Nd . N2d−2+2−d+1

. Konyagin ([Ko00]) proved this estimate in
the case d = 2. More precisely, he showed that

(1.2) N2 . N
5
2 .

The equation (1.1), with d = 2, arises if one tries to obtain a lower bound for the L1

norm of trigonometric polynomials, see Karatsuba ([Kar98]). Namely, if {si}N
i=1 is a convex

sequence, let ∆(N) = N2(N)/N3. Then

(1.3)
∫ 1

0

∣∣∣∣∣∣

N∑

j=1

cje
2πιsjx

∣∣∣∣∣∣
dx & ∆− 1

2 (N),

for any array of complex unimodular coefficients cj .
While the proof in [Ko00] is based on geometric incidence theory, Garaev ([Gar00]) de-

veloped an alternate, Fourier analytic approach to the proof of (1.2). Unification of these
different points of view should lead to further progress on this problem. We hope to take
up this issue in a subsequent paper.

When d > 2, one is naturally led to consider an inductive procedure, as an alternative
to higher dimensional incidence theory, where serious topological obstructions often arise.
It turns out that the inductive step requires the use an appropriate weighted version of
the Szemerédi-Trotter incidence theorem (see Theorem 3 below), essentially due to Szekely
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([Sz97]). Unfortunately, a direct application of this weighted incidence result leads to a
rather weak bound for Nd and an ad hoc reduction procedure is needed to replace maximal
weights by average ones, resulting in a much better exponent. An effective handling the
weights effectively is the key technical aspect of this paper. It requires an appropriate
divide-and-conquer approach, described in Lemma 6 below.

Notation and statement of results. Fix a convex sequence {si}N
i=1, N large. Let B ≡

{1, 2, . . . , N}, which henceforth shall be referred to as the base set. Let f : R→ R be a fixed
strictly convex function such that f(i) = si. Let S = f(B) = {s1, . . . , sN}.

The bounds for the quantity Nd will be obtained by studying the sumset

(1.4) dS ≡ S + · · ·+ S = {x : x = si1 + · · ·+ sid
, (i1, . . . , id) ∈ Bd}.

Given x ∈ dS, define its multiplicity, or weight

(1.5) νd(x) = |{(i1, . . . , id) ∈ Bd : si1 + . . . + sid
= x}|.

Here and throughout the paper the notation | · | stands for cardinality of a finite set. The
quantity νd(x) will be referred to as the weight distribution function.

Clearly there is an L1 relation

(1.6)
∑

x∈dS

νd(x) = Nd,

the right-hand side being referred to as the net weight. Our goal is to obtain an L2 bound
for νd(x), since

(1.7) Nd =
∑

x∈dS

ν2
d(x).

Let dS = {x1, x2, . . . , xt, . . . } be ordered such that for any xt ∈ dS, νd(xt) ≥ νd(xt+1),
if xt+1 is defined. It turns out that in order to estimate Nd, it is sufficient to have a lower
bound for cardinality |dS| and a majorant for the weight distribution function. The former
lower bound has been obtained in [ENR99] and does not require the techniques of this paper,
yet it will be recovered in slightly different way and used in the framework of our proof.

Let nd(t) = νd(xt). The inverse, also a decreasing function n−1
d would provide the bound1

(1.8) n−1
d (τ) ≥ | dSτ ≡ {x ∈ dS : νd(x) ≥ τ}|.

Our main result is the following.

1Note that n−1
d is simply the distribution function for nd in the measure-theoretical sense.
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Theorem 1. For d ≥ 2, let αd = 2(1− 2−d), βd = d− 4
3 (1− 2−d). Then

(1.9) |dS| & Nαd ,

(1.10) nd(t) . Nβdt−1/3,

(1.11) Nd . N2d−αd .

Remark. The main estimates of this paper are (1.10) and (1.11). The estimate (1.9) on the
cardinality of the sumset dS has been included in the statement for the sake of completeness
and is due to Elekes et al., [ENR99], Ch. 4, where it is derived after a repeated application
of the classical Szemerédi-Trotter incidence theorem. However, while the estimate (1.9)
can be easily derived from the estimate (1.11), the converse is not true. We shall see that
the derivation of the estimate (1.11) requires application of more sophisticated arguments
involving weighted incidence with appropriately chosen weights.

