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Abstract

Mendelian randomisation is a form of instrumental variable analysis that estimates the causal effect
of an intermediate phenotype or exposure on an outcome or disease in the presence of unobserved
confounding, using a genetic variant as the instrument. A Bayesian approach allows current knowledge
to be incorporated into the analysis in the form of informative prior distributions, and the unobserved
confounder can be modelled explicitly. We consider Bayesian methods for Mendelian randomisation in
the case where all relationships are linear, and there are no interactions.

A ‘full’ model in which the unobserved confounder is included explicitly is not completely identifiable,
although the causal parameter can be estimated. We compare inferences from this general but non-
identified model with a reduced parameter model that is identifiable. We show that, theoretically,
additional information about the causal parameter can be obtained by using the non-identifiable full
model, rather than the identifiable reduced model, but that this is advantageous only when realistically
informative priors are used and when the instrument is weak or the sample size is small. Furthermore,
we consider the impact of using ‘vague’ versus ‘informative’ priors.

Keywords: Mendelian randomisation; Bayesian analyses; identifiability.

1 Introduction

A randomised controlled trial is the most effective way of eliciting the causal effect of an exposure on a clinical
outcome, because the randomisation mechanism will act to ensure that all unmeasured variables are evenly
distributed across all strata, at least in large samples. However, it is not always possible or ethical to use
randomisation and researchers are often forced to rely on observational data. It can then be difficult to tell
whether an observed association, or lack of association, between a possible causal factor, X, and the outcome,
Y , is genuine or is the result of unobserved confounders, U . In epidemiology, an increasingly popular way of
calculating consistent estimates of causal parameters, in the presence of unobserved confounding, is to use
an instrumental variable (IV) analysis in which a third factor, G, is sought such that there is no direct link
between G and Y , and G is independent of the confounders. The three conditions that G must satisfy in
order to be classed as an IV for the effect of X on Y are:

1. G is independent of the set of all confounders U : G ⊥⊥ U .

2. G is associated with the exposure X: G 6⊥⊥ X

3. G and Y are conditionally independent given X and U : G ⊥⊥ Y |(X,U).
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Figure 1: DAG depicting conditional (in)dependencies implied by the core IV conditions where G is an
instrument for the causal effect of X on Y .

We use the notation A ⊥⊥ B|C to denote conditional independence of A and B, given C [1]. The conditional
independencies implied by these ‘core’ conditions are encoded in the unique directed acyclic graph (DAG)
represented in Figure 1.

In epidemiological applications, it is sometimes possible to use a genetic variant as the instrument. The
term ‘Mendelian randomisation’ has become widely used for an IV analysis that uses a genetic instrument
[2, 3, 4, 5]. It is crucial, however, that the chosen variant satisfies each of the three ‘core’ conditions
[5]. In recent years, numerous genetic studies using single-nucleotide polymorphisms (SNPs) have provided
information on the associations between a range of variants and exposures (core condition 2), and since
an individual’s genes are randomly allocated before birth, they cannot be influenced by the life-style and
environmental factors that often confound observational associations (core condition 1). While we can
often be reasonably confident that the first two hold, the third condition is difficult to verify, as many
genes act on more than one pathway and detailed functional knowledge is not always available. A further
important consideration is that for most genetic instruments, the magnitude of the G−X association will be
comparatively small; in such a case, the instrument is loosely referred to as ‘weak’ and estimates are prone
to ‘weak instrument bias’ [6].

We will focus on linear no-interaction models for the exposure and outcome, for which frequentist methods
such as two-stage least squares give consistent estimates of the average causal effect of X on Y [7]. In the
case of a single instrument, this is equivalent to the ‘ratio’ or Wald estimator [8], which is based on the
regressions of Y on G, and of X on G. However, it is difficult to measure either association with precision
when the instrument is weak, and very large sample sizes will be required for any causal inference. An
advantage of using a Bayesian approach over frequentist methods, however, is that informative priors, when
available, can be used to increase the precision of such estimates.

As the confounder in Figure 1 is unobserved, a key consideration when modelling a Mendelian randomi-
sation study is the identifiability of the parameters. A model that can be parameterised by a k-dimensional
vector θ ∈ Rk, is non-identifiable if there exist multiple (distinct) vectors θ, each of which corresponds to the
same distribution for the data, D. This is the same for frequentist as it is for Bayesian approaches. However,
whilst the former apply model restrictions in order to achieve identifiability, the latter also have the option
of using prior information [9].

Gustafson [10] discusses the idea of reduced parameter models (model contractions) and model expansion
as ways for creating an identifiable structure from a non-identifiable Bayesian model. Model expansion seeks
to enlarge the model so that extra data can be included in the analysis, while the more obvious approach of
model contraction seeks to simplify the model by removing parameters. The danger with such a simplification
is that it can produce precise estimates under the wrong model and hence be misleading. However, the idea
of model contraction leads naturally to the notion of a transparent re-parameterisation [11]: a bijective
transformation θ 7→ (φI ,φN ), such that φN ⊥⊥ D|φI , the model described by the parameter vector φI is
identifiable, and no other vector φA can be found such that φN ⊥⊥ D|φA with dim(φA) < dim(φI).

A transparent reparameterisation does not exist for every non-identified model, but when it does, it has
the following properties. Under very mild additional conditions [11], the posterior distribution of φI must
tend to a point mass at its true value φI

∗ as the sample size grows indefinitely. The posterior conditional
distribution of (φN |φI ,D) on the other hand is equal to the prior conditional distribution of (φN |φI), or in
other words φN ⊥⊥ D|φI . That is, conditional on the information contained in the model parameterised by
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φI , φN is not identifiable from the data alone [12], and the priors for these parameters will have a heavy
influence on any resulting inference [13]. The limiting posterior distribution for θ as the sample size grows
indefinitely, considering that θ 7→ (φI ,φN ) is a bijective transformation, therefore consists of a point mass
distribution for φI at φI

∗, and the prior conditional distribution of (φN |φI
∗). An obvious corollary of this

is that for any quantity of interest in φI , the same quantity is also identifiable in the model parameterised
by θ.

However in many situations, the fact that φN ⊥⊥ D|φI does not preclude some learning about φN , unless
φN ⊥⊥ D [9, 12]. Often, there is some dependence between φN and φI which leads to a posterior marginal
for φN that is quite different from its prior. In such situations, φN is partially identified [14]. Though the
prior and posterior distribution for φN are distinct, it is worth noting that collecting an infinite amount of
data would not result in a posterior marginal for φN concentrated entirely at a point.

Structure of Paper

Three approaches to parameterising the likelihood representing the structure in Figure 1 will be considered,
each constructed to estimate the average causal effect of X on Y . These are loosely referred to as ‘models’ in
sections 2.1, 2.2 and 2.5, although each is really a ‘class’ of models consisting of a particular parameterisation
and a class of priors. We will be interested in the effects of different priors on these parameterisations. All
models will be fitted using Markov chain Monte Carlo (MCMC), in particular using single site Gibbs sampling
as implemented in WinBUGS 1.4.3.

In section 2.1, we introduce a model with likelihood built to represent exactly the structure implied
by Figure 1. It explicitly models the unobserved confounder U , which renders the model non-identifiable.
The likelihood of the second model is a transparent re-parameterisation of the first, and is introduced in
section 2.2. We explore the relationship between these in sections 2.3 and 2.4. In section 2.5, a third
model is considered, though its likelihood is not a re-parameterisation of the other two. This was used
recently to estimate causal relationships in a meta-analysis using Bayesian methods [15]. We explain why,
theoretically, all three parameterisations, subject to allocated priors, can yield very different estimates of the
causal parameter under particular conditions.

