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SUMMARY

In this paper we discuss maximum likelihood estimation when some observations
are missing in mixed graphical interaction models assuming a conditional Gaussian
distribution as introduced by Lauritzen & Wermuth (1989). The approach via the
EM algorithm of Little & Schluchter (1985) for the saturated case is expanded to
cover the special restrictions in graphical models. A more efficient way to compute
the E—step is indicated. The main purpose of the paper is to show that for certain

missing patterns the computational effort can considerably be reduced.

Some key words: EM algorithm; Graphical interaction models; Maximum likelihood
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1. INTRODUCTION

Graphical models are used to describe complex multivariate association structures.
They are often of interest in contexts in which missing values are likely to occur and
appropriate estimation procedures have to be found for estimating the parameters
of interest. We focus here on maximum likelihood estimation in mixed graphical
interaction models assuming a conditional Gaussian distribution, where maximum
likelihood estimation typically requires iterative solutions and thus appropriate al-

gorithms. Missing patterns which allow for simplifications and efficient computation
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are therefore of special concern.

The outline of the paper is as follows. In § 2 we give a short introduction to graphical
interaction models with conditional Gaussian distributions. The application of the
EM algorithm for calculating the maximum likelihood estimates when the missing
values occur at random is discussed in § 3. Since computational effort can be quite
high, § 4 emphasises how one can simplify the algorithm given special missing pat-

terns. An example illustrates the possible reduction in computational effort.

2. GRAPHICAL MODELS AND MAXIMUM LIKELIHOOD ESTIMATION WITH

COMPLETE DATA

We briefly introduce the graphical interaction models of interest using the ter-
minology established by Lauritzen & Wermuth (1989). Consider a random vector
Xy = (Y',I")", where Y is a vector of R continuous variables with realisations
y € IR? and I is a vector of ) discrete variables with Z denoting the set of possible
realisations 7. The index set V is divided into disjoint sets V =TUA, TN A = 0§,
where A is the index set of the discrete components and I'" that of the continu-
ous ones. The vector Xy is said to have a conditional Gaussian distribution if the
density function f(zy) is given by the product of the discrete marginal probability
pr(l = i) = p(i) > 0 and the density of a multivariate normal distribution with
mean vector u(i) € IR® and covariance matrix Y (i) € IR®*®. We assume X(7) to be

positive definite for all 7 € Z. With the transformations
h(i) = (@)~ 'u(i) and K(i) = 2()*

we have the standard mixed characteristics {p(i), h(7), K(i)|7 € Z}. The graphical
models considered here specify conditional independencies which can be represented
by a graph and which result in restrictions on the parameters (Lauritzen & Wermuth,
1989). A graph G = (V, E) is given by a nonempty finite set V' of vertices and a set

E CV xV of edges, where we only consider undirected graphs. The multivariate



distribution of Xy is called G-Markovian if it fulfils the so—called pairwise Markov

property:
Xol Xp| Xonfapy forall (a,b) ¢ E, a#b.

For conditional Gaussian distributions this is equivalent to the global Markov prop-
erty (Lauritzen & Wermuth, 1989).

We will denote by M(G) the statistical model containing all G-Markovian condi-
tional Gaussian distributions and let us distinguish M (G) 4 as the set of A—-marginals
from M(G4) as the set of all G ,~Markovian conditional Gaussian distributions with
Gas=(A,Ey) and E4 = EN (A x A) for any A C V. In addition, let M(G)* be
the set of conditional G-Markovian conditional Gaussian distributions conditioning
on the variables X 4.