In the case when the set S is a subset of integers, the estimate (1.11) enables one to
bound the Lp norm of trigonometric polynomials with frequencies in S.

Corollary 2. If S ⊂ Z, let

(1.12) PN (θ) =
N∑

j=1

e2πisjθ.

Then

(1.13) ‖PN‖2d ≡
(∫ 2π

0

|PN (θ)|2d
dθ

) 1
2d

. N1− 1−2−d

d .

Remark. By expanding the square we see that (1.13) is essentially an identity when d = 1.
When d > 1 observe that (1.13) is much stronger than the estimate that can be obtained
by interpolating the case d = 1 and d = ∞ using Holder’s inequality.

Acknowledgements. The authors wish to thank M. Garaev, N. Katz, and Z. Rudnick for
a number of interesting and helpful remarks, references and suggestions.
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Section 2: Incidence theorems

As we mention in the introduction, the main tool used in [ENR99] and [Ko00] is the
theorem of Szemerédi and Trotter ([ST83]) bounding the number of incidences between a
collection of points and straight lines in the Euclidean plane. The theorem was extended
to the case of points and hyper-planes or spheres (with some natural restrictions on the
arrangements) by Clarkson et al. (see [CEGSW90] and the references contained therein).
Incidence theory provides a set of powerful tools for solving problems in geometric combi-
natorics and related areas. See also books by Pach and Agarwal ([PA95]) and Matoušek
([Ma02]) for an exhaustive description of this subject and related issues. It was observed
by Székely ([Sz97]) that the geometric graph theory can deliver a short and elegant proof
of the following weighted version of the Szemerédi-Trotter incidence theorem in dimension
two, with the set of lines generalized to a class of curves satisfying generic intersection
hypotheses.2 From now on, we shall use the terms “lines” and “curves” interchangeably.

Theorem 2. ( [ST83]) Let (L,P) be an arrangement3 of m curves and n points in R2.
Suppose that no more than boundedly curves pass through a pair of points of P and that the
intersection of any two curves of L contains a bounded number of points of P. Then the
total number of incidences

(2.1) I = |{(l, p) ∈ L × P : p ∈ l}| . (mn)
2
3 + m + n.

Under the assumptions of Theorem 2, which we shall refer to as the simple intersection
case, the number of incidences I for an arrangement (L,P) can be expressed in terms of the
counting function δlp. More precisely,

(2.2) I =
∑

p∈P
m(p)

∑

l∈L,p∈P
δlp.

In this formula, m(p) denotes the number of curves incident to a specific point p, and
δlp = 1 if p ∈ l, and 0 otherwise.

Now let us consider the issue of weighted incidences. In this case the numbers (m,n)
in Theorem 2 will have a slightly different meaning. Given some µ, ν ≥ 1 (without loss of
generality suppose they are integers) let us assign to each line l ∈ L and each point p ∈ P
the weights µ(l) ∈ {1, . . . , µ} and ν(p) ∈ {1, . . . , ν}, respectively, so that

(2.3)
∑

l∈L
µ(l) = m,

∑

p∈P
ν(p) = n.

2There is nothing to prevent one from generalizing the ambient space R2 to a general two-manifold of
finite genus.

3By the arrangement we further mean an embedding, or drawing of the curves and points in the plane.
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Let us call such a weight assignment a weight distribution with maximum weights (µ, ν)
and net weights (m,n). A single pair (l, p) ∈ L × P will have the weight wlp = µ(l)ν(p)δlp.
Let the number of weighted incidences be defined by

(2.4) I ≡
∑

p∈P
m(p)

∑

l∈L,p∈P
wlp.

Now the quantity m(p) counts the total weight of all the curves incident to a particular
point p. Note that the cardinality of the sets L and P do not enter the weighted incidence
bound (2.4) at all. We shall make use of the following weighted version of Theorem 2, which
can be viewed as a variant of a weighted version of the Szemeredi-Trotter incidence theorem
due to Szekely ([Sz97]).

Theorem 3. Given a simple intersection arrangements (L,P) with net weight (m,n), and
a weight distributions with maximum weights (µ, ν), one has

(2.5) I . (µν)
1
3 (mn)

2
3 + νm + µn.

