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8.1 Introduction

We continue the discussion of sequential data-gathering and decision-making processes, started
in the preceding chapter in this volume. The archetypical context is that of a sequence of
medical decisions, taken at different time points during the follow-up of the patient, each
decision involving choice of a treatment in the light of any interim responses or adverse
reactions to earlier treatments. The problem consists of predicting the consequences that a
(possibly new and possibly hypothetical) treatment plan will have on a future patient, by
learning from the performances of past medical decision makers on past patients. While we
make constant reference to a medical application context, the scope of the method is of much
broader relevance.

Our approach to this problem owes immensely to the seminal work of James Robins.
In a rich series of papers (1986, 1987, 1988, 1989, 1992, 1997, 2000, 2004), Robins and
Wasserman (1997) and Robins et al. (1999), Robins introduces the idea of different hypo-
thetical studies (these studies being analogous to our notion of ‘regimes’), in which different
treatment strategies are applied. He examines conditions on the relationships between these
studies, under which those treatment strategies can be compared. Among these, the sequential
randomization condition is closely related to the ‘stability’ assumption used in this chapter.
Furthermore, Robins (1986) introduced the G-computation algorithm (a special version of
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dynamic programming) to evaluate a sequential treatment strategy, which works where stan-
dard regression — even under the sequential randomization assumption — fails. Most of the
concepts expounded in this chapter have a counterpart in Robin’s work, although, in the
interest of readability, we shall frequently abstain from making the relationships with his
work explicit.

We shall assume that we have an idea of which variables informed past decisions, without
assuming that these variables have all been observed in the past. Nor shall we assume that the
rules that governed past decisions are discernible or similar to those that will guide the future
plan of interest.

In contrast with the previous chapter, we do use causal diagrams. In the context of sequential
plan identification, causal diagrams (or, better, a particular form of causal diagram) were first
advocated by Pearl and Robins (1995). In accord with these authors, we assume that the
relevant causal knowledge is encoded in the form of a diagram with a completely specified
topology, whose associated numerical conditional probabilities are given only for a subset
of its variables, so-called observed variables. The remaining variables in the diagram are
‘unobserved’ or ‘latent’. We shall, however, introduce a form of graphical representation of
causality that differs from Pearl and Robins’s diagrams in some respects. Part of the problem
will be to characterize situations in which the estimation of the causal effects of the treatment
plan of interest is not invalidated by unobserved confounding introduced by the latent variables.
Throughout this chapter we use previous results by Dawid and Didelez (2010).

Elja Arjas, both in his chapter (Chapter 7) in this volume and in his work with Parner (2004),
considers two probability models. One (called the ‘obs’ model) models the observational study
that has generated the data. The other (called the ‘ex’ model) models the consequences of the
future (perhaps hypothetical) application of the treatment plan of interest. In our approach, this
distinction is embodied in a sort of decision parameter, called the ‘regime indicator’, which
indicates the particular regime, ‘obs’ or ‘ex’, in operation. Supplementing the set of domain
variables with the mentioned regime indicator results in an ‘augmented’ set of variables. In our
approach, conditions for the equivalence of Arjas’s ‘obs’ and ‘ex’ distributions are phrased in
terms of conditional independence conditions on this augmented set. Both chapters, ours and
that of Arjas, avoid formulations based on ideas of potential outcomes or counterfactuals. We
illustrate the methods and their motivations with the aid of two examples. Following Robins,
we choose the first example in the area of the treatment of HIV infection. The second example
will be in the treatment of abdominal aortic aneurysm.

This chapter is more about the identifiability of treatment plan effects, than about the
methods of estimation and computation one is supposed to use if the problem turns out to be
identifiable. The latter problems are discussed in greater detail in Chapter 17 in this volume,
by Daniel, De Stavola and Cousens, who illustrate their method with the aid of the same HIV
example we use here. An introduction to this HIV example is given in the next section.

8.2 Motivating example

We start with an example in human immunodeficiency virus (HIV) infection. The standard
treatment of this disease involves an initiation therapy based on a combination of three
antiretroviral agents, chosen from a larger pool of candidate drugs. In many patients, this
initial therapy will eventually fail. Failure criteria include virologic evidence, for example a
decrease by less than a factor of 10 in the virus RNA level during the last eight weeks or
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development of life-threatening toxic effects or, for example, dislipidaemia. Therapy failure
will prompt consideration of a possible replacement of one or more components of the initial
drug cocktail. The decision whether to do the replacement, of the component to replace,
and of the replacement component, will be based on any available information about the past
evolution of the disease and of the virus (possibly also on the basis of viral genome sequencing
information). Various types of decision are involved, such as: what threshold decrease in viral
RNA should be interpreted as a therapy failure, and/or to prompt therapy substitution, and,
in the latter case, what criterion should we use to choose the replacement drug, how many
components of the drug cocktail should be chosen and which ones etc.? The rules that govern
these decisions (whether originating from the doctor’s experience or medical guidelines)
constitute the treatment strategy.