The performance of the three parameterisations is investigated in section 3, where two examples are
provided. In the first, simulated data are based on a real study (the Avon Longitudinal Study of Parents
And Children) and is designed to show that in certain situations all three parameterisations yield comparable
estimates of the causal parameter, and to demonstrate the effect of applying informative versus ‘vague’ priors.
The second example is designed to highlight that all three parameterisations can perform very differently
under particular conditions. Finally, we discuss the implications of our findings for the analyses of Mendelian
randomisation studies.

2 Methods

Throughout this paper, we assume that the intermediate exposure X and the outcome Y are continuous
random variables, and that the genetic instrument G is a discrete random variable taking values in {0, 1, 2}.
The unobserved confounders will be denoted by U . We will let the target parameter of interest be the average
causal effect (ACE), defined as

ACE(x1, x2) = E[Y |do(X = x2)]−E[Y |do(X = x1)],

where the do-notation represents intervention [16], in this case intervention in X. This is the quantity that
would be targeted in a study which randomised X. If we are willing to assume that U is a sufficient set of
confounders, that is E[Y |do(X), U ] = E[Y |X,U ], and we are willing to assume that E[Y |X = x, U = u] =
b1x+ h(U), then ACE(x1, x2) = b1(x1 − x2) [3], so that b1 becomes the causal parameter of interest.

The parameterisations that we consider assume a bivariate normal likelihood for (X,Y ) given G. Indeed,
this is one of the drawbacks to taking a Bayesian approach: the likelihood must be fully specified, unlike
the classical two-stage-least-squares approach which can be derived from a method of moments argument or
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from a semiparamtric structural mean model [17]. We will introduce the various ways of parameterising the
likelihood in sections 2.1, 2.2 and 2.5, and discuss the choice of priors in section 2.6.

2.1 The ‘Full’ Model

The likelihood of the ‘full’ model is built to represent the structure in Figure 1 exactly. We make the
additional assumption that h(U) = b0 + b2U and assume that X is also linear in G and U , with

X = a0 + a1G+ a2U + εx (1)
Y = b0 + b1X + b2U + εy, (2)

where the errors εx and εy are zero mean normal random variables with variances τ2
x and τ2

y respectively.
The variables {G,U, εx, εy} are independent of each other. Note that the identity in (2) is structural in that
it states how Y reacts to intervention in X.

This structure requires the modelling of the unobserved confounders, U , and here we make the assumption
that U is a standard normal random variable. Conditional distributions of U , X and Y are now given by

U |G ∼ N(0, 1),

X|(G,U) ∼ N(µx, τ
2
x),

Y |(X,U) ∼ N(µy, τ
2
y ),

where µx = a0 + a1G+ a2U from equation (1), and µy = b0 + b1X + b2U from the structural equation (2).
Recall that our target causal parameter is b1.

Throughout the paper, a ‘full’ model will be any Bayesian model with this likelihood parameterisation,
and independenent priors placed on the eight parameters {a0, a1, a2, b0, b1, b2, τx, τy}. However, we defer
discussion of prior choice until section 2.6.

2.2 The Correlated Errors Model

This particular parameterisation is an alternative to directly modelling the unobserved confounder U , which
is also considered in [18, 19]. It is assumed that the error associated with X and Y can instead be modelled
by the random variables V and W respectively, where (V,W ) is a bivariate normal zero mean random vector.
Specifically, let

X = a0 + a1G+ V (3)
Y = b0 + b1X +W, (4)

where V
d= a2U + εx and W

d= b2U + εy, and d= denotes equality in distribution. This structure is an
elaboration of that in Figure 1 with U = (V,W ). The average causal effect is still b1, since (4) has the same
structural meaning as in equation (2). By substituting (3) into (4),

Y = b0 + b1a0 + b1a1G+W ′, (5)

where W ′ = b1V + W and Cov(W ′, V ) =Cov(W,V ) + b1Var[V ]. The equation in (5) is referred to as the
reduced form in the Econometrics literature. Note that while (2) and (4) are structural equations in that
they state how Y reacts to intervention in X, (5) is not a structural, but is observationally (distributionally)
equivalent to (2) and (4) when we assume (3). The distribution of (X,Y ) given G is bivariate normal with
Var[X|G] = σ2

x, Var[Y |G] = σ2
y, and Cov(X,Y |G) ≡ Cov(V,W ′) =: λ,

[X,Y |G] ∼ MVN
([

a0 + a1G
b0 + b1a0 + b1a1G

]
,

[
σ2

x λ
λ σ2

y

])
. (6)

We define the correlated errors model by the parameterisation in (6) with independent priors on {a0, a1, b0, b1},
and a prior on the covariance matrix which reflects the dependence between {σx, σy, λ}, but which is inde-
pendent of the parameters of the mean structure. Again, we defer the discussion of prior choice until section
2.6.
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2.3 The Relationship Between the Full Model and the Correlated Errors Model.

In both the ‘full’ and correlated errors models, the likelihood of the observables (X,Y ) given G is bivariate
normal. In particular, the correlated errors model must also make the implicit assumption that the set of
confounders U is normally distributed, just as in the full model. Note that the likelihood structure assumed
by the correlated errors model contains a variance-covariance matrix that is not a function of G, implying
that at most three variance parameters can be identified, along with four parameters for the mean. The
correlated errors model is therefore identifiable. However, since there are four variance parameters in the
full model to estimate, it must be non-identifiable. This is clear by noting that a2 and b2 are the unknown
coefficients of the unobserved confounders, U , and so the model cannot be identifiable.

The idea of a transparent re-parameterisation can be used to link the two models, from which we can
make further useful observations relating to identifiability. Let θ = (a0, a1, a2, τx, b0, b1, b2, τy) denote the
relevant parameter vector corresponding to the full model, and φI := (a0, a1, b0, b1, σx, σy, λ) denote the
parameter vector of the correlated errors model. Tables 1 and 2 show that the mapping θ 7→ (φI ,φN ),
with φN = (a2), is a bijective transformation. This transparent reparameterisation is not unique: we could
replace φN = (a2) by φN = (b2),φN = (τx) or φN = (τy), or let φN be some function of θ, as long as the
bijective relation between θ and (φI ,φN ) still holds. For example, φN = (a2

2(a2
2 + τ2

x)−1) will do.

(φI ,φN ) θ

φI a0 a0

φI a1 a1

φI b0 b0
φI b1 b1
φI σ2

x a2
2 + τ2

x

φI σ2
y (b1a2 + b2)2 + b21τ

2
x + τ2

y

φI λ a2(b1a2 + b2) + b1τ
2
x

φN a2 a2

Table 1: Mapping θ to (φI ,φN ).

θ (φI ,φN )
a0 a0

a1 a1

b0 b0
b1 b1
τ2
x σ2

x − a2
2

τ2
y σ2

y − (λ− b1σ2
x)2a−2

2 − 2b1λ+ b21σ
2
x

b2 (λ− b1σ2
x)a−1

2

a2 a2

Table 2: Mapping (φI ,φN ) to θ.

Under the definition of a transparent reparameterisation with φN = (a2), it must be the case that
D ⊥⊥ a2|{a0, a1, b0, b1, σ

2
x, σ

2
y, λ}. However, the parameters within φI impose certain logical restrictions

on a2 (for example, |a2| ≤ σx) so that a2 may be partially identifiable, depending on the choice of prior
distribution. However, Table 2 shows that {τx, b2, τy} also depend on a2, so that in practice we can only
expect partial learning about these parameters too.

