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Severity of bias of a simple estimator of
the causal odds ratio in Mendelian
randomization studies
Roger M. Harbord,a,b Vanessa Didelez,d Tom M. Palmer,a,b

Sha Meng,c Jonathan A. C. Sternea and Nuala A. Sheehanc*†

Mendelian randomization studies estimate causal effects using genetic variants as instruments. Instrumental
variable methods are straightforward for linear models, but epidemiologists often use odds ratios to quantify
effects. Also, odds ratios are often the quantities reported in meta-analyses. Many applications of Mendelian
randomization dichotomize genotype and estimate the population causal log odds ratio for unit increase in
exposure by dividing the genotype-disease log odds ratio by the difference in mean exposure between genotypes.
This ‘Wald-type’ estimator is biased even in large samples, but whether the magnitude of bias is of practical
importance is unclear. We study the large-sample bias of this estimator in a simple model with a continuous
normally distributed exposure, a single unobserved confounder that is not an effect modifier, and interpretable
parameters. We focus on parameter values that reflect scenarios in which we apply Mendelian randomization,
including realistic values for the degree of confounding and strength of the causal effect. We evaluate this esti-
mator and the causal odds ratio using numerical integration and obtain approximate analytic expressions to
check results and gain insight. A small simulation study examines finite sample bias and mild violations of the
normality assumption. For our simple data-generating model, we find that the Wald estimator is asymptotically
biased with a bias of around 10% in fairly typical Mendelian randomization scenarios but which can be larger in
more extreme situations. Recently developed methods such as structural mean models require fewer untestable
assumptions and we recommend their use when the individual-level data they require are available. The
Wald-type estimator may retain a role as an approximate method for meta-analysis based on summary data.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Mendelian randomization studies estimate causal effects of exposures on outcomes using genetic
variants associated with the exposure of interest. Mendelian randomization is an application of the
method of instrumental variables [1–3], previously more familiar to econometricians than epidemiol-
ogists. However, several features of epidemiology in general and Mendelian randomization applications
in particular make it less than straightforward to apply instrumental variable estimation techniques,
particularly when the outcome is not continuous but binary, as is often the case for outcomes of clinical
interest. The exposure of interest in Mendelian randomization is usually continuous (e.g. fibrinogen [4],
plasma C-reactive protein (CRP) [5], body mass index [6]) rather than the binary ‘treatment’ commonly
considered in econometrics and clinical trials, and epidemiologists often wish to quantify the effect of
exposures on binary outcomes using odds ratios or risk ratios.

Before the connection with instrumental variables was pointed out, several authors [7–11] used
a simple method to compare estimates from Mendelian randomization studies with those from
observational studies without any formal derivation or discussion of its properties. Although the method
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generally uses a dichotomized genotype, it is applicable when we specify a model for the genotype–
exposure relationship that is based on a single parameter, such as an additive genetic model, or a model
incorporating multiple genotypes or instruments. The method amounts to calculating the Mendelian ran-
domization estimate of a causal effect (or the log transform of ratio measures of effect, e.g. log risk ratio
or log odds ratio) of exposure on outcome per unit increase in exposure by dividing the effect of geno-
type on outcome by the difference in mean exposure between genotypes. This estimator arises intuitively
by ignoring the population variability of exposure within each genotype, that is it would be correct if
everyone with a given genotype had exactly the mean exposure for that genotype.

As a typical application of the aforementioned simple method, we consider circulating CRP, a
marker of systemic inflammation that has repeatedly been associated with hypertension. However, this
association may have arisen because of unmeasured confounding or reverse causation, rather than from
a causal effect of CRP on hypertension. This issue was investigated in a Mendelian randomization study
based on a sample of 3529 women aged 60–79 years from the British Women’s Heart and Health Study
(a long-term cohort study of women who were originally recruited in middle age). The authors used the
1059G/C polymorphism within exon 2 of the CRP gene, which is known to be associated with circulating
CRP concentrations, as an instrumental variable [9]. A doubling of CRP was associated with an increase
in hypertension risk in this study (odds ratio of 1.14; 95% CI 1.09, 1.19). However, the instrumental
variable analysis gave an estimated odds ratio of 1.03 (0.61, 1.73) leading the authors to conclude that
the association was not causal and that ‘developing pharmaceutical agents to lower CRP levels will not
be a productive strategy’.