One possible strategy consists of applying a fixed, pre-defined, sequence of drug cocktails
and dosages, where the switches from one cocktail to the next occur at pre-established times,
irrespective of any incoming information about the patient. This is called a static strategy, or
plan. More interesting and relevant are dynamic treatment plans, where the treatment decisions
adapt to, and depend on, the accruing series of patient events. Treatment plans are usually
compared in terms of their impact on the patient’s disease course, for example in terms of the
length of the AIDS-free survival time, although cost-effectiveness considerations may easily
be brought into the framework (we shall not say much about this). This chapter addresses
the problem of predicting the consequences on a hypothetical future patient of a treatment
plan of interest, without requiring this plan to have ever been considered or implemented
in the past. Application of the method to alternative treatment plans provides a basis for
comparing them, as well as a basis for determining the best plan under given constraints, the
so-called optimization problem. A discussion of methodological and computational issues in
optimization is outside the scope of the present chapter.

8.3 Descriptive versus causal inference

Standard statistical software offers tools to describe the endpoint experience of groups of
patients subjected to different treatment strategies. Application of these tools to the data
might, for example, reveal that ‘patients that have been treated according to strategy 1 have
fared better than those that have been treated according to strategy 2’.

The problem with this ‘descriptive’ approach is that — while possibly useful and correct in a
sense —it may be misleading both scientifically and in terms of practical (medical) implications.
What the clinicians and the scientists want is to predict the effect of assigning (by intervention)
a specific treatment to a future case, at any time of his/her evolution, and conditional on the
gradually accumulating information we collect from him/her. Can this knowledge be extracted
from observational data, collected from past medical records?

The problem is that future cases may differ from those in the data in various important
ways, for example because, in the observed data, the doctor’s choices of actions made use of
additional —unrecorded — private information. In Arjas’s terminology, this would correspond to
the causal variables, {A;}, not being unconfounded relative to the latent variables, in the sense
of his Definition 2. Moving in a similar direction as Arjas, in this chapter we formalize the
requirements under which past empirical evidence can be validly carried into future decisions.
Whenever these requirements appear unreasonable in a real application, we must be prepared to
conclude that the available data have little practical implication with respect to future (medical)
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practice. While often useful, descriptive analysis may be misleading if used to corroborate
causal claims, in those situations where the formal requirements discussed in this chapter are
not carefully negotiated.

Of course, if we were able to carry out a large experiment in which sample patients are
randomized over the set of treatment strategies of interest, then difficulties would, at least in
part, disappear. Confounding would be eliminated by randomization. However, in very many
circumstances, we shall have to (or wish to) exploit data gathered under purely observational
circumstances, and this motivates our effort.

8.4 Notation and problem definition

Consider the ordered sequence of time points {T;} (for k =0,1,...,N +1),with0 =T <
T < T, < --- < Tyy1. Unlike in the preceding chapter, we take this sequence to be fixed.
Moreover, for simplicity, we shall take it to be the same in all patients. In a medical treatment
decision context, these time points will usually be defined on a patient-specific time scale, such
as, for example, time since diagnosis, rather than, say, calendar year. Fork =1,..., N + 1,
we consider the following patient-specific variables:

X the values of a set of covariates observed at Ty,

Ay: an action or treatment decision, performed right after 7; (undefined for k = N + 1). In
certain applications, this variable could denote the level of a certain exposure at time T.

Our assumption that the domain variables are completely ordered in time is not essential,
but it will make our discussion simpler. Writing, for example (A;, A,) for A} U A,, we let the
symbol A; denote the partial sequence (A,, Ay, ..., A;) of actions performed up to time T,
and a similar notation be used for other variables in the problem. The {X;} sequence contains
a distinguished variable, Y = Xy, called the endpoint variable. This could be the state of
health of the patient at the end of a given time period or, for example, a summary of the entire
realized history, (YN, ZN), of the process. This will cover situations in which alternative plans
are compared in terms of the involved treatment costs.

