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Chapter 12

Mendelian Randomisation: A Tool for Assessing Causality  
in Observational Epidemiology

Nuala A. Sheehan, Sha Meng, and Vanessa Didelez 

Abstract

Detection and assessment of the effect of a modifiable risk factor on a disease with view to informing 
public health intervention policies are of fundamental concern in aetiological epidemiology. In order to 
have solid evidence that such a public health intervention has the desired effect, it is necessary to ascertain 
that an observed association or correlation between a risk factor and a disease means that the risk factor 
is causal for the disease. Inferring causality from observational data is difficult, typically due to confound-
ing by social, behavioural, or physiological factors which are difficult to control for and particularly 
difficult to measure accurately. A possible approach to inferring causality when confounding is believed 
to be present but unobservable, as it may not even be fully understood, is based on the method of instru-
mental variables and is known under the name of Mendelian randomisation if the instrument is a genetic 
variant. While testing for the presence of a causal effect using this method is generally straightforward, 
point estimates of such an effect are only obtainable under additional parametric assumptions. This chap-
ter introduces the concept and illustrates the method and its assumptions with simple real-life examples. 
It concludes with a brief discussion on pitfalls and limitations.
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The study of risk factors for disease is central to epidemiological 
research. Here, we distinguish between prognostic and aetiological 
research by considering the notion of risk in its original context of 
studying conditions thought to be caused by a particular factor 
and not in the broader sense of predicting the probability of a 
condition for prognostic purposes. For the latter, all factors asso-
ciated with the outcome are of interest, regardless of whether 
they are causal or not. For aetiological research, the focus is on 
assessing the effects of modifiable exposures on disease with view 
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to informing health intervention policies. It is hence important to 
verify that an observed association between the exposure and dis-
ease of interest indicates a causal relationship between the two. 
Inferring causality from observed associations is problematic as it 
is not clear which of two correlated variables is the cause, which 
the effect, or whether the association is due to another unmea-
sured factor, or confounder. Randomised controlled trials (RCTs) 
provide the accepted solution since they render reverse causation 
and confounding implausible. However, RCTs are neither ethical 
nor practical for many exposures of epidemiological interest, such 
as exercise, alcohol consumption, and diet regimes. From the 
practical viewpoint, many exposures develop over years so people 
cannot be randomised easily to “lifetime” exposure and trials 
attempting to do so are very costly. Moreover, the population of 
volunteers in a trial is likely to differ considerably from the gen-
eral population. Thus, we often have to make causal inferences 
from observational epidemiological studies and, arguably, we 
actually need to do so when public health interventions are of 
interest as we require a representative study population  (1).

There have been many success stories where evidence from 
epidemiological studies has informed public health policy and led 
to health improvements in the general population. These include 
the links between smoking and increased risk of lung cancer  (2), 
and between maternal folate supplementation and reduced risk of 
neural tube defects  (3, 4) leading to widespread banning of 
smoking in public places and the mandatory fortification of cereal 
flour with folic acid in the USA, Canada, and Chile, for example. 
There have also been many high-profile failures, where reported 
associations failed to be replicated in follow-up RCTs. For exam-
ple, the observation that increased beta-carotene intake reduces 
the risk of smoking-related cancers was not replicated in the sub-
sequent large-scale RCTs  (5–7). More recent failures to replicate 
observational findings in RCTs include the associations between 
hormone replacement therapy and cardiovascular disease and 
between oestrogen levels and Alzheimer’s disease or dementia.

There are many reasons why an observational study and an 
RCT could provide contradictory results. Different dose levels, 
different durations of follow-up and interactions with other risk 
factors are usually proposed, but they do not fully explain such 
discrepancies. The most likely reasons are confounding by unob-
served lifestyle, socioeconomic factors or baseline health status, 
reverse causation, where the presence of disease influences what is 
thought to be exposure rather than vice versa, and the usual prob-
lems of selection or reporting bias. Since only those associations 
with high observational support are ever likely to be verified in an 
RCT, we can only presume that many other reported associations 
are likely to be non-causal  (8). Given the tendency of high-profile 
findings to persist in the medical literature and thus influence 
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public health and clinical policy long after they have been refuted 
by RCT evidence  (9), it is important to have alternative methods 
for assessing causality from observational data. Here, we particu-
larly address the case where we have unobserved confounding 
factors and so cannot adjust our analyses in the usual way.