When the instrument–exposure and exposure–outcome models are both linear, the aforementioned
estimate is known as the Wald estimator [12–14], and (given certain model assumptions) its bias tends to
zero as the sample size becomes larger, that is it is asymptotically unbiased. When applied to nonlinear
models, we shall refer to such an estimate as a ‘Wald-type’ estimate [15]. In addition to its simplicity and
intuitive appeal, the Wald-type estimate is particularly useful for reanalysis of published results, includ-
ing meta-analysis, as it requires only commonly reported summary measures of the genotype–outcome
and genotype–exposure associations. The Wald-type estimator of a risk ratio or rate ratio can also be
shown to be asymptotically unbiased when the exposure–disease model is log linear if certain additional
model assumptions hold [15,16]. Wald-type estimates of the causal odds ratio or log odds ratio, however,
are known to be asymptotically biased when the true effect is not null [15,17]. It is unclear whether, and
when, the extent of this asymptotic (large-sample) bias is large enough to be of practical importance.

The aim of this paper is to quantify the asymptotic bias of the Wald-type estimate of the causal odds
ratio in scenarios typical of Mendelian randomization studies. We derive expressions for the bias involv-
ing integrals with no exact closed form, evaluate these integrals numerically for a realistic range of
parameter values and also give approximate closed-form expressions to check the numerical results and
provide further insight.

The outline of the paper is as follows: We first define the causal parameters we wish to estimate, then
formally define the Wald-type estimator, as well as the associational estimator, of the causal odds ratio.
We introduce a simple structural (causal) model for the relationships between instrument, exposure and
outcome that incorporates unobserved variables to introduce confounding and heterogeneity. We show
how the asymptotic bias can be evaluated for this model using both numerical evaluation and approxi-
mate closed-form expressions, giving results that are shown in the following section. The validity of these
findings for finite samples and mild violations of the normal distribution for the exposure is addressed in
a simulation study. We conclude by discussing the implications and limitations of our findings. We show
key mathematical results in the main text but relegate derivations of results to an Appendix. We assume
the reader is familiar with the epidemiological and biological basis of Mendelian randomization and the
core assumptions of instrumental variables [2, 3, 8, 18, 19].

2. Estimating causal odds ratios

2.1. Causal parameters

To evaluate whether an estimate is biased, it is necessary to first clarify the target parameter we wish to
estimate. In this section, we shall therefore review the definition of the causal parameters and distinguish
them from model parameters [20].

Mendelian randomization is a method that uses genetic variants as instrumental variables (IVs) to
assess the causal association of an exposure with a disease in the presence of unobserved confounding or
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Figure 1. Directed acyclic graph relating genetic instrument G, exposure X , outcome Y and confounders
U . Absent arrows encode conditional independence assumptions, but arrows do not necessarily imply causal

relations.

reverse causation. Throughout this paper, we use X to denote the continuous exposure, Y to denote the
binary outcome (coded 0 for event absent and 1 for event present), G to denote the genetic instrument
and U to denote unobserved confounders. Figure 1 depicts the directed acyclic graph for which these
four variables satisfy the core conditional independence assumptions that ensure G is a valid instrument
[2]. Briefly, these state that G must be associated with X , must be independent of any confounding U
and must be conditionally independent of Y given X and U . The latter would for instance be violated if
G had a direct (not through X ) causal effect on Y , or if G and Y were affected by further confounding.
As explained in more detail elsewhere [2, 21], these core conditions are compatible with a range of
causal structures, including structures in which the instrument G does not have a causal effect on X . For
example, its association with X could be due to linkage disequilibrium.

The population causal odds ratio (which following Hernán [20] we shall refer to hereafter simply as
the causal odds ratio) for exposure value X D x1 relative to X D x0 is

COR.x1; x0/D
Pr.Y D 1jdo.X D x1//

Pr.Y D 0jdo.X D x1//

Pr.Y D 0jdo.X D x0//

Pr.Y D 1jdo.X D x0//
;

where do.X D x/ is Pearl’s ‘do-operator’ notation for setting the variable X equal to the value x in
an hypothetical intervention [21]. For the purposes of this paper, the ‘do’ notation is equivalent to the
counterfactual notation used in many papers on causal inference in epidemiology and statistics [20–23].
The logarithm of COR(x0, x1/ is the causal log odds ratio

logCOR.x1; x0/D logit Pr.Y D 1jdo.X D x1//� logit Pr.Y D 1jdo.X D x0//: (1)