Throughout this chapter, we are assuming our data to have been collected under an ob-
servational regime, which we denote as o. Such a regime will generally involve the passive
observation of the performance of past decision makers. One example is in situations where
the data are retrieved from medical records describing certain treatments applied to certain
patients, together with the disease courses of these patients. In our notation, these data con-
stitute sample realizations (or ‘paths’) of the (X y1, Ay) process. The method we are going
to describe does not require us to discern the decision criteria in operation under the observa-
tional regime, nor the source of these criteria, be it the doctor’s personal experience, or public
guidelines, imposed protocols, etc. In contrast with the observational regime, we have the
experimental regime, denoted by e, in which a hypothetical future patient is treated according
to a specific (static or dynamic) plan, which we wish to evaluate. Such a plan will consist
of a specific set of rules for determining the value of each A, at time T}, possibly on the
basis of information about (Az_1, Xx_). Part of the notion of the ‘experimental regime’ also
the modalities with which each treatment action will be carried out and, more in general, the
environmental and technological conditions and the medical expertise, which will surround the
application of these actions. The aim of the method is to predict the effect of the experimental
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regime e on Y, on the basis of the data collected under 0. We do not need to assume that the
decision criteria that inform the plan under assessment have ever been adopted in the past.

We introduce a nonrandom regime indicator, o, taking values in (o, ¢). We think of the
value of o as being determined externally, before any observations on (X 1, Ay) are made.
All probability statements about (X y_1, Ay) must then be explicitly or implicitly conditional
on the value of o. We use the symbol p(Y | o = e) to denote the marginal density of ¥ for
a future patient under treatment regime e. If we are able to estimate this density, we shall be
able to say something about how effective (in terms of whatever loss function we adopt) is the
treatment plan under investigation. Of interest are then the conditions under which the past
data, collected under regime o, can be used to determine p(Y | o = e). These we shall refer
to as plan identifiability conditions. For simplicity, in the following, we suppose that the time
grid, {T;}, and the (X .1, Ay) variables are the same for both regimes, o and e. For the time
being, we shall assume that treatment decisions under e are influenced by the same variables
that have influenced the corresponding decisions under o.

8.5 HIV example continued

With reference to our HIV example, the sequence Ty, k = 1, ..., N, might represent a fixed
set of times at which the patient is visited, with T representing some clinically meaningful
temporal origin. The X; covariate might represent the observed values, at T}, of viral RNA
levels, CD4 levels, AIDS status and — more broadly — safety-related variables or indicators of
possible unfavourable side effects of the therapy. Immediately after information X; has been
collected, a therapeutic action, A, will be performed on the patient. This might consist of
switching from the current drug cocktail to a new one, by a rational replacement of one or
more components, in response to the past clinical evolution pattern of the patient.

8.6 Latent variables

In most situations, we shall need to introduce in the problem additional variables that are
essential to describe the causal structure of the problem, but are unobserved. These variables
we call ‘unobserved’, or latent, and collectively denote with the symbol £. We shall let
elements of this set be denoted by the generic symbols U and W. We shall have these variables
time-subscripted, with Uy, say, characterizing the set of a relevant latent process right before
time T} and after time T;_;. The symbol L; will denote the set of all £ variables with a
subscript equal or lower than .

In the HIV example, we may use latent variables to represent, for example, patient-specific,
possibly inheritable, patterns of response to drugs. In Chapter 17, for example, in their HIV
example, Daniel and colleagues introduce latent variables that categorize the patients into
‘types’, to indicate lower-than-average responsiveness to specific therapies and/or vulnerability
to the side effects of a specific therapy (see Chapter 17 for details). Our formulation allows
these variables to be organized in a time process, which allows the model to acknowledge the
tendency of some patients to switch type during the course of therapy. The introduction of
latent variables will result in a more detailed causal structure, and by a correspondingly more
complex causal diagram representation of the problem. This has advantages. For one, it will
often help justify the necessary assumptions. The stability assumption of the next section, for
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example, is often easier to justify in terms of local properties of a detailed causal diagram
that includes latent variables, than in terms of relationships between the observed variables of
direct interest.

8.7 Conditions for sequential plan identifiability

We are now going to explore conditions for sequential plan identifiability, that is conditions
under which our data, which have been collected under regime o, can be used to infer the
distribution p(Y | 0 = e) of the endpoint variable under regime e. In general, this will not
be possible, one reason being that, in general, the probability distribution of the observed
variables will differ from one regime to the other. We have identifiability if certain properties
of equivalence between the distributions of the observed variables under the two regimes are
satisfied. These properties are discussed in the following.