Given a random sample X, ..., X{¥ of independent and identically distributed ran-
dom vectors from M(G) the set of joint distributions constitutes an exponential
family. Let Co denote the set of cliques in the graph induced by the discrete ver-
tices; let further Ca(r),r € I, be the sets d C A with dU {r} a clique in Gayry
and Ca(r,s),r,s € ', the sets d C A with dU {r, s} a clique in Gaugr}- Then the

minimal sufficient statistics are
(i) the marginal tables of counts N(iq) = X}, x(I} =i4), d € Ca,

(ii) for each continuous variable r € T" the set of marginal tables of sums S(ig), =

ey Yy and sums of squares SS(ia)r = Xjei, (YY), d € Ca(r),

T

(iii) for each edge (r,s), 7 # s, between continuous variables the marginal tables

of sums of products SS(iq)rs = Xjer(iy) Y7 Y, d € Ca(r, s),

where x is the indicator function and J(iq) = {j € {1,...,N}|&/ = i4}. The
maximum likelihood estimates are given by the usual equation system. Sufficient
conditions to guarantee the existence of the maximum likelihood estimates can be
given but they are only necessary in the decomposable case (Lauritzen, 1996) which
will be considered next.

A decomposition of a marked graph G is a partition (A, B,C) of V with (a) C
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separates A and B, (b) C is complete and (¢) C € A or B C I'. A graph is
decomposable if it is complete or if there exists a decomposition (A4, B,C) with
A and B both nonempty into decomposable subgraphs G auc and Gpyc. Given
such a decomposition (A, B,C) of G the graph is collapsible on to A U C, that is
M(G) auc = M(G auc) (Frydenberg, 1990). The loglikelihood

L(0]z) = Y _log f(zhuclbauc) + D log f(a%7t: Oic), (1)

j=1 j=1
can then be maximised by separately maximising the two sums. It follows from the
central result of Frydenberg & Lauritzen (1989, Proposition 4) that the first sum
is maximised by the maximum likelihood estimate in M(Gauc) based upon data
(rhuc,--->28,c) and the second by the maximum likelihood estimate in the re-
gression model M(Gpuc)© based upon data (zh g, ---,2N,c)- The estimation in
M(Gpuc)© in turn is given by the estimates in M(Gpuc) and M(G¢). In addi-
tion, Frydenberg & Lauritzen (1989) show that closed expressions of the maximum
likelihood estimates exist for decomposable graphs. In general iterative procedures
are needed to calculate the maximum likelihood estimates (Frydenberg & Edwards,

1989).

3. APPLICATION OF THE EM ALGORITHM

Incomplete data are modelled by dividing each observation vector into its observed

and missing components, i.e. Xy = (X , X . )T. In the following we assume that

obs’ “*mis
for every entity at least one component of Xy, can be observed. In addition we assume
missingness at random (MAR) in the sense of Rubin (1974). This strong assumption
should be carefully verified in practice since violations of the MAR assumption can
lead to considerable bias of the estimates. Under MAR, however, it is possible to
obtain the maximum likelihood estimates without any further knowledge about the

missing mechanism. Their calculation requires maximisation of the likelihood of the

observed variables. A general tool for handling this sometimes tedious task is the



EM algorithm (Dempster, Laird & Rubin, 1977) which is easy to apply when the
considered model is an exponential family: the E—step calculates the expected suffi-
cient statistics given the observed data and the current estimates of the parameters,
and the M-step determines the new estimates using the conditional expectations
of the sufficient statistics as if they were the observed. Thus, the M—step can be
performed in the same way as for complete-data maximum likelihood estimation.
For mixed interaction models with conditional Gaussian distribution the E—step has
to calculate
N
(i) E(N(ia)|zobs) ;pr Ly = dalzly,),
N .
(i) E(S(ia)rlzobs) = Y pr(la = ialzl, ) E(Y,|ylp s da),
J:tv | | |
BUSS (il lops) = 32 pr(la = ale ) LBl )} + va5(¥ 1)

(iii) E(SS(id)r,s|Tobs)

N
= pr(ly = ialzly JAE (Y |yl 1a) E (Yl ylygr ta) 4 cov(Ye, Yaly?l oo ta) }-
7j=1

These can be obtained by appropriate summation over the conditional expectations
of the sufficient statistics in the saturated model (Little & Schluchter, 1985; Edwards,
1996). For example we have
pr(ly = ialTops) = ) Pr(d = 7|zohs)-
i €T:i!,=iq

To compute this let (14(7)ohs, 2(%)obs) be the parameters of the marginal distribution
of Yops given I = 4 and let S = {(igbs, tmis)|tmis € Zmis} be the set of cells the
observation could lie in given the observed discrete components. Then

exp k(i)

v(i) = pr(l = ilzohs) = S e (s

with
k(1) = y(—)rbsz (i);‘és.u(i)obs

1
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This differs slightly from the formulae given by Little & Schluchter (1985) since,
because of the non-homogeneity assumption the term %ygbsE(i)gésyobs does not
cancel out. Note that v(i) =0if i ¢ S and v(i) =1 if S = {i}.