It is important to distinguish the causal log odds ratio from the coefficient ˇS in a structural logistic
equation such as

logit.Pr.Y D 1jdo.X D x/; U D u/D ˛C ˇSxC �u;

where U represents one or more measured or unmeasured additional covariates, which may or may not
be confounders. When � ¤ 0 and there is no X � U interaction, the coefficient ˇS will in general be
larger than log COR.xC1; x/ because of the non-collapsibility of the odds ratio [24,25] and consequent
‘shrinkage’ of estimates that marginalize over a covariate compared with those that condition on it. Were
U known or measured for each individual, ˇs would be the causal log odds ratio conditional on U
(i.e. the individual causal log odds ratio) but in general when U is unknown and unmeasured ˇS cannot
be identified [20, 26].

2.2. Estimators

We next define different estimators of the effect of continuous exposure X on binary outcome Y .

2.2.1. Associational estimator. We define the associational log odds ratio as that obtained from a
logistic model that ignores confounding. This is defined as

ˇA.x1; x0/D logit Pr.Y D 1jX D x1/� logit Pr.Y D 1jX D x0/; (2)

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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and conditions on the observed values of X rather than setting the values of X . The coefficient ˇA
is equal to the causal odds ratio when there is no confounding. Because X is continuous, we assume
the log odds of disease to be a linear function of X , that is logit Pr.Y D 1jX D x/ D a C ˇAx to
enable estimation.

2.3. Wald-type estimator

We now turn to Mendelian randomization using a genetic marker G as instrumental variable. A
Wald-type estimator of the causal log odds ratio based on two genotypes g1 and g0 is the difference
in the log odds of disease between the two genotypes (the logarithm of the odds ratio) divided by the
difference in mean exposure comparing the two genotypes:

ˇW .g1; g0/D
logit Pr.Y D 1jG D g1/� logit Pr.Y D 1jG D g0/

E.X jG D g1/� E.X jG D g0/
: (3)

It is important to note that Wald-type estimators are not restricted to dichotomous instruments [15].
Equation (3) generalizes to ordinal or continuous G, if the numerator and denominator are extended to
give a parametric description of the differences in terms of specified values ofG. Furthermore, Wald-type
estimators can be used for both individual-level data (in which the instrument–disease and instrument–
exposure associations are estimated using the same individuals) and for summary-level data in which
these quantities are estimated using different sets of individuals, for example from different studies. The
latter property has made it an attractive option for meta-analyses.

The Wald-type estimate can also be obtained by fitting a linear regression of X on G using ordinary
least squares and then ‘plugging in’ the fitted values for X in place of their actual values in a logistic
regression of Y on X . This ‘plug-in’ estimator generalizes to more than one instrumental variable and
therefore allows all three genotypes of a biallelic marker to be used without specifying the genetic model,
as well as allowing more than one genetic marker, although it requires individual-level data. It also
allows adjustment for covariates [27, 28]. This ‘plug-in’ estimator has been implemented in an add-on
module for Stata statistical software [29] and has been used in applications of Mendelian randomization
[9, 30, 31]. The general formulation of Wald-type IV estimators not restricted to binary instruments is
given in [15].

2.4. Model description

Without additional model assumptions beyond those encoded in Figure 1, it is not possible even to bound
the causal effect of interest when X is continuous [32,33]. We will describe a simple model for the rela-
tionship between the genotype G, the continuous covariate X and the binary outcome Y , chosen to
minimize the number of free parameters and to give as many as possible of the parameters a clear inter-
pretation on an intuitive scale so that it is easier to judge what values for these parameters are realistic.
The model requires two equations, one for X and one for Y . We choose to write the model with two
separate unobserved variables (disturbances) in the equations for X and Y , respectively, and introduce
confounding by assuming that they are correlated. An equivalent alternative model would have a single
confounding variable U appearing in both equations but would add a second error term to the model
for X to allow less than perfect correlation [34]. The form we choose leads to fewer, more interpretable
parameters and is closer to that used in the econometric literature, but is not exactly the same [35].
Figure 2 shows a path diagram summarizing the structural model [36]. (Pearl has recently used a causal
diagram of similar form [37, 38].)