Mendelian randomisation is an instrumental variable (IV) 
approach to the problem of inferring causality when unobserved 
confounding is believed to be likely, possibly because the underly-
ing biological processes are not fully understood  (1, 10–16). It 
uses a well-understood genetic variant, known to be associated 
with the exposure but without direct effect on the disease, as an 
instrument. The exposure may itself be a phenotype or a geneti-
cally influenced behaviour. The fact that genes are assigned ran-
domly at meiosis (given the parental genes) implies that the 
instrument should be independent of any unobserved confound-
ing between the exposure and the disease, and so we can think of 
Mendelian randomisation as a natural imitation of a randomised 
trial although the randomisation is not, of course, perfect. Reverse 
causation is not an issue here since genes are determined before 
birth. The basic idea is that there should be no association between 
the genetic variant and the disease unless the considered exposure 
or phenotype is actually causal for the disease.

In this section, we introduce a formal framework for causal infer-
ence and the core conditions for IV methods with a brief discus-
sion of some of the implications for testing and estimating causal 
effects in epidemiological applications. We then illustrate the 
method with some examples.

We first need to formalise how we distinguish between association 
and causation. If we say that a variable X is associated with another 
variable Y, we mean that observing X is informative, or predic-
tive, for Y. The usual conditional probability notation P(Y = y|X = x) 
describes the distribution of Y, given that we happen to know 
that X = x has occurred.

We regard causal inference to be about studying the effect of 
intervening in a particular system  (17–20). Other causal frame-
works are based on counterfactual or potential outcome variables  
(21) or structural equation models  (15, 22). It can be argued 
that the notion of intervention is implicit to all these formal 
approaches to causality  (23, 24). Specifically, when we say that X 
causes Y, we mean that manipulating or intervening on X is infor-
mative for Y. Ordinary conditional probability notation does not 
reflect the changes in the distribution of Y when X is set to a 

2. Mendelian 
Randomisation

2.1. Causal Concepts
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particular value. We need some extra notation in order to formally 
distinguish between association and causation. We use the nota-
tion do(X = x) to represent the intervention of setting X to a value 
x, as suggested by Pearl  (22). The two conditional distributions 
P(Y = y|do(X = x) ) and P(Y = y|X = x) are not necessarily the same. 
The former depends on x only if X is causal for Y and corresponds 
to what we observe in a randomised study. The latter also depends 
on x, for instance when there is confounding or reverse causation, 
and this is what we observe in an observational study. As a simple 
example, let X be a binary variable indicating whether an indi-
vidual’s fingers are stained yellow or not, and let Y be a binary 
outcome for lung cancer. Since we know that stained fingers are 
due to smoking and smoking causes lung cancer, p(y|x) describes 
how someone’s risk of lung cancer can be predicted from inspec-
tion of their fingers. However, if we could intervene on X by 
staining or removing the stain from everyone’s fingers, for exam-
ple, p(y|do(x) ) would no longer depend on x since finger stain in 
its own right does not affect lung cancer risk.