Furthermore, the correlated errors model could be defined by placing a point prior on some function of
parameters in the full model, hence reducing the number of variance parameters to be estimated from four to
three. Noting that we can parameterise the full model likelihood by (φI ,φN ) as in Table 2, it can be shown
that the only allowable restrictions are those on a valid parameter vector φN . For example, since φN = a2 is
a valid choice of φN , we can specify the prior a2 = 1 with probability 1. Alternatively, φN = a2

2(a2
2 + τ2

x)−1

is also a valid choice for φN , which describes how the variance of X given G should be separated between
U and εx, and so we can specify that this quantity be allocated some point prior. Such constraints on the
full model will not be considered further.

However, the thrust of the transparent reparameterisation is that the identifiability of φI implies that
its posterior distribution must tend to a point mass at its true value as the sample size increases. As the
causal parameter of interest, b1, lies in φI , the same must be true for this parameter in the ‘full’ model
[10]. The ‘full’ and correlated errors models should therefore both yield the correct mean value for b1 in
large samples. Furthermore, the one-to-one relationship between the parameters of θ and the parameters of
(φI ,φN ) implies that we can in theory find mathematically equivalent priors that yield exactly the same
posterior distribution of b1 in finite samples, subject to Monte Carlo error. In general, these equivalent
priors are tedious to calculate, and we will not explore this further. Instead, the focus for the most part
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will be on the more interesting situation where the priors for the full and correlated errors models are not
‘mathematically equivalent’, and on how these models subsequently behave in practice.

2.4 Decomposing the Variance-Covariance Matrix.

A further comparison of the parameterisation implied by the full and correlated errors models reveals that the
structure of the variance-covariance matrix in each parameterisation in some cases determines how accurately
we can estimate b1. Using the calculations from Table 1, we can rewrite the full model likelihood in the form

[X,Y |G] ∼ N
((

a0 + a1G
b0 + b1a0 + b1a1G

)
,

(
a2
2 + τ2

x a2(b1a2 + b2) + b1τ
2
x

a2(b1a2 + b2) + b1τ
2
x (b1a2 + b2)2 + b21τ

2
x + τ2

y

))
. (7)

In (7), it is clear that there are two potential sources of information about b1: from the mean structure
of (X,Y ) given G, and, since b1 also appears in the covariance structure, it too contains information on
the causal parameter. It is thus possible that when combined, we can increase the precision with which we
estimate b1.

The mean structure of the correlated errors model in (6) is of course identical to the full model in (7).
However, since a joint prior is applied to σ2

x, σ2
y and λ in (6) rather than breaking down the covariance

structure into its building blocks {b1, a2, τx, b2, τy} as in (7), this model cannot use the information about b1
contained in its covariance structure. The correlated errors model therefore relies only on the mean structure
to estimate b1, and imposes no particular structure on the covariance matrix, as opposed to the full model.

Though the full model theoretically contains additional information about b1 by exploiting the covariance
structure, it is only useful if it contributes additional information to that gained from the mean structure
alone, and if it is accessible. There are at least four features that influence these factors: the strength
of the instrument, the sample size, the choice of priors on the parameters {a2, b2, τx, τy}, and the relative
magnitudes of {b1, a2b2, a

2
2 + τ2

x , b
2
2 + τ2

y }. We treat each of these issues separately in the next section.

2.4.1 Effect of Weak Instruments, Sample Size and Prior Choice.

We investigate the role of the covariance matrix in determining the precision with which we can theoretically
estimate b1. Simple simulations are used to establish this principle. Data are generated based on the relations

X = a1G+ 3U + εx (8)
Y = X + U + εy, (9)

where U ∼ N(0, 1), εx ∼ N(0, 1) and εy ∼ N(0, 1), independent of each other. The minor allele frequency
for the genetic variant G is taken to be 0.4. We consider the effect of a ‘weak’ versus stronger instrument,
where weakness of instrument is assessed by the F value for the regression of X on G, with F < 10 indicating
a ‘weak’ instrument [6, 20]. We compare setting a1 = 3 with a1 = 0.3, and generate one hundred datasets
for each scenario, each with 1,000 observations. Average F and R2 when a1 = 0.3 were approximately 5.1
and 0.005 respectively, so that the instrument is classified as ‘weak’. Average F and R2 when a1 = 3 were
approximately 434 and 0.3 respectively, so that the instrument is not classified as ‘weak’. All analyses were
conducted in WinBUGS 1.4.3 using 10,000 iterations and the first 2,000 samples were dismissed. Two chains
were run to inform convergence. Initial values for all chains were generated automatically in WinBUGS
1.4.3. We will report the posterior mean as the ‘estimate’ of the target parameter, b1.

The parameter a1 will be fixed at the correct instrument strength level. All likelihood parameters of the
full model are given point priors at their true value, with the exception of b1, to which we allocate a N(0, 1)
prior. Using (7), its structure is given below in (10):

[X,Y |G] ∼ N
((

a1G
b1a1G

)
,

(
10 10b1 + 3

10b1 + 3 10b21 + 6b1 + 2

))
(10)

For comparability, so that we can in effect ignore the influence of priors, we also allocate point priors to all
parameters of the correlated errors model at their true value, with the exception of b1, to which we allocate
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a N(0, 1) prior. So that the conditional distribution of the covariance matrix is the same in each model, we
define an additional parameter for the correlated errors model, z1, which is independent of b1 and is also
allocated a N(0, 1) prior. The resulting structure is given in expression (11):

[X,Y |G] ∼ N
((

a1G
b1a1G

)
,

(
10 10z1 + 3

10z1 + 3 10z2
1 + 6z1 + 2

))
. (11)

By using this structure, we mimic the loss of information on b1 in the correlated errors model, since this
parameter is estimated using only the mean structure.We compare the estimates of b1 from both the full and
correlated errors models, to establish the magnitude of potential information in the covariance structure of
the full model in this particular case. In addition, monitoring z1 allows us to determine the magnitude of
information on b1 available in the covariance structure alone.

Results from each model are given in Table 3, with the plots of the posterior density of b1 from both
models, and z1 from the correlated errors model, given in Figure 2 below. At least in principle, the results
imply that valuable information about b1 can be found in the covariance structure of the full model when the
instrument is weak. By linking this information with that obtained from the mean structure, the precision
of the estimates of b1 is thus much higher than when we use the correlated errors model. With a strong
instrument, however, there is no advantage in using the full over the correlated errors model, since there is an
abundance of information on the causal parameter in the mean structure of (X,Y ) given G alone, implying
that the additional information from the covariance structure will make little difference to the estimates of
b1.

Statistic
Weak instrument Strong instrument
Full CE Full CE
b1 b1 z1 b1 b1 z1

Average mean 1.00 0.98 1.00 1.00 1.00 1.00
Average median 1.00 0.98 1.00 1.00 1.00 1.00

Average posterior SD 0.01 0.10 0.01 0.01 0.01 0.01
Minimum mean 0.97 0.69 0.97 0.98 0.97 0.98
Maximum mean 1.03 1.16 1.03 1.02 1.02 1.02

Average width of 95% CrI 0.04 0.41 0.04 0.03 0.04 0.04

Table 3: Summary statistics for the posterior distribution of b1 and z1. True value of b1 (z1) is 1.

A further factor to consider is sample size, since the posterior distribution of b1 will tend to a point
mass at its true value as the sample size grows, regardless of whether we link up the information in the
covariance structure to that in the mean structure. We would therefore expect that both models yield
comparable estimates when the sample size is sufficiently large. This is equivalent to stating that the
additional information in the covariance structure of the full model contributes little or nothing to that
available in the mean structure alone. Results from simulations comparing the inference from using sample
size 200 versus a sample size of 2,000, assuming the same structure as in (8) and (9), fixing a1 = 0.3, are
given in Table 4. With a sample size of 200, average F and R2 were approximately 2.1 and 0.01 respectively,
indicating that the instrument is ‘weak’. By increasing the sample size to 2,000, average F and R2 were
approximately 10.0 and 0.01 respectively. The simulations confirm that the full model outperforms the
correlated errors model when small sample sizes are used, with far narrower 95% credible intervals for b1.
However, there is less difference in performance between the two models when the sample size is increased
to 2,000, as expected.