We choose the origin and scale of X so that E.X/D 0 and Var(X jG/D 1 without loss of generality.
The equation for X is

X D ı.G � E.G//C V; (4)

where we assume that V has a standard normal distribution, that there is no interaction betweenG and V
and that the distribution of V is independent of genotypeG. Typical violations of these assumptions will
show in sufficiently large samples by plotting the cumulative distribution function of X stratified by G,
and a decision could be made to apply a suitable transform toX after checking such plots. For simplicity
in the remainder of the paper, we assume that Gis binary, that is a dominant or recessive genotype, in
which case we can codeG as 0 and 1 and the parameter ı is then the difference in the mean ofX between
genotypes. (For an additive genetic model, G would be coded as 0, 1 or 2 according to the number of
minor alleles and ı would then be the difference in mean X per allele.)

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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Figure 2. Path diagram for structural model. Showing separate but correlated error terms U and V . Squares
indicate measured variables and circles indicate unmeasured variables (error terms). Each single-headed arrow is
labelled with the corresponding model coefficient; the double-headed arrow between U and V represents a cor-
relation (of magnitude �) whose source is unspecified; double-headed loops from a variable to itself are labelled

with variances of error terms.

The structural equation for Y is

logit Pr.Y D 1jX;U /D ˛C ˇSX CU; (5)

where we assume U has a normal distribution with variance �2 and mean zero. Confounding of theX–Y
association is introduced by assuming that U and V have correlation � (and therefore their covariance
is given by Cov(U; V /D �� ). As for V in Equation (4), we assume the coefficient of U in Equation (5)
is unity without loss of generality (because U is unobserved, we can always make the coefficient equal
unity by a suitable re-scaling of U , or equivalently, we could include such a coefficient and instead scale
U to have unit variance). In practice there would typically be many confounders, but we assume that
their effect can be represented by this structure. We also assume that there is no interaction between X
and U on the logit scale. As U is unobserved, all these assumptions cannot be empirically verified.

2.5. Evaluation of estimators for this model

2.5.1. Causal log odds ratio. Evaluation of the causal log odds ratio uses

Pr.Y D 1jdo.x//D
Z

Pr.Y D 1jx; u/p.u/ duD
Z 1
�1

expit.˛C ˇSxC �u/�.u/ du; (6)

where �.u/ is the standard normal density function and expit.x/ D 1=.1 C e�x/. This allows us to
evaluate logitCOR(x1, x0/ numerically for any chosen x1 and x0 and parameters ˛, ˇS , and � . Because
logit Pr(Y D 1j do(x)) is nearly linear in x (unless � is large and wide ranges of x are considered) [36],
logitCOR.x1; x0/ is nearly linear in x1–x0. For definiteness, we choose to evaluate the causal log odds
ratio for a unit change in X (i.e. a change of one standard deviation) centred around the origin (the mean
of X/ and therefore define ˇC D logitCOR.C1=2;-1=2/.

As we show in the Appendix, an approximate closed form expression for ˇC , which we will compare
with numerical integration results, can be derived by approximating expit(x) by a cumulative normal
distribution function, giving

ˇC � ˇS=
p
1C c2�2; (7)

where c is a constant, approximately 0.6.

2.5.2. Associational estimator. In practice, the associational and the Wald-type estimators will be func-
tions of the sample. Here we derive their population versions, so that in the next section we can
investigate their asymptotic biases.

To obtain an expression for the associational estimator, we need to calculate Pr(Y D 1jX/. This
involves integrating over G, U , and V and, as shown in the Appendix, is of the form

Pr.Y D 1jX/D
X
gD0;1

Pr.Y D 1jX;G D g/ Pr.G D gjX/; (8)

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012



R. M. HARBORD ET AL.

which can be calculated under our model assumptions for given frequencies Pr(G D g/. We can then
obtain the associational log odds ratio from ˇA.1=2;�1=2/D logit Pr.Y D 1jX D 1=2/� logit Pr.Y D
1jX D�1=2/. An approximate closed form is (see Appendix)

ˇA � .ˇS C ��/=
p
1C c2�2.1� �2/: (9)