Under the experimental regime, denoted by o = e, the joint distribution of the observed
variables factorizes into the product of the conditional distributions of each of these variables
given the earlier observed variables:

N+1
Py, Xy, Ay | 0 =e) = {]‘[ PO | Fym1. @iy 0 = e)}
k=0

N
X {Hp(dk | X, dg—15 0 = e)} (8.1)

k=0

where Xy, =Y and where p(x; | X;—1, dx—1 ; 0 = e) really stands for
/ O | Ko, @pmr, L1 | 0 =€) dp(Li—y | Xpet, @i, 0 = €) (8.2)
dom(Ly_)

where dom(L;_) stands for the domain of the L;_; variables. Note that the second factor
on the right-hand side of Equation (8.1) represents the pre-established treatment strategy we
want to assess and, as a consequence, is to be considered known a priori. Note also that we
are assuming each variable to have the same property, of being observed or unobserved, under
both regimes. Our inferential problem is solved if we are able, on the basis of the data collected
under o, to estimate the probability distribution (8.1). We shall now see that we may indeed be
able to do so if the properties of stability and positivity, discussed in the following, are satisfied.

8.7.1 Stability

In general, for a generic k, the conditional distribution p(X; | X1, Ary) will vary across
regimes; that is, conditional on a particular observed history of the individual, the effect of a
given sequence of actions s will, in general, differ systematically from one regime to the other.
In our HIV example, this could be due, for example, to the fact that the doctors of one regime
have a better visibility of the underlying patient’s ‘type’ than those of the other regime. As a
consequence, those patients of one regime who underwent the sequence s are not comparable
(despite the conditioning on past observed history) with those patients of the other regime
who underwent the same sequence. In those situations where, by contrast, the distribution
p(Xi | X1, Ar_1) does not differ from one regime to the other, we say we have ‘stability’.
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More formally, we say that the stability condition is satisfied if, for k =0,..., N + 1, the
following identity holds:

P | Xp—1, Gr—1; 0 =€) = p(xy | Xk—1, dr—1; 0 = 0) (8.3)

whenever the conditioning event, X;_, dx—, has positive probability under either of regimes
o and e. Our definition of stability is closely related to Robin’s concept (1986) of sequential
randomization (1986). Having previously defined o to take values in (o, e), the stability
condition is equivalent to the following conditional independence property:

Xello | (Xp—1, Agmt) (k=0,...,N+1) (8.4)

Here and throughout, we use the notation and theory of conditional independence introduced
by Dawid (1979) as generalized in Dawid (2002) to apply also to problems involving decision
or parameter variables.

A major caveat is the fact that, because stability is a property of the relationship between
different regimes, it can never be empirically established on the basis of data collected under
the sole observational regime. In order to judge how realistic the stability assumption is in a
specific application, we shall need genuine insight into the subject matter. In the next section,
with reference to our HIV example, we shall see that a detailed causal diagram of the problem,
which includes the relevant latent variables, may help in this task. One reason is that it may
be relatively easy to justify assumptions about local properties of the diagram from which,
ultimately, stability can be deduced via the usual conditional independence semantics of DAGs.

Intuitively, under the stability condition (8.4), or under the equivalent condition (8.3), one
can formally replace the distribution p(x; | X;_1,a;—1; 0 = e) in Equation (8.1) by p(x; |
Xi—1,d;—1; 0 = 0), and thus hope to be able to estimate the first factor on the right-hand
side of Equation (8.1) from the available observational data. In this case, because the second
factor on the right-hand side of Equation (8.1) is known a priori, one would hope to be able
to estimate the distribution p(y, Xy, ay | 0 = e) from the data. However, some extra care is
needed here. We shall — in general — have to invoke a further property called positivity, which
is discussed in the following.

8.7.2 Positivity

If, for example, we want to assess the consequence of an interventional strategy e, under which
a particular action sequence a@* may arise, we will be unable to do so if, under the observational
regime that has generated our data, that particular sequence of actions arises with probability
zero. Define the positivity condition to be satisfied when, for any strategy e and any event
E defined in terms of (X y, Ay, Y), the inequality p(E | e) > 0 implies p(E | 0) > 0. In our
HIV example, positivity implies that for any combined sequence of patient events and medical
actions that may arise under the treatment strategy e that we wish to evaluate, there is a non-null
probability of that particular sequence arising in the observational data. An extreme example
of violated positivity occurs when the regime e contemplates the possible administration of a
drug molecule that was not available in the observational study that generated the data. More
subtle examples of violated positivity may arise.