Proof of Theorem 3 follows easily from Theorem 2 by a simple weight rearrangement
argument and is given at the end of the paper. Note that for the right hand side of (2.5)
one has

(2.6) (µν)
1
3 (mn)

2
3 + νm + µn = µν

[(
m

µ

n

ν

) 2
3

+
m

µ
+

n

ν

]
,

which indicates that the maximum number of weighted incidences is achieved when there
are m

µ lines and n
ν points with uniformly distributed weights, equal to µ or ν, respectively.

Observe that unless the weights are distributed uniformly, neither |L|, nor |P| enter the
estimate (2.5). This suggests that the estimate (2.5) needs to be properly localized to achieve
sufficiently sharp estimates. However, the situation changes if extra information about the
weight distributions throughout L or P becomes available. It then opens up a wide variety
of possibilities for decomposition and divide-and-conquer approaches, partitioning the sets
L or P into pieces such that the estimate (2.4) applied to each piece of the partition leads
to sharp estimates.

The following is a heuristic sketch of the proof of Theorem 1. The proof starts out with
the case d = 2, following [ENR99] and [Ko00], based on Theorem 2, and proving (2.1). Its
essence is the interpretation of the estimation of N2 as an incidence problem. The case d = 2
is followed by induction on ”dimension” d. The problem of estimating Nd+1 in terms of
Nd can also be interpreted as an incidence problem, but a weighted one. Each point in the
corresponding set P will have weight equal to 1. However, the set L will be associated with
the d-dimensional problem and will carry non-trivial weights, which will be in one-to-one
correspondence with the weights νd(x) in the sumset dS. Note that the maximum weight
µ = supx∈dS νd(x) for the elements of dS is trivially Nd−1, or less trivially Nd d−1

d+1 using the
classical result of Andrews ([An63]) (see also [BL98]).
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Theorem 4 [Andrews]. The number of vertices of a convex lattice polytope4 in Rd of
volume V is O

(
V

d−1
d+1

)
.

Returning to the sketch of proof of Theorem 1, we shall see that if m,µ are respectively
net and maximum weights for the set of lines (m will be equal to N times Nd, the latter
being the net weight of dS), then the cardinality |L| is much greater than mµ−1. In other
words, there is a lower bound L on |L|, so the majority of the members of L will carry
weights which are smaller than the maximum weight µ. This allows one to use the bound
for the ”average” weight µ̄ = m

L (which is much smaller than µ) in the formula (2.5). This
is proved in Lemma 6 below, which is central for the proof of Theorem 1 and leads quickly
to the key estimates (1.10) and (1.11).

Remark on notation. In what follows, the quantities (µ, ν), will always denote weights for
the incidence problem in question, the weighted arrangement (L,P) of curves and points
respectively. On the other hand the notation νd always refers to the weight distribution
function on the sumset dS. Throughout the induction process, individual weights of curves
l ∈ L are in one-to-one correspondence with weights νd(x), for x ∈ dS.

Section 3: Proof of Theorem 1

The proof is by induction on d, starting from the case d = 2. Let

(3.1) γ = {(x, f(x)) : x ∈ [1, N ]}, and γB{(i, f(i)) : i ∈ B}

The case d = 2.

Lemma 5. We have

(3.2) |2S| & N3/2,

and

(3.3) |2Sτ | ≡ |{x ∈ 2S : ν2(x) ≥ τ}| . N3τ−3.

Proof. Define 2B ≡ B + B. Consider the set of points P = B×S + γB = 2B× 2S and the
set of curves L = γ + B × S. Strict convexity of the curve γ implies that the arrangement
(L,P) satisfies the simple intersection condition.

Since |P| . N2, the number of incidences I for this arrangement can be estimated using
Theorem 2:

(3.4) I . N4/3(|P|)2/3.

4A lattice polytope is a polytope with vertices in the integer lattice Zd.
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On the other hand, each curve of L contains at least N points of P (that is why P has
been taken as 2B × S rather than simply B × S). It follows that I & N3, and

(3.5) N |2S| ≈ |P| & N5/2,

which implies (3.2).
Let Pτ = {p ∈ P : m(p) ≥ τ}, where m(p) is the number (coinciding in this case with the

total weight) of curves of the arrangement L intersecting at the point p. Applying estimate
(3.4) for the number of incidences for the arrangement (L,Pτ ), with |Pτ | in place of |P|,
and comparing it with the lower bound τ |Pτ |, we see that τ |Pτ | ≤ I . N

4
3 |Pτ |

2
3 , which

implies that |Pτ | . N4

τ3 , hence

(3.6) |2Sτ | ≈ N−1|Pτ | . N3τ−3,

as claimed in (3.3). Note that division by N above is due to the definition of P = 2B × 2S,
and |2B| ≈ N , as the base set B is the set of consecutive integers.