2.5.3. Wald-type estimator. Substituting Equation (4) for X into Equation (5) gives

logit Pr.Y D 1jG;U; V /D ˛C ıˇS .G � E.G//CU C ˇSV;

which we can rewrite as

logit Pr.Y D 1jG;W /D ˛C ıˇS .G � E.G//CW; (10)

where W D U C ˇSV has a normal distribution with zero mean and variance �2C ˇ2S C 2��ˇS .
We can proceed to evaluate Pr(Y D 1jG/ by integrating over W and hence evaluate ˇW .g1, g0/, the

Wald-type estimate of the log odds ratio based on genotypes G D 0 and G D 1 defined in Equation (3).
We can once more derive (see Appendix) an approximate closed form:

ˇW � ˇS=

q
1C c2

�
�2C ˇ2S C 2��ˇS

�
; (11)

which is independent of ı and the genotype frequencies.

2.5.4. Approximate closed form for asymptotic bias of Wald-type estimate. Using the aforementioned
approximate results (7) and (9), we can eliminate the unknown parameters � and ˇS from (11) in favour
of ˇC and ˇA (assisted by the computer algebra package Maple 11 [39]). Surprisingly, the resulting
expression does not depend on � :

ˇW � ˇC

0
B@ 1C c2ˇ2A

1C c2
h
c2ˇ2Cˇ

2
A � ˇ

2
C C ˇ

2
AC 2ˇCˇA

q
1C c2

�
ˇ2A � ˇ

2
C

�i
1
CA
1=2

; (12)

As this expression is quite complex, we also used Maple to obtain a bivariate Taylor series expansion
for ˇW � ˇC , the bias of the Wald-type estimate, around the point with zero causal effect (ˇC D 0) and
zero confounding (ˇA � ˇC D 0):

ˇW � ˇC ��1=2c
2
�
ˇ3C C 2ˇ

2
C .ˇA � ˇC /

�
:

It is useful to examine some limiting cases:

i ˇW D 0 when ˇC D 0, verifying that the Wald-type estimate is unbiased when there is no causal
effect.

ii ˇW=ˇC ! 1 as ˇC ! 0, so not only the absolute but also the relative bias diminishes with the
causal effect.

iii ˇW =ˇC < 1 when ˇC ¤ 0 but there is no confounding (which occurs when � D 0 or � D 0), so
the Wald-type estimate is biased towards the null even in the absence of confounding, although (ii)
shows this bias will be small for small causal effects.

Note also that ˇW can be further from zero than ˇC , that is the bias of the Wald-type estimate can be
away from the null, for some other combinations of values of ˇC and ˇA.

2.6. Choice of parameter values for numerical evaluation of asymptotic bias of Wald-type estimate

We now turn to the choice of realistic ranges or small discrete sets of values for the model parameters at
which to evaluate the bias for the graphs in the following section. There are a total of six model param-
eters, namely the parameters ˛, ˇS , ı, � and � from Section 2.4 earlier plus the genotype frequency
Pr(G D 1). Neither ˛ nor ˇS is observable but they jointly determine the disease prevalence Pr(Y D 1)
and the causal log odds ratio ˇC , so we instead chose values for the latter pair of parameters of interest
and numerically determined the required values of ˛ and ˇS . We chose disease prevalences of 2%, 10%
and 50%.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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We chose values of COR.�1=2;C1=2/ D exp.ˇC / of 1.2, 1.65 and 2.27. These correspond to odds
ratios exp(2.18 ˇC / D 1:5, 3 and 6, respectively, when comparing the top third versus the bottom third
of the distribution of X (the factor of 2.18 is the difference between the means of the top and bottom
third of a standard normal distribution) [40, 41]. We considered 1.5 to be around the typical odds ratio
for top versus bottom third in a Mendelian randomization study, 3 to be around the largest credible odds
ratio and 6 to probably be unrealistically large for a Mendelian randomization study to be necessary or
appropriate, as strong associations are unlikely to be entirely or partially due to unmeasured confounders
or other sources of modest bias [42].

The parameter � , the standard deviation of the error term U in structural Equation (5), determines the
variability in the probability of disease for individuals having the same value of exposure X . We chose
values of 0.5, 1 and 5, giving a ratio of odds of disease for two individuals with the same X but values of
U at its upper and lower quartiles of exp(1.349 �/D 1:96, 3.85 and 850, respectively, corresponding to
small, moderate and unrealistically large degrees of heterogeneity, the last because it is hard to determine
a realistic upper bound (the factor of 1.349 is the difference between the upper and lower quartiles of a
standard normal distribution).