Even in situations where the instrument is weak and the sample size small, the additional information in
the covariance structure of the full model is not necessarily accessible, though it theoretically exists. Acces-
sibility is dependent on the priors placed on the elements of the covariance matrix, namely {b1, a2, b2, τx, τy}.
In section 2.3, it was established that the parameters {a2, b2, τx, τy} are non-identifiable, and consequently
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Figure 2: Smoothed posterior distributions of b1 and z1 from the correlated errors (CE) model, and b1 from
the full model, for one dataset with 1,000 observations. Note that the posterior of b1 in the full model and
that of z1 in the CE model overlap exactly when the instrument is weak, implying that in this case, the
information on b1 comes predominantly from the covariance structure.

Statistic
Small Sample Large Sample

Full CE Full CE
b1 b1 z1 b1 b1 z1

Average mean 1.00 0.95 1.00 1.00 1.00 1.00
Average median 1.00 0.95 1.00 1.00 1.00 1.00

Average posterior SD 0.02 0.23 0.02 0.01 0.07 0.01
Minimum mean 0.94 0.55 0.94 0.98 0.81 0.98
Maximum mean 1.06 1.46 1.06 1.02 1.18 1.02

Average width of 95% CrI 0.09 0.9 0.09 0.03 0.29 0.03

Table 4: Summary statistics for the posterior distribution of b1. True value of b1 is 1. Once again, the results
for z1 indicate that the covariance structure drives the estimates of b1 in the full model.

heavily reliant on their allocated priors. Only with good prior information on {a2, b2, τx, τy} will the infor-
mation on b1 in the covariance structure therefore be accessible. The question is whether we can realistically
specify sufficiently informative priors so that this additional source of information in the full model can be
accessed. A more detailed discussion of prior choice is deferred until section 2.6.

A further subtle factor, which dictates whether information on b1 exists in the covariance structure is the
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relative magnitude of its elements. From Table 1,

σ2
y = (b1a2 + b2)2 + b21τ

2
x + τ2

y = b21σ
2
x + 2b1a2b2 + b22 + τ2

y (12)

λ = a2(b1a2 + b2) + b1τ
2
x = b1σ

2
x + a2b2. (13)

Note that when the multipliers of b1 in (12) are sufficiently small, or when b21σ
2
x + 2b1a2b2 is very small

relative to b22 + τ2
y , a wide range of values for b1 will give similar values of σ2

y (an identifiable quantity),
even when very informative priors for {a2, b2, τx, τy} are specified. Similar logic applies to (13). Under such
circumstances, it is conceivable that even when information about b1 is combined from σ2

y and λ that the
possible range of b1 will still be wide. In the most severe cases, this results in having no useful information
in the covariance structure of the full model with which to estimate b1, regardless of instrument strength,
sample size or specified priors. Under such conditions, both models should yield comparable results, subject
to allocated priors.

2.5 Independent Errors Model

For comparison with the full and correlated errors models, we introduce a third model which was recom-
mended in [15] as a Bayesian method for estimating b1. It uses equations (3) and (5), making the additional
assumption that X and Y are independent given G. The likelihood of the observational model is defined as

X|G ∼ N(µx, σ
2
x); (14)

Y |G ∼ N(µy, σ
2
y), (15)

where µx = a0 + a1G and µy = b0 + b1a0 + b1a1G. A version of this approach was used in a meta-analysis
context in [15], but using the predicted values for X from the first regression in the second regression, rather
than regressing Y on G, in the spirit of a two stage least squares analysis. This is mathematically equivalent
to the equations above.

This parameterisation assumes that the error terms V and W ′ in the correlated errors model in (6) are
independent. Regardless of which parametric modelling assumptions are used, this cannot be true since it
does not follow from either the core conditions or the DAG in Figure 1 that X ⊥⊥ Y |G, even when there is
no confounding. By writing the above parameters of the independent errors model in terms of those of the
‘full’ model, it is evident that the former must assume

ρ := Corr(X,Y |G) =
a2(b1a2 + b2) + b1τ

2
x

σxσy
=

λ

σxσy
= 0. (16)

The independent errors model is hence any Bayesian model with this parameterisation and independent
priors on all parameters. Note that this is equivalent to applying a point prior λ = 0 in the correlated errors
model, with subsequent independent priors on σx and σy.

The causal parameter is still b1, but an implicit restriction involving b1 is placed on the parameters, since
equation (16) implies

b1σ
2
x = −a2b2, (17)

where again, the right hand side of (17) is written in terms of the ‘full’ model parameters. Equation (17)
implies that the confounding effect and the causal effect cancel out, though this does not necessarily mean that
the resulting estimate of b1 will be poor. Taking into account that a2 and b2 are not fully identifiable given
the data in the ‘full’ model, the independent errors model should adjust its estimates of other parameters to
compensate, for example, by adjusting σx and σy which ultimately affects the width of the credible intervals
of b1. This holds even in the absence of confounding (a2 = 0 and/ or b2 = 0) where b1 would not necessarily
be estimated as zero as implied by equation (17). This explains why the model estimates the mean causal
parameter well in some cases [15]. What is of interest, however, is how large a sample needs to be in order
to overcome the misspecification, or how b1 behaves in relatively small samples.
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2.6 Choosing Priors and Modelling Principles.

All three models have a bivariate normal likelihood with identical mean structures but differ in the way
that the covariance matrix is composed, so that the different models necessarily facilitate different prior
specifications. The exact choice of priors therefore requires very careful consideration. We discuss some
practical pointers, and in particular, explore how feasible it is to apply informative priors to each parameter.
This, in general, is essential in order to obtain estimates of b1 with sufficient precision to be realistically useful.
For example, the non-identifiability of the full model, as discussed in section 2.3, suggests that ‘vague priors’
might yield parameter estimates with very low precision. Indeed, even though both the correlated errors
and independent errors models are identifiable, the use of ‘vague’ priors should still be questioned: in many
realistic scenarios, the instrument will be very weak, and so one can expect that models incorporating vague
priors will also yield low-precision estimates of b1. We will pay considerable attention to those parameters
for which there is likely to be existing information, and to those parameters which can be bounded by
considering their mathematical role within a model.

The identical mean structure of all three models consists of the independent parameters {a0, a1, b0, b1}.
It is likely that information about {a0, a1} is obtainable, since it is assumed that G is a valid instrument for
X. Special consideration should always be given to the prior distribution allocated to a1, as we will always
have a priori information on this parameter given that an IV analysis makes the assumption that G and X
are correlated: a variable G would not be used as an IV if there was reason to believe that a1 = 0, since this
violates the second core condition. Any prior should therefore give at most very small weight at and around
zero, even if the instrument is known to be ‘weak’. One might even consider a skewed distribution excluding
zero for a1, if the sign of a1 is known a priori.

Prior information on b0 may also be available since it represents the overall mean of the variable Y . It
is reasonable to expect that researchers will have some insight into its magnitude. However, information on
b1 will likely be difficult to find as it is not directly observable owing to the unobserved confounders U . In
most cases, however, the causal effect is unlikely to be very large, and so a somewhat informative prior is
reasonable here.