A causal effect is some contrast of two different interventions 
on X (x1 and x2) on the outcome Y. For continuous outcomes, 
the average causal effect (ACE), describing the average change in 
Y induced by setting X to be some value x2 compared with a base-
line value x1, is an obvious causal effect parameter to consider and 
is the parameter that we focus on for illustrative purposes. It is 
defined as 

 1 2 2 1ACE( , ) ( | do( )) ( | do( ).= = − =x x E Y X x E Y X x  (1)

When Y is binary, the causal relative risk (CRR), given by

 

2

1

( 1| do( ))
CRR ,

( 1| do( ))

= =
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P Y X x  
or the causal odds ratio (COR), defined analogously, are both 
relevant parameters. A causal effect is identifiable if we can show 
mathematically, under the model assumptions and given the 
observable data, that the expression of the ACE in Eq. 1 – or 
equivalent expression for other parameters – is equal to an expres-
sion without the “do()” notation that depends purely on obser-
vational terms. Sometimes, this can be achieved by adjusting for a 
sufficient set of observed confounders in the usual way  (18, 22). 
IV methods provide an alternative approach when unobserved 
confounding is present.

The ACE, CRR, and COR are all population parameters in that 
they are defined in terms of changes across the whole population of 
interest. There are other local causal effect parameters defined on 
specific subgroups of the population that we might wish to target, 
depending on the focus of the analysis. One well-known local 
effect is the “effect of the exposure on the exposed” or, the “effect 
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of treatment received” as it is sometimes described in a clinical 
trials context. Different causal parameters are identifiable under 
subtly different assumptions which in turn need to be justified in 
any given case. The interpretation of the various parameters in 
epidemiological applications is also open to some debate. We do 
not go into details here but some discussion of these issues can be 
found in  (15, 25–27).

Let the variable X represent the modifiable phenotype or expo-
sure of interest, and let Y be the outcome or disease indicator, as 
before. We let G denote the known genetic variant associated 
with X which plays the role of instrument in our approach. We 
are interested in the causal effect of X on Y when we believe that 
unobserved confounding is present. Denote the unobserved 
confounder(s) by U. Causal inference using IV methods falls into 
two main categories. In order to test that an association is causal, 
we need to make certain (in)dependence assumptions concerning 
the four variables above. In addition, we have to make some 
structural assumption describing how any proposed intervention 
affects their joint distribution. For estimating the causal effect, 
should it seem likely that one is present, we need further paramet-
ric assumptions.

There are some core conditions that must be satisfied in order 
for the genetic variant, G, to qualify as an instrument (14, 16, 
20). Using the notation A  B|C to mean “A is independent of B 
given C”, these can be stated as follows:

 1. G     U – the genetic variant is unrelated to the confounding 
between X and Y.

 2. G  X – the genetic variant is associated with the exposure 
and the stronger this association, the better.

 3. G  Y|(X, U) – given the exposure status and the confound-
ers (if the confounders were observable), the genetic variant 
does not provide any additional information for the outcome, 
i.e. there is “no direct effect” of G on Y and no other indirect 
effect other than through X.

These three conditional independence assumptions define a 
unique directed acyclic graph (DAG) connecting the variables G, 
X, Y, and U as shown in Fig. 1. An equivalent statement is that 

2.2. Instrumental 
Variables

YG X

U

Fig. 1. The unique DAG connecting G, X, Y, and U described by the core IV conditions.
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the joint distribution of the four variables factorises in the 
following way:

 ( , , , ) ( | , ) ( | , ) ( ) ( ).=p y u g x p y x u p x u g p u p g  

Note that these assumptions do not imply that G  Y|X or  
G  Y, as has been sometimes misunderstood. Furthermore, 
assumptions 1 and 3 cannot be easily tested from data as they 
depend on U, which is unobserved, and hence have to be justified 
from background knowledge. In our case, the first assumption 
means that you must be reasonably satisfied that G is not associ-
ated with the sort of confounding you might typically expect for 
any particular X–Y relationship. However, Mendelian randomisa-
tion is based on the idea that genes are randomly assigned at meio-
sis and this implies that, across the population, genetic effects are 
relatively robust although not completely immune to confound-
ing  (28). Assumption 3 demands a comprehensive understanding 
of the underlying biological and clinical science and may be appro-
priately considered in a sensitivity analysis of alternative pathways.