Motivated by (3.2), let ν̄2 =
√

N be the (approximate) upper bound for average weight
over 2S (the net weight of 2S is proportional to N2). By (3.3) the weight distribution
function in the (ordered) set 2S satisfies

(3.7) ν2(xt) . n2(t) = Nt−1/3.

It follows that for the set 2Sν̄2 , containing those O(N3/2) elements of 2S, whose weights
may exceed ν̄2, one has

(3.8)
∑

x∈2Sν̄2

ν2
2(x) . N2

∫ N3/2

1

t−2/3dt ≈ N5/2.

On the other hand, for the complement 2Sc
ν̄2

of 2Sν̄2 in 2S, where the weight does not
exceed ν̄2, one has

(3.9)
∑

x∈2Sc
ν̄2

ν2
2(x).ν̄2

∑

x∈2S

ν2(x) ≈ N5/2.

This proves formulas (1.9− 1.11) in the case d = 2.

Remark. The estimates (3.8) and (3.9) are motivated as follows. One naturally partitions
the domain 2S in two subsets. In the first subset, containing x such that ν2(x) & ν̄2

(where the quantity ν̄2 has been obtained as the net weight divided by the lower bound for
cardinality |2S|) one uses the (strictly decreasing, convex) majorant n2(t) for ν2(xt) and
gets (3.8). The sum of ν2

2(x) over the second subset, where ν2(x) . ν̄2 is bounded by the
product of the L1 norm of the function ν2(x) (≈ N2) and the L∞ norm ν̄2 =

√
N for ν2(x),

restricted to the latter subset. This yields (3.9). The same idea is used in the remaining
part of the proof. The most difficult point is getting a tight enough majorant nd(t) in the
case d ≥ 2.
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The case d ⇒ d + 1. In order to characterize the weight distribution function νd+1(x), for
x ∈ (d + 1)S, consider the equation

(3.10) f(i1) + [ f(i2) + . . . + f(id+1)] = x.

Let u ∈ dS. Extend (3.10) to the system of equations

(3.11)
{

f(i1) + u = x,
i1 + j = k,

∀ (i1, j, k, u, x) ∈ B × 2B × 2B × dS × (d + 1)S.

Note that (d + 1)S is considered as a set, rather than multi-set. The elements of the
set dS = {u1, u2, . . . , ut, . . . } are endowed with non-increasing weights, with the weight
distribution function νd(u), which by the induction assumption should comply with (1.9−
1.11). Besides, the L1 norm of νd(u), over dS is proportional to Nd. The L∞ norm of νd(u)
is O(Nd d−1

d+1 ), by the Andrews theorem (Theorem 4). By (1.10), there is a majorant

(3.12) νd(ut) . nd(t) = Nβdt−1/3,

where βd = d− 4
3 (1− 2−d). There is also the estimate (1.9) for the minimum cardinality of

dS. The latter leads us to introduce the upper bound for the average weight ν̄d in dS,

(3.13) ν̄d . Nd−αd ,

with αd = 2− 2−d+1.
The number of solutions of (3.10) is not greater than the number of solutions of (3.11),

divided by N . On the other hand, (3.11) can be interpreted as a weighted incidence problem.
Let L be the set of the curves, given by the translations γju of the curve γ defined by (3.1),
by some (j, u) ∈ 2B × dS. For such l = γju ∈ L, let the weight µ(l) = νd(u). Define the
set of points P = 2B × (d + 1)S, with unit weights. Then the number of solutions of (3.11)
is bounded by the number of weighted incidences in the arrangement (L,P). In particular,
if x ∈ (d + 1)S = s + u, for some s ∈ S and u ∈ dS, then clearly

(3.14) νd+1(x) =
∑

(s,u)∈(S×dS):x=s+u

νd(u).