In addition, we have, for missing continuous components Y, Y,

Yr(1) = E(Y|Yobs, ©) = p(i)r — B ){r} obsz(i);];s(yobs — 14(#)obs)

COV(Y{T,S}|yobSai) = 2(i){r,ss}_E(i){r,s},obsz(Z’)(;‘ész(i)obs,{r,s}a

where cov(Y(, .} |¥obs, 7) denotes the conditional covariance matrix of Yi, ;) with en-
tries cov(Y;, Ys|yobs, 7) as conditional covariance of Y, and Y;, and var(Y;|ygns, ¢) and
var(Y;|yobs, ) each as conditional variance. These entries will be denoted by ¢, s(2).
If the continuous components are not missing, we get y,(¢) = y, and ¢, (i) = 0.

The conditional expectations of the sufficient statistics given the observed data are

now given as follows:
E(N(ia)|zobs) = Z Z Vj(il)v d € Ca, (2)
j=1¢€el: &:’id
where 17 (7) is v(7) for the jth observation,
E(S(ia)r|Tobs) = Z Z V()yl(i'), deCalr), r€T, (3)
J=1 el =iq

and, for r =sor (r,s) € E (r,s eT),

Z > YOO + a6} delalns). @)

=14€eZ: Zd—ld

E(SS5(ia)

The E-step of the EM algorithm determines (2), (3) and (4) for the current pa-
rameter iterates. While (2) and (3) differ from the saturated case only through the
additional summation over i’ € 7 : i, = iy and thus constitute no simplification,
we can see from (4) that the conditional covariances only have to be calculated for

missing continuous components Y, and Y; with (r,s) € E.

As noticed by Lauritzen (1995) the effort involved in the E-step can be consider-

able, especially when dealing with high dimensions. The following example makes it



clear that an acceleration is possible. To compute E (N (i4)|Xgps), d € Ca, we need
pr(ly = ig|xops)- If now the set of observed variables zp contains the boundary
of d which is defined as bd(d) = {a € V|3b e d: (a,b) € EV (b,a) € E}, then it
follows from the local Markov property that pr(lg = i4|zops) = pr(la = iaTpq(a)) s0
that the computation depends on fewer variables. The corresponding simplification,
however, is not taken into account if we proceed as described above. The procedure
proposed by Lauritzen (1995) to accelerate the E-step relies on a computational
scheme developed by Lauritzen & Spiegelhalter (1988) in the context of probabilis-
tic expert systems. Lauritzen (1995) considers only discrete variables but points
out that the procedure can be generalised for mixed interaction models using the
propagation scheme of Lauritzen (1992). Probabilistic expert systems specify the
existing knowledge about association structures by graphical models. For given evi-
dence, that is for known values of a subset of the variables, properties of the updated
system are of interest where updating corresponds to a conditioning process. The
computational task is therefore essentially the same as for the E—step if we consider
the observed values as evidence and the conditional expectations of the sufficient
statistics as interesting properties. The possible gain in computational ease is based
on two factors. Computation can be done with unnormalised density functions and
the Markov properties of the graph can be exploited in that they are reflected by the
product structure of the joint density. For this it is necessary to form a junction tree,
which is a special way of organising the cliques of the graph so that calculations can
rely on operations only between neighbouring cliques. The operations in turn are
done on conditional Gaussian potentials avoiding normalisation. For further details

we refer to Lauritzen (1992).