So far, we have made assumptions about how our four vari-
ables are related “naturally”. The additional structural assump-
tion concerns what happens to the joint distribution when we 
intervene on X, and demands that the distributions p(y|x, u), 
p(g), and p(u) are not changed by the particular intervention in 
X, i.e. are not changed when conditioning on do(X = x). This 
implies that the joint distribution under intervention is given by

 ( , , , | do( *)) ( | *, ) { *} ( ) ( ),= = =p y u g x X x p y x u x x p u p g1  

where 1{x = x*} is the indicator function taking the value 1 if 
x = x* and 0 otherwise. The plausibility of this assumption 
depends, of course, on the type of intervention being considered 
and needs to be justified based on background knowledge. For 
instance, a drug that adjusts homocysteine level might plausibly 
be judged to leave an individual’s lifestyle behaviour unchanged. 
There could, however, be a placebo effect that changes the distri-
bution of Y more than is warranted by the new value of X (homo-
cysteine level), or the drug could affect other relevant biological 
processes in the body. On the other hand, if people are prevented 
from drinking alcohol by some change in the law, then their other 
health and lifestyle behaviours might change in order to compen-
sate. Graphically, as shown in Fig. 2, intervening on X removes all 

YG X

U

Fig. 2. The DAG representing the core IV conditions under intervention in X.
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directed edges into X. In particular, we can see from the graph 
that, under intervention, we get what is often called the exclusion 
restriction  (15): G  Y|do(X = x).

Note that by deleting either the edge U → Y or U → X from 
Fig. 1, a test for independence of Y and G given X (Y  G|X) is 
tantamount to a test for no confounding between X and Y, but 
we are not aware of this having been used in practice.

The three core IV conditions in Subheading 2.2, together with 
the structural assumption, are sufficient to test for a causal effect 
of X on Y regardless of the distributional form of the factors of the 
joint distribution. We do require that the joint probability distri-
bution is faithful to the relevant DAG in that there are no condi-
tional independence relationships, perhaps due to interactions 
that cannot be read from the graphs. Consequently, any appropri-
ate statistical test of association between the instrument G and 
outcome Y amounts to a test for a causal effect of X on Y. (See 
ref. 16 for a detailed discussion.)

Is there a causal relationship between high plasma homocysteine 
concentrations and risk of stroke  (29)? The T allele of the MTHFR 
C677T polymorphism is known to be associated with homo-
cysteine levels with TT homozygotes having higher levels than 
CC homozygotes, in particular. A summary estimate of the asso-
ciation between homocysteine levels and risk of stroke (X–Y 
 relationship) from a meta-analysis gave an odds ratio of 1.59 
 corresponding to a 5 mmol/L observed increase in homocysteine. 
Dichotomising MTHFR into TT and CC carriers, the odds ratio 
for the genotype–stroke association (G–Y ) was 1.26 and found to 
be significant. The conclusion is that a causal effect of homo-
cysteine level on risk of stroke is plausible. However, none of the 
reported values give any indication of the size of this effect as the 
homocysteine–stroke association could be confounded.

Do higher plasma fibrinogen levels increase the risk of coronary 
heart disease (CHD)  (30)? Various observational studies have re -
 ported increased risk associated with higher fibrinogen levels for 
various cardiovascular outcomes. The G-455 → A polymorphism 
in the promoter region of the b-fibrinogen gene is consistently 
associated with differences in fibrinogen levels and plays the role 
of the instrument. A meta-analysis of 16 studies produced a “per 
allele” odds ratio of 0.96 with associated 95% confidence interval 
of (0.89, 1.04). The conclusion is that there is no support for a 
causal effect of fibrinogen levels on CHD; or in other words, if 
fibrinogen has a causal effect then it is too small to be detected in 
this meta-analysis of 16 studies.