The models differ in terms of their covariance structure. We look at two components: (i) the covariance
of (X,Y ) given G and the variance of Y given G, and (ii) the (hidden) confounding structure, and discuss
how each model incorporates these factors.

In the full model, we specify priors on the (hidden) confounding structure dictated by the parameters
{a2, b2, τx, τy}, independently of the causal structure. This makes implicit assumptions about the covariance
of (X,Y ) given G and the variance of Y given G. However, the parameters {a2, b2, τx, τy} rely in some way on
the unobserved quantity U which has no real-world counterpart. Specifying priors for these parameters will
therefore inevitably be difficult, since any prior knowledge on these parameters must thus come from subject
matter as they are not directly observable quantities. However, logical bounds can be deduced for one of a2

or b2. Table 1 reveals that the variance-covariance structure of (X,Y ) given G in the full model depends on
{a2, b2} only via {a2

2, b
2
2, a2b2}, and so the sign of both a2 and b2 cannot be identified, though once the sign

of one is fixed, it is easy to deduce the sign of the other. It is therefore logical to specify a prior distribution
on a2 or b2 with a range restricted to either the positive or negative values, for example, either a2 ≥ 0 or
a2 ≤ 0 will do. Furthermore, note that since a2

2 + τ2
x = σ2

x, so that conservatively, a2 ≤ σx and τx ≤ σx, the
prior on a2 (conversely τx) becomes influential only if its upper bound is less than the model’s estimate of
the variance of X given G, which is an identifiable quantity. Care should be taken in specifying the prior
on τx and τy, however. For example, specifying a uniform distribution with lower bound too close to zero
can cause WinBUGS to fail: since these parameters are only partially identifiable in that it may be possible
to find an upper, but not lower, bound, the restriction on their lower bound is given by the lower bound of
their respective priors. Sampling close to the lower bound, when this is not truncated appropriately, results
in very low variance for εx or εy, and hence a very large precision, triggering numerical overflow. A further
complication for the full model can arise when additional information is available, potentially creating a
dependence between parameters. For example, as it is assumed that G is an established instrument for X,
then it may be the case that information relating to σ2

x can be found. In light of this, it would not be
appropriate to apply independent priors to a2 and τx in the full model, since σ2

x = a2
2 + τ2

x .
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Other parameterisations that avoid having to specify priors for a2 and b2 are possible, while still preserving
the information on b1 in the covariance structure. For example, by integrating out the unobserved confounder
U from the full model, we can specify

[X,Y |G] ∼ MVN
([

a0 + a1G
b0 + b1a0 + b1a1G

]
,

[
σ2

x ρ′σxσy|x + b1σ
2
x

ρ′σxσy|x + b1σ
2
x b21σ

2
x + σ2

y|x + 2b1ρ′σxσy|x

])
(18)

where Var[X|G] = Var[V ] := σ2
x, Var[Y |X] = Var[W ] := σ2

y|x, and Corr[V,W ] := ρ′, and the parameters
{σ2

x, σ
2
y|x, ρ

′} are independent of one another. We can therefore place independent priors directly on the
parameters {σ2

x, σ
2
y|x, ρ

′}, for which we may have some scientific intuition about how they behave. How-
ever, from a practical perspective, implementing this model in a package such as WinBUGS results in slow
parameter updates when compared with the alternative models, since it is not conditionally conjugate.

In contrast to the full model, the correlated errors model specifies priors on the covariance of (X,Y ) given
G and the variance of Y given G, which makes implicit assumptions about the confounding structure. Since
both the covariance of (X,Y ) given G and the variance of Y given G depend on the causal parameter b1
(see Table 1), this implies that the causal and confounding structures are not distinct. Priors must therefore
reflect the fact that the parameters of the covariance structure of this model are not independent.

There are several choices for priors on the covariance structure of this model. A popular choice is the
inverse Wishart distribution, though by choosing this, we discard the information on b1 in the covariance
structure. The question is whether this, in reality, reduces the precision of resulting estimates of b1 when
compared to the full model, the latter of course hampered by its need for good prior knowledge on the
non-identifiable parameters.

The independent errors model, on the other hand, assumes that the covariance of (X,Y ) given G is
zero. This is a strong version of component (i) above. Its likelihood is not therefore implied by any valid
instrumental variable model, and prior knowledge on the direction or the strength of confounding cannot
be integrated into the model. However, its simplifying assumption means that independent priors on all
parameters are valid. This aside, as G is an established instrument for X, finding priors for its parameters
will, for the most part, be a simpler process than choosing such quantities for the full or correlated errors
model.

In section 3, simulated data based on a real study will provide the basis for further investigation into
prior choice, and the difference in performance we can realistically expect to see between the models.

3 Simulation Study

We compare the performance of the full, correlated errors and independent errors models. In particular, we
investigate whether the covariance matrix of the full model contains additional information with which to
estimate the causal parameter of interest, and whether this is realistically accessible.

We initially compare the inference from the full and correlated errors models using simulations based on a
real dataset. This allows us to use existing information on all parameters to build realistic prior distributions,
and compare the estimates with those from models in which ‘vague’ priors are applied. Since the erroneous
model specified in section 2.5 has also been used in practice, we compare its estimates with those from the
full and correlated errors models in section 3.3.

In section 3.4, results from a second set of simulations are presented. The data are loosely based on the
data structure in section 2.4. We compare the performance of all three models, and investigate whether the
full model can still access the additional information on b1 in the covariance structure.

All models are fitted using Markov chain Monte Carlo (MCMC) using single site Gibbs sampling as
implemented in WinBUGS 1.4.3.

3.1 Comparing the Performance of the Models in a Realistic Scenario.

The CARDIA study [21] investigated the dependence of lung function on BMI, and found substantial lung
function loss in people who were overweight as youngsters. They concluded that “the obesity epidemic
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threatens the lung heath of the general population”. In order to compare the performance of each of
the models discussed in Section 2, we simulated a series of datasets reflecting the association between lung
function and BMI in the Avon Longitudinal Study of Parents And Children (ALSPAC) [22] and the CARDIA
study.

The ALSPAC study provides longitudinal data on a large cohort of children but we only consider the
association between the outcome Y , representing the standardised lung function measurement of FEF25-
75 taken at age 8, and exposure X, which is log10(BMI) at age 7, in a sub-sample of 3,309 children with
no history of asthma. FEF25-75 is a measure of small airway function, which is standardised so that the
majority of observations fall in the interval (−2, 2). There is a very weak positive association between X
and Y in the ALSPAC cohort, but it is non-significant. This finding does not support the conclusions of
the CARDIA study, but the possibility remains that the true causal association between X and Y is not
apparent because of confounding, or perhaps because effects do not become apparent until later in life.

The FTO gene has been widely investigated for its effects on fat mass and BMI and hence seems an
appropriate instrumental variable for this problem [23, 24]. The regression coefficient of X on G is 0.005
(p < 0.001) and of Y on G of -0.037 (p = 0.14), with the resulting ratio estimate of the causal effect being
-8 (p = 0.175). Though the estimate is non-significant, the estimate is in the same direction as that found
in the CARDIA study.

Datasets were simulated in R, informed by the typical values of FEF25-75, BMI and FTO, and the number
of observations in the ALSPAC study. We used a small negative causal effect of X on Y , as hypothesised by
the CARDIA study. One hundred datasets were generated, each containing 3,309 observations. The minor
allele frequency for G was fixed at 0.4, which was the observed frequency of FTO, and the exposure (X) and
outcome (Y ) were generated as follows:

X = 1.25 + 0.005G+ 0.0025U + εx

Y = 0.12− 0.2X + 0.7U + εy,

where U ∼ N(0, 1), εx ∼ N(0, 0.1252) and εy ∼ N(0, 0.82), independently of one another. Weakness of
instrument is often assessed by F values, where an instrument is generally classified as ‘weak’ if F< 10
[6, 20]. Average F value over the 100 datasets was 3.7, so that the instrument appears to be ‘weak’, and
average adjusted R2 was 0.0008. We compare the estimates of b1 from the full and correlated errors model.