When both stability and positivity are satisfied, we should be able to estimate the joint
distribution (8.1) on the basis of the observational data. Then, on the basis of such distribution,
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we should — at least in principle —be able to obtain p(Y | 0 = ¢) by marginalization with respect
to all variables but xy; = Y. Note, however, that this procedure is extremely cumbersome
from a computational point of view. A computationally more efficient procedure is discussed
later in this chapter.

8.8 Graphical representations of dynamic plans

As stated in the introduction section, we consider the use of causal diagrams to be a very
helpful ingredient of our method. We shall here restrict ourselves to diagrams that have the
form of a directed acyclic graph (DAG). The particular class of causal diagrams we advocate,
called an ‘augmented causal DAG’ (ADAG), differs in some respects from the graphical
representations of NPSEMs discussed in Chapter 3 in this volume, and from the causal
diagrams of Pearl (2009). In this section, we explain the differences between ADAGs and
other graphical representations of causality, and the reasons why we favour the former.

A ‘causal DAG’ is supposed to model causal relations. Unlike conditional independence,
which is an unambiguous property of a probability distribution, causal relations lack a clear,
mathematical, definition. A DAG representing causal properties should, in principle, be some-
thing totally different from a DAG representing conditional independence properties. In the
former case, the arrows are supposed to have a direct interpretation in terms of cause and
effect (whatever this means) whereas for conditional independence the arrows are noth-
ing but incidental construction features supporting the d-separation semantics described by
Shpitser in Chapter 3. In spite of all this, the idea of using DAGs that simultaneously repre-
sent conditional independence and causal properties (the latter understood as describing the
effects of interventions), introduced by Judea Pearl and described in his book (2009), has been
extremely fruitful.

Pearl’s graphical representation applies to a collection of variables measured on some
system, such that we can intervene (or at least can conceive of the possibility of intervening)
on any one variable or collection of variables, so as to set the value(s) of the associated
variable(s) in a way that is determined entirely externally. This gives rise to a wide variety
of interventional regimes. The observational regime corresponds to the special case where no
variables are set by intervention. From a probabilistic point of view, any instance of a Pearl
causal DAG coherently represents a family of joint probability distributions, consisting of
those distributions that satisfy the conditional independence properties one can read off the
graph, for example via d-separation. From a causal point of view, the same graph represents
the ‘modularity’ assumption that, for any node i of the graph, its conditional distribution, given
its DAG parents, is the same, no matter which variables in the system (other than i itself) are
intervened upon.

An important idea, previously discussed in Chapter 4, is to enrich the causal DAG in
such a way that it expresses relationships between the probabilistic behaviours of the domain
variables, across the regimes (Dawid, 2010). One way of doing so, which has been inspired
by influence diagrams (Dawid, 2002, 2003), is to supplement the DAG with one or more
nonrandom regime indicators, which we shall draw as squares. One example of a regime
indicator, denoted by o, has been previously introduced in this chapter to distinguish between
regimes e and o. By incorporating o in the causal diagram, we are able to express the identity
of the conditional distribution of certain sets of domain variables, given certain other sets of
domain variables, between the mentioned regimes.
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Figure 8.1 Graphical representation of the HIV problem example, with N = 1.

This idea is illustrated in Figure 8.1 by the ADAG representation of our HIV example,
for the special case of N = 1 to preserve visual simplicity. The diagram uses the variable
symbols introduced in Section 8.5, except for the latent process (Uy, U;). In line with the way
this example is dealt with in Chapter 17 in this volume, take Uy to characterize the patient just
before time T} as belonging to one of a number of ‘types’, in the sense of Section 8.6. Now, the
obtained diagram satisfies the stability condition (8.4), as can be checked by applying the usual
d-separation semantics of DAGs to it. In the graph of Figure 8.1, stability is a consequence of
the following two topological properties:

1. 0 — (X, U) arrows are missing. This means that, conditional on past history, the effect
of any particular sequence of actions, (Ag = ag, A = ay, ...), on the patient is the
same, regardless of the particular regime in operation

2. U — A arrows are missing; that is, under each regime, and at any stage of the decision
process, treatment assignments are determined by some deterministic, or randomizing,
device, which only has the values of earlier observed (under both regimes) variables as
inputs.