The formula (3.11) applies to the case d = 2 as well, with u ∈ S. Hence now the problem
essentially boils down to the same scheme as it was in the case d = 2, except that weighted
incidences should be counted in order to verify estimates (1.10) and (1.11). Verification
of (1.9) is easier. It requires only the available (through the induction assumption) lower
bound |dS| & Nαd and the use of (2.1) and was done in [ENR99] (and in the case d = 2,
see (3.4) and the formula that follows it). The corresponding estimate (3.12) can be also
obtained using the following lemma.
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Lemma 6. Let ν̄ be defined as in (3.11) above. Assuming the estimate (3.12) on the weight
distribution function νd(u) in the set dS, the number of incidences for the above defined
arrangement (L,P), describing the solutions of the system (3.11) is given by

(3.15) I . ν̄
1/3
d N2(d+1)/3(N |(d + 1)S|)2/3,

Lemma 6 shows that in order to count the weighted incidences in the arrangement (L,P)
by formula (2.3), instead of the maximum weight µ = O(Nd d−1

d+1 ) in the set L, given by the
Andrews theorem, one can set µ = ν̄d, which is considerably smaller. Note that by definition
of L), its net weight boils down to m = Nd+1. In addition, every point p ∈ P has unit
weight. The proof of Lemma 6 is given in the next section. We shall now use it to complete
the proof of Theorem 1.

Assuming Lemma 6, we compare the estimate (3.15) with the fact that on each curve
of L there lies at least N points of P. It follows that I ≥ Nd+2, as net weight of L is
proportional to Nd+1. Comparing the powers of N , we get5

(3.16) |(d + 1)S| & N2−2−d

= Nαd+1 .

This leads us to define the upper bound for the average weight in (d + 1)S:

(3.17) ν̄d+1 = Nd+1−αd+1 .

Let Pτ = {p ∈ P : m(p) ≥ τ}, where m(p) is the total weight of all the curves of the
arrangement L intersecting at the point p, see (2.2). Clearly Pτ = 2B × (d + 1)Sτ , where
(d + 1)Sτ is the subset of (d + 1)S, consisting of all those elements x, whose weight νd+1(x)
is not smaller than τ . In order to estimate |(d + 1)Sτ |, formula (2.1) cannot be used, as
one has to take into account the individual weight of each curve γju ∈ L (equal to νd(u))
passing through the given point p. Instead, weighted incidences have to be dealt with, and
Lemma 6 formally enables one use the average weight ν̄d instead of µ in the application of
the formula (2.3).

In view of this, we proceed by comparing the lower bound τN |(d+1)Sτ |, for the number of
weighted incidences for the arrangement (L,Pτ ) with (3.16), in which |(d+1)Sτ | substitutes
|(d + 1)S|. We get τN |(d + 1)Sτ | . I . ν̄

1/3
d N2(d+1)/3(N |(d + 1)Sτ |)2/3. By (3.13) this

yields

(3.18) |(d + 1)Sτ | . N1−αd

(
Nd

τ

)3

.

5As we have mentioned earlier, one can do without Lemma 6 in order to get (3.16). Namely, if I is
the number of (non-weighted in this case) incidences for the arrangement (L,P) in question, then similarly

to the case d = 2, one has N(N |dS|) . I . (N |(d + 1)S|)2/3(N |dS|)2/3, which implies bound (3.16) for
|(d + 1)S|, under the assumption |dS| & Nαd . This was done in [ENR99].
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If τ = ν̄d+1, defined by (3.17), it follows that

(3.19) |(d + 1)Sν̄d+1 | . Nαd+1 ,

which is the same as the right-hand side in (3.16), and complies with (1.9). Inversion of
(3.14) yields:

(3.20) νd+1(xt) . nd+1(t) = Nd− 1−2−d+1
3 t−1/3 = Nβd+1t−1/3,

as is claimed by (1.10).
The final step of the proof follows the remark at the end of the d = 2 section. More

precisely, one partitions

(3.21) (d + 1)S = (d + 1)Sν̄d+1 ∪ (d + 1)Sc
ν̄d+1

,

into “heavy” and “light” elements, and obtains the estimate

(3.22)
∑

x∈(d+1)Sc
ν̄d+1

ν2
d+1(x) . Nd+1ν̄d+1 = N2(d+1)−αd+1 ,

along with

(3.23)
∑

x∈(d+1)Sν̄d+1

ν2
d+1(x) . N2βd+1

∫ Nαd+1

1

t−2/3dt ≈ N2(d+1)−αd+1 .