2.3. Testing  
for a Causal Effect

2.3.1. Homocysteine  
and Stroke

2.3.2. Plasma Fibrinogen 
and CHD
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The previous examples concerned the effect of some intermediate 
phenotype on a disease. We can also use the idea of Mendelian 
randomisation when we have a modifiable exposure, such as alco-
hol consumption, for which positive (e.g. CHD) and negative 
(e.g. liver cirrhosis and some cancers) effects have been reported 
in observational studies. Besides being difficult to measure due to 
reporting bias, alcohol consumption is strongly associated with all 
kinds of confounding factors, and so there are doubts about the 
causal nature of any of the above associations  (31). We consider 
the issue of whether there is a causal effect of alcohol consump-
tion on blood pressure.

The ALDH2 gene determines blood acetaldehyde, the prin-
cipal metabolite for alcohol, and is known to be associated with 
alcohol consumption. In particular, individuals homozygous for 
the “null” variant *2 suffer unpleasant symptoms, such as facial 
flushing, nausea, drowsiness, and headache after alcohol con-
sumption. Heterozygotes have a limited ability to metabolise 
acetaldehyde but have a less severe reaction than *2*2 homozy-
gotes. Consequently, *2*2 homozygotes have lower alcohol con-
sumption than the “wild type” *1*1 homozygotes regardless of 
their other lifestyle behaviours while heterozygotes tend to drink 
intermediate amounts. In the meta-analysis of Chen et al.  (31), 
there was no apparent association between ALDH2 and typical 
confounding factors that one would expect for the alcohol–blood 
pressure relationship. This, together with the random allocation 
of genes at conception makes us fairly confident about core IV 
assumption 1. Current knowledge of the biochemical function of 
ALDH2 excludes the possibility that it could be associated with 
blood pressure via another pathway besides alcohol consumption 
(core IV assumption 3).

Blood pressure was found to be 7.44 mmHg higher on aver-
age for *1*1 homozygotes than for *2*2 homozygotes with 95% 
CI (5.39, 9.49) yielding a p value of p = 1.1 × 10−12 for high versus 
low consumption. Blood pressure was 4.24 mmHg higher on 
average for *1*2 heterozygotes than for *2*2 homozygotes with 
95% CI (2.18, 6.31) giving a p value of p = 0.00005 for moderate 
versus low consumption. Most of the studies were on Japanese 
populations (where ALDH2*2*2 is common) so these results are 
for males as Japanese women drink very little alcohol in general. 
The fact that there was no observed relationship between geno-
type and blood pressure for women indicated that the above asso-
ciation is indeed due to alcohol consumption, for which ALDH2 
is a proxy, and not due to the gene itself or some alternative path-
way by which ALDH2 might predict blood pressure. The highly 
significant association between the ALDH2 variant and blood 
pressure is strong evidence of a causal effect. In fact, contrary to 
reported observational claims, it would appear that even moder-
ate drinking can be harmful.

2.3.3. Alcohol Consumption 
and Blood pressure
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Once a test indicates that a causal effect is likely, we would typi-
cally want to know the size of this effect. This is more difficult. 
When all variables are binary, or categorical, only upper and lower 
bounds on the causal effect can be calculated without any extra 
assumptions  (32). The width – and hence usefulness – of these 
bounds depend on the strength of the IV and the amount of con-
founding, but they do give an idea of how informative the data 
are. Hence, the IV core conditions and structural assumption are 
not sufficient for point identification of causal parameters and 
extra parametric assumptions are required.

When the ACE of Eq. 1 is of interest and Y is continuous 
(possibly suitably transformed), it is popular to assume linearity 
of all relationships and no interactions. The structural (causal) 
assumption only appears in the regression of Y on X and U:

 ( | , ) ( | do( ), ) .= = = = = = + +E Y X x U u E Y X x U u x um b d  

This yields b = ACE(x + 1, x) as the relevant causal parameter. 
Note that the above assumes that there is no effect modification 
of the effect of X on Y by U on the linear scale, i.e. people in vari-
ous subpopulations, like men/women or older/younger people, 
all react in the same way to exposure. The parameter b cannot be 
estimated from the above regression as U is unobserved. Likewise, 
we cannot ignore U and estimate it from a regression of Y on X 
as this would give a biased estimate due to the collinearity U  X. 
From the regression of X on G and U