4. SPECIAL MISSING PATTERNS

In some situations, we can find simple factorised formulae for the marginal likelihood

of the observed data. This is well known for monotone missing patterns and certain



underlying distributions as the multinomial and multivariate Gaussian (Little &
Rubin, 1987) allowing a factorisation such that maximisation of each factor corre-
sponds to a complete—data situation. In general this simplification only works for
saturated models because maximising separately is often impossible when there are
restrictions on the parameters. Much of the literature on graphical models, however,
is concerned with simplifications of the estimation problem using the properties of
decomposability and collapsibility of graphs leading to factorisations of the likeli-
hood. For certain missing patterns the property of separate maximisation in these
cases is preserved. We first describe the necessary general missing pattern and then

discuss special cases yielding further simplifications.

Let (A, B,C) be a decomposition of the graph G. The missing pattern that will
be of interest here obtains whenever X, is ‘more observed’ than Xg. To describe
this formally let obs(B) denote the observed components of a subvector X for any
B C V. In a sample X{,..., X} the vector X is more observed than Xp if from
obs(B) # 0 it follows that obs(C) = C for each observation. With V2 C {1,..., N},
nonempty, being the index set of those observations where at least one component
of Xp is known, the loglikelihood of the observed data is by analogy with (1) given
by
Lobs(0|Zobs) = JZI log f (% ghs(aucylfave) + jg;B log f(xf)bs(B) [2¢30B)c),

where f (xf)bs( AuC)'eAUC) is the marginal density of the observed variables and
f (xf)bs( B)\ r¢; 0p/c) that of Xgpgp) given X¢. They are therefore given by marginal-
isation of the two sums in (1), preserving distinctiveness of the parameters. We
therefore have the following result. The maximum likelihood estimates of the full

model are transformations of the maximum likelihood estimates in
(i) M(Gauc) based on data (‘Tf)bs(AUC); j€e{l,...,N}),

(ii) M(Gpuc) based on data (xf)bs Lol J € VB) and

(B)
(iii) M(G¢) based on data (zh; j € VB).
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For a more formal proof see Geng et al. (1997). Note that for the considered miss-
ing pattern (iii) always corresponds to a complete-data problem since X¢ is always
completely observed for j € VB, whereas in (i) and (ii) the EM algorithm may be

required depending on the missing patterns within the vectors X ¢ and Xpye.

A special case not needing the EM algorithm in (ii) is when the whole vector
Xp is either missing or observed. Then maximisation in M(Gpyc) is based on
(x%uc; j € VPB). Another easily handled situation obtains when the patterns in
AUC and B U C are such that they again allow for a decomposition with cor-
responding factorisation. In the decomposable case with a so—called SD-ordering
of the cliques (Leimer, 1989) the corresponding missing pattern is given when the
separators are more observed than the separated sets. Further decomposition, how-
ever, will be impossible when A and B are complete. In this case, monotone missing
patterns could lead to explicit maximum likelihood estimates. If for example the
subgraph Gpuc is complete and M(Gpyc) corresponds to either a loglinear or a
multivariate normal model there exist closed expressions for the maximum likeli-
hood estimates in M (G guc)® not only for the situation that the whole vector Xp
is either missing or observed but also when the missing pattern in Xz is monotone.
We can then apply the procedure described by Little & Rubin (1987).

If we have a symmetric decomposition which means that the sets A and B are in-
terchangeable, as in the case of I' = ) or A = (), i.e. so—called pure graphs, or when
C contains only discrete variables, the graph is collapsible on to C'. We can then
replace (i) by separate maximisation in M(G4,¢)¢ and M(G¢). This is preserved
for a missing pattern where X is more observed not only than X g but also than X 4
so that maximisation in M(G 4,¢)¢ is based on data (xébs(A)UC; j € VA), where V4
denotes the analogous set to V&, and in M(G¢) on (x{)bs(c*); j€{1,...,N}). The
first of these two estimation tasks corresponds to (ii) and (iii) in the above result
and therefore yields the same simplifications.

Furthermore, if the sets A and B are not connected at all, that is C' = (), then sep-
arate maximisation of the likelihoods in M(G4) and M(Gp) is possible regardless



of the missing pattern. Of course one or both may require the EM algorithm.

Note that a decomposition is often not unique. In that case it should be chosen
according to the missing pattern in order to apply the above results and to create
further decompositions if possible. The procedure can also be applied when G is
collapsible on to a subset A C V' when the vectors Xp, are incompletely observed
for k = 1,..., K, where By,..., Bk are the connected components of B = V\A
since (V\cl(By), Bg, bd(Bg)) is a decomposition of G for every k = 1,..., K, where
cl(By) = B Ubd(Byg) is the closure of the set B.