Estimates (3.22) and (3.23) are consistent with (1.11). Thus the proof of Theorem 1 is
complete up to the verification of Lemma 6.

Section 4: Proofs of Lemma 6 and Theorem 3

Proof of Lemma 6. The objective is to partition the set

(4.1) dS =
M⋃

i=0

dSi

into M (a fairly large number of) pieces, trying to make each one of them as large as possible,
yet having control over the number of weighted incidences it can possibly be responsible for.
We aim to get a bound

(4.2) νd(x) . bi, ∀x ∈ dSi,
11



for some geometrically decreasing sequence bi approaching the quantity ν̄d, defined by (3.17)
and appearing in main estimate (3.15). The sequence bi will start out from

(4.3) b0 = Nd d−1
d+1 ,

(the L∞ norm of νd, given by the Andrews theorem6). The number M in (4.1) is chosen in
such a way that bM is close enough to ν̄d, so that the effect of the difference between them
can be swallowed by a constant in the . symbol. The sequence {dSi} will be constructed,
using the weight distribution majorant (3.12).

By general estimate (2.3) of Theorem 3 in order to prove the lemma, it suffices to show
that

(4.4)

(
Ĩ ≡

M∑

i=0

b
1
3
i m

2/3
i

)
.

(
Ī ≡ ν̄

1/3
d m2/3

)
,

where m = Nd is the net weight of dS, and mi is the net weight of each subset dSi,
for i = 0, . . . , M . The difference between (4.4) and (3.15) is that we have dropped those
powers of N in the latter estimate, which arise from net weight of L as well as the fact that
P = 2B × (d + 1)S (i.e that to every x ∈ (d + 1)S there correspond at least N solutions
of (3.11)). Each dSi ⊂ dS corresponds to the subset Li = 2B × dSi of L. Throughout the
proof of Lemma 6, mi would stand for net weights of dSi only, rather than Li.

It is easy to verify that the linear terms coming from bound (2.3) are irrelevant. Indeed,
the first linear term is O(Nd+1), being the total weight of the set of lines L = 2B×dS. The
second linear term can be bounded via biN

d+1. By construction, both linear terms will be
dominated by the incidence bound, reflected by the quantity Ĩ, defined by (4.4). See (4.12)
at the end of the proof.

Net weights mi of dSi are to be estimated via bi, using the inverse formula for the
majorant (3.9), i.e

(4.5) |{x ∈ dS : νd(x) ≥ τ}| . n−1
d (τ)N3βdτ−3, βd = d− 4

3
(1− 2−d).

Note that the majorant (3.12) is good for nothing as far as the elements x ∈ dS, such that
νd(x) . ν̄d are concerned. Indeed, a calculation yields

(4.6)
∫ ∞

ν̄d

n−1
d (τ)ds ≈ m,

where m ≈ Nd is the net weight of dS.

6In fact, one can see from the proof that the use of the Andrews theorem is unnecessary: one can simply
start out with b0 = Nd, which is the net weight of dS.
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Also for the terms in the sum in the right-hand side of (4.4) denote

(4.7) Ĩi ≡ b
1
3
i m

2/3
i .

The sets dSi and the number M are to be chosen such that

(4.8) Ĩi . N−εi Ī ,

for some geometrically vanishing sequence of small positive numbers {εi}M−1
i=0 . This prompts

the choice

(4.9) M ≈ log logN,

as then εM−1 ≈ ε0 e− log log N ≈ 1
log N , so for a sufficiently small, yet O(1) value of ε0,

(4.10) NεM−1 ≈ 1 and
M−1∑

i=0

N−εi ≈
∫ log log N

1

N−ε0 exp(−t)dt .
∫ ∞

1

e−z

z
dz ≈ 1.

Let us describe the first step of the construction. Let a number δ0 be defined via b0 =
N δ0 ν̄d. Define the weight m0 of the set dS0 implicitly via (4.5):

(4.11) b
1/3
0 m

2/3
0 ≈ N−ε0 ν̄

1/3
d m2/3,

which yields

(4.12) m0 = N− 1
2 (3ε0+δ0)m.