Simple simulations using point priors on all parameters except b1, like those in section 2.4 reveal that no
additional information on b1 exists in the covariance matrix of the full model, though the instrument is very
weak (results not shown). This is most likely due to to the scale of the parameters in the regression of Y on
X and U . In particular,

σ2
y := (b1a2 + b2)2 + b21τ

2
x + τ2

y = 0.0156b21 + 0.0035b1 + 1.13 ' 1.13 (19)

λ := a2(b1a2 + b2) + b1τ
2
x = 0.0156b1 + 0.00175 ' −0.01. (20)

The information on b1 contained in equation (19) is limited since the multipliers of b1 terms are small so
that a change in b1 will not produce a large change in σ2

y. Similarly for λ in equation (20). Combining
these sources makes little difference in this case. These observations imply that the full and correlated
errors model should yield comparable estimates of b1. Indeed, since the sample size is relatively large, with
Corr[X,Y |G] = −0.01 ' 0, then the independent errors model should also behave similarly.

We demonstrate the process of choosing realistically informative priors for each model as was outlined
in section 2.6. All models include the parameters {a0, a1, b0, b1}, and so the same prior distributions are
used for these parameters in each model. At age 7, most children will have a BMI that ranges between
about 10 and 30, so on a log10 scale, this will range between approximately 1 and 1.5; this suggests that a
normal prior on a0 with mean 1.25 and standard deviation 0.1 is reasonable. The prior mean effect of FTO
on log10BMI of 0.005 is chosen based on published literature, see for example [23, 25], and so we choose a
half-normal prior N+(0.005, 0.0052) for a1 representing our prior knowledge that a1 is likely to be small and
positive. While this is straightforward for the full and independent errors model, this could not be done in
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WinBUGS for the correlated errors model. This could be rectified by writing one’s own code rather than
resorting to a standard package like WinBUGS. Note, however, that choosing a N(0.005, 0.0052) prior on a1

makes little difference to the final estimate of b1 since a1 is relatively easy to estimate from the data and the
model should not need the additional information restricting it to positive values of a1.

Since FEF25-75 has been standardised so that most values lie in the interval (−2, 2), we place a N(0, 0.52)
prior on b0. There is no information on the causal parameter of interest, but considering the range of FEF25-
75 observations, a N(0, 1) prior on b1 seems appropriate.

The parameters {a2, τx, b2, τy} in the full model are also given realistically informative priors. It has
already been noted that without loss of generality, we can apply the constraint a2 ≥ 0. Since log10 BMI ∈
(1, 1.5), and we assume that U ∼ N(0, 1), it is reasonable to conclude that a2 will be relatively small. A half-
normal distribution, N+(0, 0.1) is placed on a2 to reflect this. For the same reason, we expect the standard
deviation τx to be small. A uniform prior, as is standard for prior specification of a standard deviation,
bounded between 0.01 and 1 is placed on τx. Using the known range of FEF25-75 observations, a N(0, 1)
prior distribution is placed on b2, and a U [0.01, 5] prior on τy.

Apart from the parameters {a0, a1, b0, b1}, the correlated errors model requires the estimation of the
variance-covariance matrix, Σ, for which we choose an inverse-Wishart prior. Considering the relationship
between Σ and {a2, b2, τx, τy}, as displayed in Table 2, constructing somewhat informative prior information
for Σ is theoretically possible, but this information is difficult to translate into a prior distribution. Therefore,
we choose to place an inverse-Wishart prior on Σ with base matrix as in table 5 and 10 degrees of freedom.
In WinBUGS, this will be equivalently defined as Σ−1 distributed as a Wishart random variable, with the
same base matrix and degrees of freedom.

The impact of applying so-called ‘vague priors’ is also considered for each model. Note, however, that
these are more informative than those typically used in practice, or those recommended in the WinBUGS
manual. Chosen priors are summarised in Table 5.

Model Parameter True value Prior (Vague) Prior (‘Informative’)
All a0 1.25 N(0, 10) N(1.25, 0.01)
Full a1 0.005 N(0, 10) N+(0.005, 0.000025)
CE a1 0.005 N(0, 10) N(0.005, 0.000025)
All b0 0.12 N(0, 10) N(0, 0.25)
All b1 -0.2 N(0, 10) N(0, 1)
Full a2 0.0025 N+(0, 10) N+(0, 0.1)
Full τx 0.125 U(0.01, 5) U(0.01, 1)
Full b2 0.7 N(0, 10) N(0, 1)
Full τy 0.8 U(0.01, 5) U(0.01, 5)

CE
[
σ2

x λ
λ σ2

y

] [
0.016 −0.001
−0.001 1.13

]
W−1

([
1 0
0 10

]
, 10

)
W−1

([
1 0
0 10

]
, 10

)

Table 5: Vague versus informative priors for each model. CE denotes ‘correlated errors’. W−1(,) denotes
the inverse-Wishart distribution.

Each model was run in WinBUGS 1.4.3 for 100,000 iterations and the first 20,000 samples were dismissed.
A long burn-in was chosen on account of slow mixing. Two chains were run from different starting values to
inform convergence. Initial values for all chains were generated automatically in WinBUGS 1.4.3. We will
report the posterior mean as the ‘estimate’ of the target parameter, b1.

Table 6 summarises the estimates of b1, with ‘true’ value -0.2, for all models. Mixing was slow for the
causal parameter b1 for both models when using realistically informative priors, though it was considerably
better than when ‘vague’ priors were used. Autocorrelation remained high for b1, regardless of model choice.

Posterior mean estimates of b1 from each model were consistently poor. Using ‘vague’ priors resulted in
wildly varying posterior mean estimates of b1 with credible intervals wide enough to render the inference of
little use. With realistically informative priors, however, the models estimate b1 with higher precision, though
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the estimates are still relatively poor. The credible intervals for b1 produced by the full model are generally
slightly narrower than those of the correlated errors model, even though this model produced slightly more
variable mean estimates of b1. We note that the models’ failure to estimate b1 well is due in large part to
the use of a very weak instrument.

Note that we used a N+(0.005, 0.0052) prior for a1 in the full model, and a N(0.005, 0.0052) prior for a1

in the correlated errors model, because of difficulties in running the latter model with the former prior on a1.
By running the full model with a N(0.005, 0.0052) prior on a1 instead, we get virtually the same estimates
of b1 as in Table 6.

Results were also compared to a ‘näıve’ Bayesian analysis, where we regress the outcome Y on the
exposure X only. The parameters of this model, {b0, b1, σy} were allocated the priors N(0, 0.25), N(0, 1)
and U [0.01, 5] respectively. The näıve analysis thus ignores any confounding.

Statistic ‘Vague’ priors Informative priors NäıveFull CE Full CE
Overall mean -0.12 -0.10 -0.09 -0.09 -0.09

Average median -0.06 -0.09 -0.09 -0.09 -0.09
Average posterior SD 1.44 1.59 0.33 0.36 0.14

Minimum mean -2.34 -2.35 -0.23 -0.20 -0.38
Maximum mean 2.92 1.85 0.06 0.04 0.16

Average width of 95% CrI 5.47 6.17 1.32 1.41 0.53

Table 6: Summary statistics for the posterior distribution of b1. True value of b1 is -0.2.