Property 1 is the graphical counterpart of what Dawid and Didelez (2010) call the extended
stability condition. Property 2 is directly related to Robin’s concept (1986) of sequential ran-
domization. The conditional independence version of property 2, fork = 1, ..., N andforo €
(0,e),is Ay LLU_y | X4, As—1, o. This appears to be a discrete-time version of Definition 2
(ii) of Arjas and Parner (2004). We note that property 2, if not accompanied by property 1,
does not per se guarantee stability. We also note that validity of the two properties above is
a sufficient, but not necessary condition for stability. Further combinations of properties that
result in stability are discussed in X?.

As noted by Daniel and colleagues in Chapter 17, property 1 appears to be plausible in
our HIV example. The reason is that the effect of taking a particular anti-retroviral cocktail
is likely be the same irrespective of whether the therapy is assigned by a doctor within the
observational study o or assigned by some other doctor (assuming, of course, that no major
changes in the selective resistance of viral agents have occurred between regimes o and e).
Property 2 is realistic if no information about the latent patient’s type was available to the
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doctors under both regimes, except possibly indirectly through the observed patient’s covariate
process. We conclude that, under the assumptions represented by the graph of Figure 8.1, and
if the positivity condition is also valid, the data collected from medical records of past HIV
patients can be used to predict the relative effectiveness of alternative treatment strategies on
future patients. In the next section we introduce a second example of study, in the field of
abdominal aortic aneurysm.

8.9 Abdominal aortic aneurysm surveillance

An abdominal aortic aneurysm (AAA) is a serious vascular disease. An AAA occurs when the
large blood vessel that supplies blood to the abdomen, pelvis and legs becomes abnormally
large or balloons outward. A surgical intervention may be needed to avoid rupture, which
is associated with a mortality rate of 80 %. While surgery can fix the AAA, it is a serious
undertaking; mortality rates during surgery (in the United States) are in the range of 2 % to 6 %
for repair under elective, nonemergency, circumstances. Possible complications from surgery
include bleeding, infection and kidney or bowel damage. In addition, because coronary artery
disease is so common among patients with AAA, a major worry is the risk of post-operative
heart trouble. Surgery places a significant strain on the heart and can cause problems such as
angina or heart attack.

Hence the difficult decision: should we immediately fix the AAA or should we watchfully
wait until the AAA has grown to a size that represents a greater threat to the patient’s life?
This type of decision is typically made by trained experts, using both statistical data, as well
as memories of previous experiences.

A possible set of causal assumptions about the problem is represented in the graph of
Figure 8.2. The graph is, once again, confined to a set of three measurement times: (Tp <
T1 < Ty). Let variable X; (fori =0, ..., 2) represent relevant patient information, including
the size of the aneurysm at 7;. Let variable A; indicate, at time 7;, whether the doctors have
decided to surgically intervene or to ‘watchfully wait’. Let variable W represent unrecorded

Figure 8.2 Graphical representation of the AAA surveillance example.
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factors that vary with the ‘doctor in charge’ and the treatment centre, whereas U represents
unmeasured risk factors, whether of genetic nature or dependent on exposure history.

Two important assumptions are represented in Figure 8.2. The first assumption, corre-
sponding to the missing Uy — A, arrows, states that no information about the risk factors
Uy, unmeasured in the data, has been consulted for the therapeutic interventions (Ag, Ay, ...)
performed on the study patients. Again, this assumption must be checked by carefully inter-
viewing the doctors in charge. The second assumption, corresponding to the missing Wy — X
arrows, asserts that the impact of a therapy plan is the same, whoever the doctor, or Health
Centre, in charge of the treatment.

It is straightforward to verify, via the usual conditional independence semantics of directed
acyclic graphs, that the stability condition (8.5) is satisfied in this particular example. This
means that, under the discussed assumptions, observational data on patients under follow-up
for AAA may be used as a basis for future therapeutic decisions.

8.10 Statistical inference and computation

Once we have made sure the stability and positivity conditions are valid in the application of
interest, the task will be to carry out the actual process of estimation of the causal parameters
of interest from the data. One possibility is to impose some form of smoothness across the
distributions p(x; | Xx—1, ax;) or give them a parametric form (Berzuini and Allemani, 2004).
The unknown parameters can be formally included in Uj. The preceding chapter suggests
a Bayesian approach to the problem. In a similar vein, we may put a prior distribution
on the parameters and then update it into a posterior by using Markov chain Monte Carlo
(MCMC) methods to integrate with respect to uncertainty about the estimated parameters, to
the stochastic component of the treatment strategy and to the uncertainty in the outcomes.