5. EXAMPLE

Following Frydenberg & Lauritzen (1989) we consider the following graph: G =
(V,E) with V = {I,1,,Y1,Y2} and E =V x V\{(I1,Y>), (Ys,11)}. The graphical

representation is given in Fig. 1.

(Figure 1 about here)

With A = {1}, B ={Y5} and C = {I,,Y1} we have a decomposition and since A
and B are complete the graph is decomposable. The sufficient statistics are given
by N(iy,i2), S(i1,42)1, SS(i1,02)1, S(i2)2, SS(i2)2 and SS(ig)12 for (i1,is) € T.
With complete data there exist explicit maximum likelihood estimates as given in
Frydenberg & Lauritzen (1989). Let us now assume that Y5 is incompletely observed.
Each E—-step of the EM algorithm would require the computation of

BT ) = i+ D ]~ ),
var(Yalid yl) = o(i)y — 0(i1)12’
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for each incomplete observation j € V\V? and for the current parameter iterates.
The EM algorithm is not complicated for this missing situation but can be avoided
since we have the special missing pattern of § 4. In this special case, we have the fol-
lowing estimates for the standard mixed characteristics in the submodel M (G, 1,.v;)

estimated from all observations since the variables I, I, and Y] are always observed:

D > - n 7;1, /LQ

Py (1, %2) = (N )’
IA{[II’IQ’YI] (i1,72) = n(i,92){ssdyy (i1, io)} 1,
iL[I1,12,Y1] (ila i2) = IA([II,IQ,YI](Z'l, 732)171 (il, 7;2)’

where ssd denotes the sum of squares of deviations from the mean. The estimates in
M(Gr, v yv,) and M(Gy,y,) indexed by [I5,Y],Y3] and [I5, Y] make use only of the
complete observations, that is those for which Y5 is observed. They will be denoted

by *. We then have

- . TL*(’LQ) s . n*(ZZ)
p[haYl,YZ](ZQ): N+* and p[ImYl](Z?): N*

where n*(iy) = |{j € VB|i} = i}| and N* = |V'B|. Furthermore,

IA([*I2,Y1 Y] (i2) = n (i2){33del,Y2] (i2)} 7,

A

B, v v (B2) = K[*IQ,YI vy) (12)7" (42),

K,y (i) = 0 (i2){ssdjy, (i2)} ",

~ A~
*

R, v(i2) = K, v, (62) 75 (12).-

Now consider a missing pattern where only I; and Y] are always observed, that is
I, and Y5 are sometimes missing but not necessarily simultaneously. We then have
the situation that the separating set is more observed than the separated ones. The
estimates indexed by [I, Y7, Y3] and [I3,Y7,]| remain the same as above based on
those observations where I, Y; and Y5 are observed. They are not affected by the
incompleteness of 1. Of course, p1, 1,,vi), 5[11712,5/1] and K[[hb,yﬂ are affected. Here,
the database cannot be reduced to those observations where I, I, and Y; are com-

pletely known since then the information from the observations where only I, and
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Y are observed would be lost. The estimation based on data (i, y{) where I; is ob-
served, and on (i},y]) where I; is missing, therefore needs the EM algorithm which

in turn requires in each iteration the computation of 7 (i) = pr(I = i/, y7).

6. DISCUSSION

For more general missing patterns it has been shown by Geng et al. (1997) that the
EM algorithm can be considerably accelerated by imputing in the E-step only the
minimal necessary data to yield a missing pattern as described in § 4. It is obvious
that in this situation the discussed special cases may reduce the amount of missing
data that needs to be imputed.

Finally, note that another important situation where special missing patterns are
worth taking into account is that of a chain graph. Here, the joint distribution
is specified by conditional distributions each constituting a conditional Gaussian
regression (Lauritzen & Wermuth, 1989). The estimation task in these models is
greatly simplified when the ‘past’ of a variable is always more observed than the

variable itself.
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