The correlation � between the heterogeneity terms U and V determines (together with � ) the degree
of confounding between exposure X and outcome Y . We used values of � of 0, ˙0.25, ˙0.5, ˙0.75,
˙0.9 and˙1. The ratio of the associational odds ratio to the causal odds ratio, exp(ˇA �ˇC /, is a more
interpretable measure of the degree of confounding, so we plot results against this ratio.

Neither the genotype frequency nor the difference in mean exposure between genotypes, ı, enters into
the approximate expressions, so we expected them to have little effect on the numerical evaluations.
We fixed the genotype frequency at 0.5 and ı at 0.2 for the main results shown in the next section. In
sensitivity analyses, we examined values for the genotype frequency of 0.1 and 0.02 and values for ı of
1 and 0.05.

3. Results

We calculated ˇC , ˇW and ˇA for the range of parameter values described in the previous section, using
Gauss–Hermite quadrature to evaluate the integrals involved. Figure 3 shows the degree of asymptotic
bias of the Wald-type estimate relative to the causal odds ratio, exp(ˇW � ˇC /. We plot this against the
ratio of the associational odds ratio to the causal odds ratio, exp(ˇA � ˇC /, for the chosen values of the
causal odds ratio, the disease prevalence and � , the standard deviation of U .

The degree of bias is usually small and exceeds 10% in either direction (ratio of odds ratios outside
the range 0.9–1.1) only when the causal odds ratio is large (right-hand column) and there is consid-
erable confounding (ratio of associational to causal odds ratios not close to unity). The bias can be in
either direction depending on the nature of the confounding. Within each graph, the lines correspond-
ing to � values of 0.5, 1 and 5 virtually coincide except when the disease frequency is low and the
causal effect reasonably large. This implies that the value of � generally has little effect on the degree
of bias of the Wald-type estimate, despite large values of � leading to much stronger confounding and
hence much greater bias in the associational estimator. In the absence of confounding, the Wald-type
estimate has a small but noticeable bias towards the null when the causal odds ratio is large. The degree
of bias decreases slowly with the marginal disease frequency unless the variance of the error term U is
very large, that is unless the risk of disease varies greatly between individuals with the same value of
exposure X . The approximate closed form expression (12) (shown by the dotted line on the graphs) pro-
vides a good approximation when the prevalence is high, but overestimates the bias when the prevalence
is low.

Sensitivity analyses (not shown) found the results to be generally very insensitive to both the geno-
type frequency and the difference ı in mean exposure between genotypes, as we expected from the
closed form approximate expressions. The only noticeable difference occurred for ı D 1, � D 5, large
causal odds ratios and the smallest values of the associational odds ratio, when the bias of the Wald-type
estimate was slightly higher than shown.

3.1. Simulation study

To evaluate the robustness of our asymptotic results, we conducted simulation studies that estimated the
bias of the Wald-type estimator under normal as well as alternative distributions of V (and hence of X/,
in finite samples. These proceeded along the flow of causation depicted in Figure 2. First, we generated
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Figure 3. Asymptotic bias of the Wald-type estimate quantified by the ratio of the Wald-type odds ratio to the
causal odds ratio (vertical axis) plotted against the ratio of the associational odds ratio to the causal odds ratio
(horizontal axis; truncated at 0.1 and 10). Both ratios are plotted on log scales. Within each graph, red, green and
blue lines show results of numerical evaluations for � D 0:5, 1 and 5, respectively. The dotted line represents the
closed form approximation. The disease frequency P(Y ) is 2%, 10% and 50% in the top, middle and bottom rows
of graphs, respectively. The causal odds ratio for a unit increase in X is 1.2, 1.65 and 2.27 in the left, middle and
right columns of graphs, respectively, corresponding to causal odds ratios comparing the top with bottom thirds

of the distribution of X of 1.5, 3 and 6, respectively.

a value of U as N.0; 1/. Second, we generated V as V D �U C ", where we sampled " from either a
normal distribution, a t distribution with 4 d.f. or a �2 distribution with 1 d.f. recentred to have mean
zero. We scaled each distribution to have unit variance, so that � corresponds to the correlation between
U and V : we varied � between �0.6 and 0.6 in steps of 0.2. We generated values of X and Y according
to Equations (4) and (5), with values of ˛ and ˇ chosen to give a causal odds ratio of 1.65 per unit
increase in X (corresponding to the middle panel of Figure 3). We generated G according to a Bernoulli
distribution with genotype frequency 0.5. We evaluated the Wald-type estimate from the sample ana-
logue of Equation (3) and the associational log odds ratio from a logistic regression of Y on X . We ran
5000 replications for each combination of parameters.