Then the weight of any element x in the complement dSc
0 of dS0 in dS should be bounded

from above by some quantity b1, which can be defined implicitly from

(4.13)
∫ ∞

b1

n−1
d (τ) ds = m0.

This yields

(4.14) b1 = ν̄dN
δ1 , δ1

1
4
(3ε0 + δ0).

Clearly, for ε0 small enough, say ε0 = 1
9δ0, one has δ1 ≤ 1

3δ0.
The procedure is now repeated for the set dSc

0, where the maximum weight is bounded
in terms of b1, rather than b0, which will result in some set dS1 having been pulled out of
it, such that the maximum weight in the complement of dS1 in dSc

0 is bounded in terms of
some b2 (which is much smaller than b1), and so on. After having done it M − 1 times, the

13



set dS will be partitioned, according to (4.1), where the last member of the partition dSM

is the complement of the union
⋃M−1

i=0 dSi in dS. For i = 1, . . . , M the maximum individual
element weight in dSi is bounded similarly to (4.14), namely

(4.15) bi = ν̄dN
δi , δi

1
4
(3εi−1 + δi−1).

Thus, if the quantities εi vanish geometrically, with the ratio exceeding say 9, we have
δi ≤ δ0e

−i, i = 1, . . . , M .
By construction, each set of lines Li = 2B × dSi, for i = 0, . . . , M − 1 would create the

number of weighted incidences Ii for the arrangement (L,P), bounded as follows:

(4.16) Ii . N2d+2−d−εi+1.

See (3.15) and (4.7). Note that in comparison with (1.11) one has d → d+1, which accounts
for an extra N here, as the quantity Nd equals N−1 times the number of incidences for the
arrangement (L,P), introduced in accordance with the system of equations (3.11), rather
than equation (3.10).

As each εi ≤ 1, the right hand side of the last expression will exceed the maximum for
the linear term in estimate (2.3), applied to the arrangement (L,P), as the latter can be
bounded simply via

(4.17) b0N
d+1 . N

2d2
d+1 .

Finally, by (4.7)

(4.18) bM . ν̄d,

and thus the remaining set dSM , as well as (also by (4.10)) the union
⋃M−1

i−1 dSi will not
be responsible for more incidences than specified by the right-hand side of (3.11). This
completes the proof of Lemma 6.

Proof of Theorem 3. Without loss of generality, one can assume that all the weights are
integers, the net line weight m is a multiple of the maximum line weight µ, and the net point
weight n is a multiple of the maximum point weight ν. Then bound (2.5) is equivalent to
the bound (2.1) for the number of incidences between m/µ lines and n/ν points, provided
that in the latter bound, each incidence has been counted µν times. In other words, for the
uniform weight distribution there is nothing to prove.

Otherwise, consider some arrangement (L,P) and suppose, that the weight distribution
over, say P is not uniform. Then there exist p1, p2 ∈ P, such that ν(p1) < ν(p2) < ν. For
p ∈ P let

(4.19) m(p) =
∑

l∈L
µ(l)δlp,

14



be the total weight of all the lines incident to p. If m(p1) > m(p2), first change the weight
distribution by swapping the values ν(p1) and ν(p2) over the points p1 and p2. Then modify
the weight distribution by changing ν(p1) → ν(p1)− 1 and ν(p2) → ν(p2) + 1. If ν(p1) has
become zero, remove p1 from P. As the result, the weight distribution has been modified, so
that the number of weighted incidences has increased, yet the net weight has stayed constant.
Continue this (greedy) procedure, until the weight distribution over P has become uniform;
then do the same thing with the set L. At each single step, the number of incidences will
have increased. However, as the result, one still ends up with bound (2.4), as only m/µ
lines and n/ν points will eventually remain. This completes the proof of Theorem 3.

Section 5: Theorem 1 and inequalities for elements of special matrices

In this section we will present another approach to the proof of Theorem 1 based on
construction and study of special matrices. The same idea was used in ([Ko02]) to get
estimates for exponential sums over subgroups of multiplicative groups in finite fields. The
proofs are similar to those in ([Ko02]), so we only sketch the arguments.