 ( | , ) ,= = = + +E X G g U u g uh a z  
we can estimate a by ignoring U since G  U. It is easy to show  
(16) that

 ( | ) · ,ab= = +E Y G g gµ  

so ab can be estimated from a regression of Y on G. Hence, a 
consistent estimator for ACE(x + 1, x) = b is given by the ratio of 
the estimated coefficients, |b̂Y G  and |b̂X G  from the regressions of 
Y on G and of X on G, respectively. It is useful that these could 
even be estimated from separate studies, one where X, G are 
observed and another one where Y, G are observed. In this 
 situation, the above ratio estimator is equivalent to the popular 
“two-stage least squares” (2SLS) estimator which regresses Y on 
values of X predicted from the “first-stage” regression of X on G 
and the terms are often used interchangeably.

In an investigation into the causal effect of circulating C-reactive 
protein (CRP) and the metabolic syndrome, three-SNP haplotypes 
from the CRP gene were used as instruments for associations 
between serum CRP levels and various metabolic syndrome pheno-
types  (33). For one particular outcome – insulin resistance mea-
sured by homoeostasis model assessment (HOMA-R) – a clear 

2.4. Estimating  
a Causal Effect
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observational association was reported with a doubling of CRP lev-
els leading to a significant increase of about 8% in HOMA-R 
(p  <  0.0001). But CRP is known to be associated with a wide range 
of lifestyle and socioeconomic characteristics. Moreover, it could be 
elevated as a result of atherosclerosis or insulin resistance, so con-
founding and reverse causation cannot be excluded. The core IV 
assumptions appear to be reasonably satisfied, although not enough 
is known about the biological pathways involving CRP to be fully 
sure about assumption 3. Standard checks for linearity on log(CRP) 
and log(HOMA-R) looked reasonable. It is, of course, impossible 
to check any parametric assumptions about the unobserved con-
founders, especially the one of no effect modification. This has to be 
justified with subject matter background knowledge, instead. The 
2SLS approach, using the regressions of log(HOMA-R) on the 
CRP haplotypes and of log(CRP) on the CRP haplotypes, esti-
mated that doubling CRP levels reduces the HOMA-R score by 6% 
(p > 0.1). Since the result is non-significant, we conclude that the 
data do not support a causal effect of circulating levels of CRP on 
insulin resistance. This result appears to contradict the naive analysis, 
which may indeed be due to confounding and reverse causation.

There are well-known problems with the 2SLS-estimator. The 
standard deviation of the estimator is typically much larger than 
that of the estimator obtained from a naive regression of Y on X. 
This is especially so when we have a weak instrument, i.e. when 
Corr(G, X) » 0 so that IV is not very informative for X. Note that 
it is impossible to find a strong instrument when there is a lot of 
confounding. One notable problem is that the assumption of lin-
earity cannot be true when Y is binary, although it could be a 
good approximation over a particular range of exposure levels in 
some cases. This is an issue for epidemiological applications since 
many outcomes of interest are naturally binary.

The main problem for the non-linear case is that the relation-
ship between the two regressions (Y on G, and X on G ) and 
the relevant causal parameter, i.e. CRR or COR, is no longer 
 straightforward and any estimators derived from these are biased 
(16, 27). There are other IV methods that can yield estimates of 
certain causal effects for binary outcomes, but they all require 
strong additional assumptions  (15, 34–36). It is important to 
note that different approaches target different causal parameters 
in the sense that they estimate individual, local, or population 
effects. Some estimators, such as those derived from structural 
mean modelling approaches, also require joint observation of all 
three variables (G, X, and Y ) for all individuals, whereas the 
“Wald-type” estimators based on ratios of differences (of which 

3. Further Issues 
and Complications
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2SLS is an example), do not  (27). This has implications for meta-
analyses as not all studies typically supply joint observations. 
Structural mean models make weaker assumptions than the other 
approaches in that a parametric model for the regression of X on 
G and U is not required. However, these approaches target the 
local effect of exposure on the exposed and are only unbiased for 
a population effect with additional assumptions.