The results are fairly consistent, with the full and correlated errors models on average yielding similar
estimates of b1. This is in line with previous comments on the fact that in this case, no additional useful
information on b1 in the covariance structure of the full model existed.

3.2 Using the Prior Predictive Distribution to Reduce the Influence of Priors

In order to ensure some comparability between models, given that we do not use mathematically equivalent
priors, we check that the implied prior-predictive distribution of (X,Y ) given G is similar for both models.
Generally this approach is used to ensure that the priors imply a sensible starting point for the distribution of
(X,Y ) given G, but we use this method to check that the priors allocated make the same initial assumptions
about the distribution of (X,Y ) given G.

The priors were chosen as follows. An initial set of priors for the full model was selected, and the implied
prior predictive distribution of (X,Y ) given G generated. Through trial and error, a set of priors for the
correlated errors model were found, giving a similar prior predictive distribution of (X,Y ) given G. These
distributions were compared on the basis of the mean vector and the variance-covariance structure. They
are given in Table 7, with corresponding results in Table 8.

Mixing was slow for both models, with consistently high autocorrelation for b1 observed. Inference about
b1 is virtually identical to that using the informative priors of section 3.1. We cannot, however, rule out that
the results are still influenced by our particular choice of priors, though we have to some extent standardised
them.

3.3 Performance of an Independent Errors Model

Versions of the independent errors model of section 2.5 have appeared elsewhere [15], and so we also present
estimates from this model. The independent errors model is disadvantaged by two faults: it does not makes
use of the information on b1 in the covariance matrix, and makes a potentially incorrect assumption about the
covariance structure of the data. The question here is whether these factors sufficiently impair the model’s
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Model Parameter True value Prior
All a0 1.25 N(1.25, 0.01)
All a1 0.005 N(0.005, 0.000025)
All b0 0.12 N(0, 0.25)
All b1 -0.2 N(0, 1)
Full a2 0.0025 N+(0, 0.1)
Full τx 0.125 U(0.01, 1)
Full b2 0.7 N(0, 1)
Full τy 0.8 U(0.01, 5)

CE
[
σ2

x λ
λ σ2

y

] [
0.016 −0.001
−0.001 1.13

]
W−1

([
3 0
0 72

]
, 10

)

Table 7: CE denotes ‘correlated errors’. W−1(,) denotes the inverse-Wishart distribution. Priors are con-
structed with the prior predictive distribution of (X,Y ) given G in mind.

Statistic Full CE
Overall mean -0.09 -0.09

Average median -0.09 -0.09
Average posterior SD 0.34 0.36

Minimum mean -0.26 -0.19
Maximum mean 0.12 0.03

Average width of 95% CrI 1.33 1.41

Table 8: Summary statistics for the posterior distribution of b1 using priors constructed so that the prior
predictive distribution of (X,Y ) given G for each model is roughly the same. True value of b1 is -0.2.

ability to yield good estimates of b1, and whether therefore the independent errors model, in practice, yields
estimates which are at least comparable to those obtained via the full and correlated errors models.

Note that with data generated as in section 3.1, we have that Corr[X,Y |G] = −0.01. By definition, the
independent errors model assumes this quantity to be zero, which in this particular example, is not a poor
approximation to the true value. We would therefore expect that, in this situation, the independent errors
model yield estimates of b1 similar to those from a correctly specified model, subject to the allocation of
priors. When |Corr[X,Y |G]| >> 0, then this incorrect assumption is likely to have a greater impact.

We run three versions of the model: one with so-called ‘vague’ priors, one with realistically informative
priors, and finally with priors generated so that the prior predictive distribution of (X,Y ) given G is similar
to those generated in section 3.2, matching these distributions on the same quantities. Note that this is only
possible since Corr[X,Y |G] is close to zero. If this were not the case, we would never be able to generate a
similar prior predictive distribution of (X,Y ) given G for the independent errors model.

We place the same priors on {a0, a1, b1, b1} as in Table 5 for each of these scenarios, together with a
U [0.01, 5] prior on σx, and a U [0.01, 5] prior on σy as ‘vague’ priors. The realistically informative priors
on these parameters are defined as U [0.01, 3] for σx, and U [0.01, 5] for σy, in recognition of the fact that
log10BMI∈ (1, 1.5) and FEF25-75∈ (−2, 2), respectively. A U [0.01, 1.2] prior for σx, and a U [0.01, 5.6] prior
for σy generates a similar prior predictive distribution to that in section 3.2. Results are displayed in Table
9.

With ‘vague’ priors, the results are typically poor, as was the case for the full and correlated errors
model. However, this model yields results comparable with the full and correlated errors models when
realistically informative priors were used. Results under the priors generated by considering the prior pre-
dictive distribution were very similar to those under the informative priors. The similarity of results with
the full and correlated errors model is not surprising in this case, since the sample size was fairly large and
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Statistic ‘Vague’ priors Informative priors P.P. priors
Overall mean -0.27 -0.10 -0.09

Average median -0.26 -0.10 -0.10
Average posterior SD 1.64 0.37 0.37

Minimum mean -2.39 -0.18 -0.22
Maximum mean 2.08 -0.01 0.00

Average width of 95% CrI 6.33 1.44 1.44

Table 9: Summary statistics for the posterior distribution of b1 under the independent errors model. ‘P.P.
priors’ denote the priors generated by considering the prior predictive distribution. True value of b1 is -0.2.

Corr[X,Y |G] = −0.01.

3.4 A further example

The simulated data in section 3.1 were designed to show the effect of informative versus vague priors, and it
so happened that all models gave similar estimates of b1. The generated data of section 2.4 however, gave a
very different story, albeight under point priors for all parameters excluding b1. We loosely base the data in
this section on that in section 2.4, and investigate the impact of applying proper priors to see whether we
can still access the additional information on b1 from the covariance structure of the full model.

All three models are considered using a small versus larger a1, and small versus larger samples. The data
using a weak instrument are generated using

X = 0.3G+ 3U + εx (21)
Y = X + U + εy, (22)

where U ∼ N(0, 1), εx ∼ N(0, 1) and εy ∼ N(0, 1), independently of one another. The data with a stronger
instrument are generated using

X = 1.2G+ 3U + εx (23)
Y = X + U + εy, (24)

where U, εx and εy, are distributed as before. To study the impact of a small sample on each parameterisation
under the data generated according to (21) and (22), and (23) and (24), we analysed 100 datasets each
containing 200 observations, and a further 100 datasets containing 2,000 observations. Average F and
adjusted R2 values are given in Table 10, implying that the instrument is considered ‘weak’ when a1 = 0.3.
The same priors were used for each set of data, and these are presented in Table 11. Each model was run
in WinBUGS 1.4.3 for 50,000 iterations and the first 10,000 samples were dismissed. A long burn-in was
chosen on account of slow mixing. Two chains were run to inform convergence. Initial values for all chains
were generated automatically in WinBUGS 1.4.3.

200 obs. per dataset 2000 obs. per dataset
Instrument F R2 F R2

Weak 1.2 0.001 9.3 0.004
Strong 14.6 0.06 116.1 0.05

Table 10: F and adjusted R2 values for the data.

In Table 12, we present the results of the analyses. It is clear that the results for the full and correlated
errors models follow the same pattern as seen in section 2.4. The full model outperforms both the correlated
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Model Parameter Prior
All a0 N(0, 0.25)
All a1 N(0, 1)
All b0 N(0, 0.25)
All b1 N(0, 1)
Full a2 N+(0, 4)
Full τx U(0.1, 5)
Full b2 N(0, 4)
Full τy U(0.1, 5)

CE
[
σ2

x λ
λ σ2

y

]
W−1

([
84 0
0 168

]
, 10

)
IE σx U(0.1, 5.6)
IE σy U(0.1, 8.2)

Table 11: Priors for each model. CE denotes ‘correlated errors’ and IE ‘independent errors’.

errors and independent errors models, especially when the instrument is weak and the sample size is small.
We therefore conclude that the priors placed on the parameters {a2, τx, b2, τy} in this case were sufficiently
informative to access additional information on b1 from the covariance structure of the full model.