Then the Markov chain is run on a huge graphical model. To visualize this model, imagine
that each sample individual is represented by a corresponding graph, of the type in Figure 8.1
or 8.2, all the resulting graphs being then interconnected through sharing the same model
parameters. Upon convergence, the chain will generate samples of the parameters, as if obtained
by the correct posterior. Under stability, each p(x; | X;_;, @;—) distribution is the same under
the two regimes, observational and experimental. It follows that the same model, and what we
have learned about its parameters, can be used to determine a predictive distribution for ¥ in
a future (hypothetical) patient subject to a therapy strategy e of interest. If we come up with a
loss function, L(Y'), we can then use the generated MCMC samples to estimate the expectation
E{L(Y), e}, that is the expected loss associated with the therapeutic strategy of interest. This
will allow us to compare alternative strategies.

We have previously discussed the positivity-related requirements for the method. Are they
always required? Once we make parametric or smoothness assumptions for the p(x; | X;_1,
a;_p) distributions, positivity could be relaxed. In a situation of data scarcity, even under
positivity, some of the probabilities might be so small that we are unable to estimate them well
on the basis of the available observational data, and this may create problems of convergence
of the Markov chain. Smoothing may attenuate this problem.

Another possibility is to adopt a method consisting of two stages (Dawid and Didelez,
2010). In the first stage, given enough data collected under o, we estimate the relevant distri-
butions p(x; | X;—1,d;—1;0) (@ =0,..., N+ 1). Under stability and positivity, this will also
give us the distributions p(x; | X;—1,a@;—1; e), for (i =0, ..., N + 1). These distributions,
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together with the a priori known distributions p(a; | X;, @;_; ; e), constitute the main ingredi-
ent of the second stage of the procedure, described in the following.

Let i denote a partial history of the form (x;, a;_) or (x;, @;) (0 <i < N). We also include
the ‘null” history ¥ and ‘full’ histories (X, @, ¥). We denote the set of all partial histories by
‘H. Under the experimental regime, e, define a function f on H by

f(h) :==E{LX)|h;e} (8.5)

In a medical treatment context, the quantity f (/) represents the expected loss (a negative
measure of the overall therapeutic success) for a patient, given his/her past history 4. The
term ‘history’ must here be interpreted to denote past evolution of both the disease and the
treatment.

Simple application of the laws of probability yields

fUai) =) plai | l,a; e) x £, a) (8.6)

fUi @iy =Y pli |l @i1; €) x fi, @) (8.7)

li

For h a full history (ZN, ay,y), we have f(h) = L(y). Using these as starting values, by
successively implementing (8.6) and (8.7) in turn, starting with (8.6) fori = N + 1 and ending
with (8.7) for i = 0, we step down through ever shorter histories until we have computed
f@) =E{L(Y);%, s}, the expected loss for strategy e. More generally, we could consider
a function Y* of (YN,ZN, Y). Starting now with f(Xy,ay,y) :=Y*(Xn,an, y), we can
apply the identical steps to arrive at f () = E{Y*; e}, which yields the desired expected
loss associated with treatment strategy e. Under suitable further conditions we can combine
this recursive method with the selection of an optimal strategy, when it becomes dynamic
programming. Although the method is applied when we have data from all possible static
strategies, it is nevertheless vital that the stability assumption includes all possible dynamic
regimes.

When e is a nonrandomized strategy, the distribution of A; given 7,- = 7,-, when o = ¢,
is degenerate, at a; = g; = g,«(i,- ; §), say, and the only randomness left is for the variables
(Xo,...,Xn,Y). We can now consider f(4) as a function of only the (x;) appearing in 4,
since, under e, these then determine the (a;). Then (8.6) holds automatically, while (8.7)
becomes

fED = pli | %1, 8imgse) x (%) (8.8)

Xi

When, further, the regime e is static, each g; in the above expressions reduces to the fixed
action a; specified by e.

The conditional distributions in (8.6), (8.7) and (8.5) are undefined when the conditioning
event has probability O under s. One possibility is to define f (%) in (8.6) to be equal to 0
whenever p(h; 0, e) = 0.

Robins and Wasserman (1997) warn about the uncritical use of parametric models for
the involved conditional distributions, on the grounds that they can lead to a so-called null
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paradox, which prevents discovering that different plans have the same effect. In the light of
these considerations, these authors propose the use of marginal or nested structural models
(Robins, 1998, 2004) that avoid the null paradox.