We found median bias to be low, in each scenario [43]. Figure 4 compares the relative mean bias of the
simple Wald-type estimate of the causal log odds ratio (plotted as geometric mean odds ratio, on a log
scale) with the bias of the associational estimate, for sample sizes 500, 2000, 5000 and 20 000 and for the
different exposure distributions. Results were little changed for sample sizes exceeding 20 000. Note that
the bias of the associational estimate (extent of confounding) depends on the choice of distribution, as
can be seen from the varying location of the points on the horizontal axes for the different distributions.
The distribution of estimates became increasingly broad and skewed with decreasing sample size (plots
not shown). For sample size 500, the mean bias was unstable and sometimes substantial. However, for
sample sizes of 2000 or greater, mean bias was similar for the three distributions. Mean bias decreased
with increasing sample size, and results for the normal distribution with 20 000 observations are similar
to those in the middle panel of Figure 3, obtained by numerical integration.
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Figure 4. Results of simulations for the scenario shown as the centre panel of Figure 3 with � D 1. Red
continuous lines: normal distribution, blue dotted lines �2 distribution with 1 d.f., green dashed lines t distribution

with 4 d.f. Note the expansion of vertical axis scale for sample size 500.

4. Discussion

We evaluated the asymptotic bias of the simple Wald-type estimate of the causal log odds ratio in a
structural model in which distribution of exposure conditional on genotype is normal and homoscedastic,
unobserved heterogeneity in the linear predictor for the outcome is modelled by a single variable with
a normal distribution and confounding was described by a single correlation between these two error
terms. The asymptotic bias was less than 10% providing that either the causal odds ratio was moderate
(odds ratio for top vs. bottom third of exposure less than 3) or there was at most moderate confounding
(ratio of associational to causal odds ratios within the range 0.5–2). We believe that such conditions cor-
respond to those in which Mendelian randomization studies are most likely to be useful—when it is hard
to rule out residual confounding and other sources of bias as explanations for observed associations. In
our simulations, when sample sizes exceeded 2000 the mean value of the finite-sample bias was similar
to its asymptotic value and appeared insensitive to mild violations of the normal exposure distributions.
However substantial mean finite-sample bias was observed when sample sizes were smaller than this.
All our results were restricted to the target parameter ˇC defined as log COR(+1/2, �1/2). We would
expect larger bias if we moved the target range away from the mean exposure.

There are alternative IV estimators (such as those based on structural mean models) that make weaker
assumptions than those under which we considered the bias of the Wald-type estimator, but these
require individual-level data whereas the Wald-type estimator can be used for both individual-level and
summary-level data. There are no IV methods for consistent estimation of a causal odds ratio so all esti-
mators of odds ratios yield approximations. When we wish to estimate risk ratios rather than odds ratios,
we can use a multiplicative generalized method of moments estimator [16, 44–46] or multiplicative
structural mean models [21] to yield consistent estimates of causal risk ratios under certain assumptions.
These can then be used as useful approximations of causal odds ratios in the case of a rare outcome.
Logistic structural mean models [47] allow approximate estimation of odds ratios.

Bayesian approaches have been recommended as an attractive option for estimating causal odds ratios
in Mendelian randomization analyses [48, 49]. They may also make strong assumptions: for instance a
full likelihood model has to be specified and prior distributional assumptions made for all model param-
eters. Interpretation may be complicated by the influence of prior distributions and non-identifiability
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issues [50, 51]. However, Bayesian approaches are worthy of further study, particularly in regard to the
finite sample bias issues investigated in this paper and the situations in which they perform well.