Violations of the core IV conditions are also possible and 
these have implications even for testing for a causal relationship. 
The most important and likely violation occurs when there is 
population stratification, where we have different allele frequen-
cies in subpopulations which may in turn also differ in their life-
styles (giving rise to an association between G and U) or in their 
disease risk (giving rise to an association between G and Y not 
screened off by X, U). A sensible study design should take this 
possibility into account. The chosen instrument could also be in 
linkage disequilibrium (LD) with another variant which is associ-
ated with the disease via a route other than through its effect on 
X, the exposure of interest. Likewise, problems can be caused by 
pleiotropic effects and canalisation or developmental compensa-
tion  (1, 10, 37). If only insufficient prior knowledge about the 
genetic or confounding mechanisms is available to justify the core 
conditions, results that seem to indicate a causal effect may very 
well have an alternative, non-causal explanation that we are not 
aware of. DAGs can be used to represent what is believed about 
the biology and then be queried regarding the validity of our 
assumptions  (12, 16). For example, the genetic variant chosen as 
instrument may not be the causal gene for the exposure of interest 
but is in LD with a causal gene which is unobserved. This could 
be thought of as measurement error in the genetic data. However, 
as illustrated in Fig. 3, this does not necessarily imply any viola-
tions of the core IV conditions. G1 might not be as good an 
instrument as G2 in the sense that its association with X is weaker, 
but it is (1) independent of U, (2) associated with X, and (3) 
conditionally independent of Y given X and U.

Finding a genetic variant that is a suitable IV is also problem-
atic, and there are currently not very many well-studied variants for 
the typical exposures of interest in epidemiology. Genetic variants 
that arise from genome-wide association studies could be prob-
lematic in that the gene–phenotype associations are often weak 

YX

UG2

G1

Fig. 3. The chosen instrument G1 is not causal for X  but is associated with another genetic 
variant, G2, which is driving all the association. All IV core conditions are satisfied for G1.
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and may not even be reproducible. Even when strong,  reproducible 
associations are found, we then have to be convinced that enough 
is known about the functionality of the gene in order to claim that 
the core conditions are satisfied for an IV analysis. Such knowledge 
does not derive from an association study. On the positive side, 
thanks to the current rapid advances in functional genomics, the 
required information on such variants is gradually being accrued. 
Figure 4 depicts a situation, where we have a clear association 
between G and X, we can argue the independence between G and 
U but without understanding the functionality of the gene, there 
is no way of knowing that the third condition is violated. Since an 
association between G and Y is evident, we would incorrectly 
deduce that X causally affects Y, whereas an alternative explana-
tion for this association is that the gene causes an unobservable 
health problem S which then affects both X and Y.

A Mendelian randomisation analysis is not aimed at identifying 
genetic factors that are causal for disease risk. On the contrary, 
the method requires a known and well-understood genetic vari-
ant in order to facilitate causal inference about the effect of an 
exposure on the disease of interest. One of the limitations for IV 
methods is finding valid instruments. This is also an issue with 
genetic instruments in our applications but is hopefully becoming 
less so with the recent rapid advances in genetic epidemiology  
(8). Inferring causality from observational data is problematic, 
but we would argue that some of the confusion about misleading 
results from observational studies stems from the lack of clear 
delineation between the notions of association and causation, at a 
conceptual as well as formal level  (24). Only when this distinc-
tion is made explicit, can we identify and understand the crucial 
assumptions that permit a causal interpretation. Only then are we 
able to critically scrutinise these assumptions, justify or reject 
them, and hence assess the practical impact of any results. Solid 

4. Conclusion
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G
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?

Fig. 4. G  X and G  U but the IV core conditions are not satisfied.
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background knowledge is essential for causal analysis. With 
Mendelian randomisation, we have an advantage over many other 
areas of application of IV methods in that genetics provide a rich 
source of information.
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