With a stronger instrument or a larger sample size, estimates from the correlated errors and independent
errors models improve considerably, though they are not as precise as those from the full model. However,
whilst inference from the correlated errors model and ‘full’ model appear almost identical when we use a large
dataset and a stronger instrument, the independent errors model still yields credible intervals for b1 which
are far wider than those from either the correlated errors or the ‘full’ models, though its posterior mean
estimates are comparable to those from the correctly specified models. Note that the independent errors
model yields estimates with even less precision owing to its incorrect assumption that Corr[X,Y |G] = 0.
Unlike the example in section 3.1 where this assumption was in fact close to the true value, here we have
that Corr[X,Y |G] = 0.97. It is likely that vast sample sizes would be required here for the independent
errors model to yield comparable results to the full model.

It is interesting to note that the näıve estimate for the association between X and Y is around 1.3 for
both the models with weak and strong instrument, with Corr(X,Y |G) ' 0.97. The ‘full’ model, when the
instrument is weak, appears to be biased towards the näıve estimate. In this case, since the näıve estimate
and the true underlying causal effect of X on Y , i.e. 1, are not too different, the mean estimate of b1 produced
is relatively close to the true underlying value. The reduced models are very sensitive to the prior placed
on b1. We placed a zero mean prior on b1, as would be commonplace in practice, and resulting inference on
b1 from each of these models tends to be biased towards this value. By placing a different prior on b1, for
example centered at one (which happens to be the true value of b1), a dramatic improvement in estimates
of b1 from the reduced models is seen (results not shown).

4 Discussion

We compared three possible approaches to the Bayesian analyses of Mendelian randomisation studies, under
the assumption that all relationships are linear and that no interactions are present. Crucially, the models
differ in terms of how prior knowledge on the causal and confounding structure is specified.

The ‘full’ representation explicitly models the unobserved confounder U , so that it makes the ‘hidden’
regression coefficients of the unobserved confounder and the residual standard deviations explicit, while it
leaves the implied covariance matrix of (X,Y ) given G implicit. This structure allows us to learn about the
causal parameter b1 via its mean and covariance structure, though it renders the model non-identifiable. In
contrast, the correlated errors model is identifiable since it leaves the confounding structure implicit, but
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200 obs. per dataset 2000 obs. per dataset
Instrument Statistic Full CE IE Full CE IE

Weak

Average mean 1.13 0.62 0.39 1.02 0.76 0.76
Average median 1.18 0.72 0.39 1.04 0.85 0.74

Average posterior SD 0.28 0.72 0.76 0.17 0.40 0.51
Minimum mean 0.51 -0.01 -0.02 0.62 0.12 0.08
Maximum mean 1.31 1.21 1.14 1.24 1.17 1.12

Average width of 95% CrI 1.17 2.88 3.03 0.66 1.55 2.04

Stronger

Average mean 0.98 0.85 0.92 0.99 0.99 1.00
Average median 1.00 0.90 0.89 0.99 0.99 1.00

Average posterior SD 0.16 0.27 0.41 0.04 0.05 0.15
Minimum mean 0.66 0.21 0.10 0.87 0.86 0.89
Maximum mean 1.27 1.19 1.27 1.08 1.08 1.09

Average width of 95% CrI 0.63 1.08 1.63 0.17 0.18 0.59

Table 12: Summary statistics for the posterior distribution of b1, true value 1.

the covariance matrix of (X,Y ) given G explicit. However, it learns about b1 via the mean structure only
due to the choice of prior distribution on the variance-covariance matrix. The third model, the independent
errors model, restricts the covariance by making the implicit assumption of independence between X and Y
given G. It relies on the mean structure only to estimate b1, under this assumption. It is not a reduction of
the ‘full’ model, but is included on the basis that it was found to estimate the causal parameter well in [15].

The question is whether the full model, in practice, can access the information on b1 in the covariance
structure, and whether in reality this yields estimates with higher precision when compared to either of the
reduced models. The discussion in section 2.4.1 reveals that there are at least four factors which determine
this: the strength of the instrument, sample size, the priors that are placed on the non-identifiable parameters
{a2, b2, τx, τy}, and the relative magnitudes of these parameters. Only when the instrument is weak or the
sample is small is there potential to learn about b1 from the covariance as well as the mean structure.
However, even under these conditions, accessibility of this additional information is highly dependent on
having good prior knowledge on the non-identifiable parameters of the full model. In situations where
additional information in the covariance structure exists, but cannot be accessed, the full and correlated
errors models should yield comparable results, subject to allocated priors for each model.

The strength of the correlated errors model, however, appears to be its robustness to misspecification
of the prior on the covariance matrix, since the model does not directly rely on the covariance structure to
estimate b1. Note also that an inverse Wishart prior on the covariance matrix does not restrict its range,
unlike some choices of priors for the comparable elements of the full model. This feature of the correlated
errors model is particularly advantageous in situations where prior knowledge on the covariance structure is
poor.

The independent errors model may in some situations perform as well as the full and correlated errors
models as discussed in section 3.3. This is especially the case when the true underlying covariance is close
to zero, owing to its implicit assumption that the confounding and causal effects cancel each other out. It
should not be a viable alternative when this is not the case, or when the sample size is small, especially when
the instrument is weak. However, prior specification for the parameters of the model may be conceptually
easier, though we cannot specify any prior knowledge on the direction or the strength of confounding. Results
from this model should therefore be treated with caution.

These observations have numerous practical implications, which we summarise as choice of likelihood and
prior choice. Results in section 3 suggest that the non-identifiable nature of the full model should not be seen
as a barrier, as it is capable of yielding estimates of b1 which are at least as precise as those from the correlated
errors or independent errors models. This finding supports conclusions elsewhere [26, 27], and reinforces the
message that we should not see non-identifiability as “bad” and identifiability as “good”; the question of
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which model is appropriate for a particular data set must be judged on a case-by-case basis. Furthermore,
in line with observations in [26, 27], we have shown that the non-identifiable full model can, under certain
conditions, outperform both the reduced parameter models. This, however, is subject to applying realistically
informative priors on the parameters of the full model, and dependent on the instrument being weak or the
sample size being small, and on the relative magnitudes of particular parameters.

Despite the theoretical superiority of the full model under particular conditions, the nature of the prior
information available may dictate that an alternative parameterisation is more appropriate, and so the
choice of model should be at least partly based on which model utilises the available prior information
most effectively. This is especially important when the instrument is weak, as is typical of a Mendelian
randomisation study. Under such conditions, informative priors are crucial to the success of all models,
regardless of whether they are identifiable, and so-called ‘vague priors’ should be avoided whenever possible.
However, care must be taken when specifying informative priors, as substantial variation in parameter
estimates can occur as the prescribed priors are modified [10, 28].

Identifying the causal parameter of interest in this simple setting by applying Bayesian methods is not
as straightforward as one might expect. Some of the difficulties encoutered are WinBUGS-related and could
be avoided by writing one’s own code, while others, such as the issue of choosing suitable priors, are likely
to remain problematic. In particular, given the difficulty in estimating the causal parameter in the linear,
no interactions case, this caution must be extended to more complex models such as when the outcome is
binary [29, 30], where models are known to be more sensitive to misspecifications and incorrect assumptions,
and prone to more complex forms of bias [7].
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