Because it is the only estimator that does not specifically require individual level data, the Wald-type
estimator is clearly of interest in a meta-analysis context where only summary data are available, and in
particular when we are interested in constructing IV estimates from some studies that estimated the asso-
ciation between Y and G and others that estimated the association between X and G. In this situation, a
sensible start point is to test for a causal effect ofX on Y by testing for association betweenG and Y [2].
This was performed for the effect of circulating CRP levels on hypertension in the example mentioned
earlier where it was noted that there was no evidence of association between CRP genotype and risk of
hypertension and hence no evidence for a causal effect [9]. However, a reasonable point estimate of the
causal effect will not be obtainable if the assumptions of Equations (4) and (5) cannot be justified. Prop-
erties of the Wald-type estimator under violations of the required conditions (e.g. independence of the
studies and assumptions about correlation/confounding) need to be investigated and would be relevant
to such applications [52–54].

Elsewhere, we have described situations in which Wald-type and structural mean model estimates
differ markedly [45]. Such differences can arise in the presence of interaction between X and U in the
structural equation for Y [55]. When the distribution of X given G is clearly non-normal (e.g. when X
is binary), the Wald-type estimate can be badly biased [15, 56].

Recently developed methods such as structural mean models require fewer untestable assumptions
than the Wald-type estimator. We recommend the use of structural mean models when the individual-
level data that they require are available, because the assumptions about U and V under which
we found the Wald-type estimator to have small bias (in particular the absence of interaction in
Equations (4) and (5)) are untestable. The Wald-type estimator may retain a role as an approximate
method for meta-analysis based on summary data.

Appendix: Derivation of approximate closed forms

Causal log odds ratio

We can obtain an approximate closed form expression for ˇC by approximating expit(x/ by
ˆ.cx/,whereˆ is the standard normal cumulative distribution function and c is a constant whose value is
around 0.6. Various choices of c have been made: c D 16

p
3=.15�/D 0:5881 minimizes the maximum

difference between expit(x/ and ˆ.cx/; c D 0:6071 matches their values at logit(0.2) and logit(0.8) and
c D

p
.2�/=4 D 0:6267 matches their derivatives at zero [57–59]. We chose the last of these when

plotting the approximate closed form results.
Analogous to Zeger et al. [57] and appendix of Palmer et al. [34], from Equations (1) and (6), we find

ˇC � ˇS=
p
1C c2�2. Figure 2 of Zeger et al. [57] shows that the bias is maximized when the fixed

part of the linear predictor is near zero, that is when the prevalence of disease (the marginal probability
of Y ) is near a half. So the aforementioned equation gives an approximation to the maximum degree of
attenuation, which should decrease to zero as the prevalence becomes very low, as then the logit func-
tion is very close to the log function and we know there is no bias if a log link was used in place of a
logit link.

Wald-type estimator

Using the same approximation, from Equation (10) we obtain

logit Pr.Y D 1jG D g/� ˛C ıˇSg
q
1C c2

�
�2C ˇ2S C 2��ˇS

�
;

and hence from the definition of the Wald-type estimator (3)

ˇW � ˇS=

q
1C c2

�
�2C ˇ2S C 2��ˇS

�

(independently of the values of the genotypes g0 and g1/.
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Associational estimator

Write U D ��V C e where e � N.0; �2.1 � �2// so that V and e are independent disturbance terms.
Then from (4) and (5),

Pr.Y D 1jX;G; e/D expit Œ˛C .ˇS C ��/X � ��ı.G �E.G//C e� :

We can then evaluate Pr(Y D 1jX/ by first integrating out e and then summing over G using expression
(8) in the main text. If we approximate the integral as earlier, we obtain

logit Pr.Y D 1jX D x;G D g/� ˛�C
.ˇS C ��/p

1C c2�2.1� �2/
x �

��ıp
1C c2�2.1� �2/

Œg �E.G/� ;

where ˛� is a constant that is not of interest. We can then use this in (8), together with an expression for
Pr(G D gjX D x/ derived from Equation (4) by a straightforward application of Bayes theorem, to give
a closed form but lengthy expression for logit Pr(Y D 1j X D x/. If ı was zero, however, we could
instead simply drop the last term in the aforementioned equation, and we have verified by plotting both
expressions that this is also a reasonable approximation for small values of ı. We therefore choose to
approximate ˇA by the coefficient of x in the aforementioned equation.
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