First we observe that it is enough to prove Theorem 1 in the case when each each si is an
integer. Indeed, let {si}N

i=1 be an arbitrary convex sequence. By the pigeon-hole principle,
there are integers Si (i = 1, . . . , N) and a positive integer M , such that for i = 1, . . . , N we
have

(5.1) |Msi − Sj | < 1/(2d).

Then the equality

(5.2) si1 + si2 + · · ·+ sid
= sid+1 + · · ·+ si2d

implies

(5.3) Si1 + Si2 + · · ·+ Sid
= Sid+1 + · · ·+ Si2d

.

Therefore, the number of solutions to equation (5.2) does not exceed the number of
solutions to equation (5.3). Moreover, M can be chosen so large that si+1−2si+si−1 > 1/M
for i = 2, . . . , N − 1. Hence, the sequence {Si}N

i=1 is also strictly convex. We see that (1.11)
for integral strictly convex sequences implies its validity for all strictly convex sequences.
Similarly this can be shown for inequalities (1.9) and (1.10).

So, we will assume that a sequence {si}N
i=1 is integral and strictly convex. Fix d and

take a large positive integer p. Then the equation si1 + si2 + · · ·+ sid
= x is equivalent to

the congruence si1 + si2 + · · ·+ sid
≡ x(modp). We arrange the square matrix A of order p

setting ak,l = 1 if l − k ≡ si(modp) for some i and ak,l = 0 otherwise.
By a

(d)
k,l we denote the elements of the matrix Ad. Clearly, νd(x) = 0 if |x| > ds where

s = maxi |si|. It is easy to check that a
(d)
k,l = νd(l − k) for |l − k| ≤ ds provided that p is
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large enough. By {a(d)
1 , . . . , a

(d)
p } we denote the non-increasing rearrangement of a row of

the matrix Ad (observe that it does not depend on the choice of a row because any row of
Ad is a cyclic translation of any other row). Inequality (1.10) means that

(5.4) a
(d)
t . Nβdt−1/3.

Also, for any k

(5.5) Nd =
p∑

l=1

(
a
(d)
k,l

)2

=
p∑

t=1

(
a
(d)
t

)2

,

and (1.11) is equivalent to

(5.6)
p∑

t=1

(
a
(d)
t

)2

. N2d−αd .

It is easy to see that the following equalities hold:

(5.7) ∀k
∑

l

ak,l = N,

(5.8) ∀l
∑

k

ak,l = N.

Let U be the column of size p all whose elements are equal to 1. Equality (5.7) is equivalent
to AU = NU . This implies AdU = NdU , or

(5.9) ∀k
∑

l

a
(d)
k,l = Nd.

In turn, (5.7) can be rewritten as

(5.10)
∑

t

a
(d)
t = Nd

followed by

(5.11) a
(d)
t ≤ Nd/t.

Estimates (5.4) and (5.11) easily imply (5.6).
To prove (5.4) we need some other properties of the matrix A which can be deduced from

the Szemerédi-Trotter incidence theorem.
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Lemma 7. For any sets K ⊂ {1, 2, . . . , p} and L ⊂ {1, 2, . . . , p} we have

(5.12)
∑

k∈K

∑

l∈L

ak,l . N
1
3 (|K| · |L|) 2

3 + |K|+ |L|.

Proof. It will be more convenient to work in Z rather than in Z(modp). We note that

(5.13)
∑

k∈K

∑

l∈L

ak,l ≤ S(K,L′)

where L′ = L ∪ (L− p) ∩ (L + p) and S(K,L′) is the number of solutions to the equation

(5.14) l − k = si k ∈ K, l ∈ L′, i ∈ {1, . . . , N}.

Thus, we have to show that

(5.15) S(K,L′) . N
1
3 (|K| · |L|) 2

3 + |K|+ |L|.

Following the proof of Lemma 5, we consider the set of points P = 2B × L′ and the set
of curves L = γ + 2B ×K. Let I be the number of incidences for this arrangement. We
have

(5.16) |P| ≤ 2N |L′|, |L| ≤ N |K|, I = NS(K, L′).

Using the Szemerédi-Trotter incidence theorem, we get (5.15). Combining (5.13) and (5.15),
we complete the proof of Lemma 7.

The crucial estimate (5.4) can be deduced from Lemma 7 and (5.7)-(5.9) by induction on
d similarly to the proof of Lemma 19 in ([Ko02]).
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