Computational aspects of the theory and their complex relationship with substantive con-
siderations are illustrated in Chapter 17 in this volume.

8.11 Transparent actions

Let us use the term transparent actions to denote the situation where the actions performed
under e are only influenced by earlier variables that are observed under both regimes. This is
what occurs, for example, in Figure 8.1. Under this assumption, the distribution of ¥ under
the experimental regime can be written as

N
PY|o=e) = Z |:HP(ak|paAA;0=e)

ay. ¥y Lk=0

N N
< | Y P | pan) [ [P | pax) [ | P (8.9)
y k=0 k=0

where the outer summation is over all possible multivariate configurations of @y and X . The
expression on the right-hand side is obtained by factorizing the joint distribution over the
graph into a product of conditional distributions of each variable given its parents in the graph,
and by then averaging with respect to (iy, @n, Xy). A consequence of the transparent action
assumption is that the parental sets for the action variables, pay,, do not contain u variables,
and this justifies the fact that, in the above expression, the P(a; | pas,; o = e) factors are not
averaged over uy .

Importantly, Tian (2008) notes that the expression within square brackets corresponds
to the distribution of (YN, Y) under an atomic intervention on ZN. Let this distribution be
shorthanded as P(Y, X y |o = Ap). Equation (8.9) can then be rewritten as

N
PY|o=e)= ) [P(Y, Iy lo=ay) [[Plpasio= e)} (8.10)
@y Ty k=0
Note that, because the P(a; | paa,;o = e) terms are given, the only unknown quantities in
the above expression are the P(Y, Xy | 0 = ay), from which the following criterion follows
(Shpitser and Pearl, 2006).

Criterion

Under the transparent actions assumption, the distribution of interest, P(Y | 0 = e), is
estimable if we are able to identify the distribution of (Xn,Y) under a generic atomic
intervention on Ay from the data.

A complete algorithm for checking identifiability under atomic interventions is the do-
calculus (Tian and Pearl, 2003; Shpitser and Pearl, 20006), reviewed in Chapter 6 in this volume.
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Figure 8.3  Elaboration of the HIV problem of Figure 8.1. Some of the arrows are dotted
to indicate that information about the U variables influenced the action decisions in the
observational distribution, but not in the experimental one.

We conclude that, under the transparent actions assumption, the atomic (static) semantics of
the do-calculus can be employed to analyse the identifiability of the effects of the dynamic
plans.

8.12 Refinements

The above theory can be refined in a number of directions. For example, Tian (2008) considers
situations where some X variables are not ancestors of ¥ and refines the theory correspondingly.
However, situations in scientific practice where such refinement is crucial have not often been
shown.

Another direction is towards problems in which the experimental and the observational
distributions are characterized by different graphs, specifically, the former graph being a
subgraph of the latter. Consider the example of Figure 8.3, which is an elaboration of the HIV
graph of Figure 8.1. The elaboration consisted of adding dotted arrows from Uy to Ay, (for
k=0,...,N). These arrows are intended to be present in the observational graph, but missing
in the experimental graph. In other words, the graph of Figure 8.3 assumes that, while the
data were generated by actions taken in the light of U-information, inferential interest focuses
on treatment strategies that do not use that information. A possible justification is that the
treatments are intended for application in medical routine contexts where expensive genetic
monitoring of the virus cannot be afforded. In this case, the distribution of inferential interest,
P(Y | 0 = e),is still given by Equation (8.9). This suggests that application of the criterion of
the preceding section to the experimental graph (that is to the graph without the dotted arrows)
will provide correct guidance in assessing identifiability. In the particular example of Figure
8.3, this will lead to the conclusion that the strategies of interest are identifiable from the data.

8.13 Discussion

Stability and positivity are sufficient conditions for the estimability of the effect of treatment
strategies in the sense of the present chapter. However, it turns out they are not necessary.
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The simple stability condition, in particular, requires that, for each time T;, the conditional
distribution of X; given the earlier observed variables should be the same under both regimes,
observational and experimental. This is, indeed, a strong assumption. In many applicative
situations, one might not be willing to accept it. Work has been done to establish more
general conditions for identifiability (see Dawid and Didelez, 2005, for example), mainly by
imposing restrictions on the kinds of information made available for the decisions under the
strategy e.

Finally, an important development will be to extend the methods for use when event times,
on a continuous support, are explicitly incorporated in the analysis.
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