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Abstract We combine two approaches to causal reasoning. Granger causality, on
the one hand, is popular in fields like econometrics, where randomised experiments
are not very common. Instead information about the dynamic development of a sys-
tem is explicitly modelled and used to define potentially causal relations. On the other
hand, the notion of causality as effect of interventions is predominant in fields like
medical statistics or computer science. In this paper, we consider the effect of exter-
nal, possibly multiple and sequential, interventions in a system of multivariate time
series, the Granger causal structure of which is taken to be known. We address the
following questions: under what assumptions about the system and the interventions
does Granger causality inform us about the effectiveness of interventions, and when
does the possibly smaller system of observable times series allow us to estimate this
effect? For the latter we derive criteria that can be checked graphically and are in the
same spirit as Pearl’s back-door and front-door criteria (Pearl 1995).
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1 Introduction

In epidemiology and related fields, causal inference is predominantly regarded as a
decision problem: one of several treatments can potentially be administered and the
causal question is whether the choice of treatment makes any difference to some out-
come, or typically to the average outcome, and if yes, which is the best treatment.
The word ‘treatment’ is used as a generic term here, it comprises also, for instance,
the manner in which a drug is given (e.g. pills or injection, by a nurse or by a relative
etc.) and does not need to be of medical nature at all (e.g. an educational programme).
Rubin (1974, 1978) stresses that the various treatments to be compared need to be well
defined in the sense that it must be clear how an individual or object under investiga-
tion can potentially receive any of the treatments. This implies that we must at least in
principle be able to conceive of a randomised study (even if impractical or unethical)
where each subject receives a randomly chosen treatment out of those to be compared.
An illuminating discussion of this issue in the context of a public health application
can be found in Hernán and Taubman (2008). Restricting the definition of a treatment
in this way precludes, in most contexts, investigation of variables like sex or birth
weight as potential causes of a disease, for instance. Robins (1986) also emphasises
the importance of a well defined treatment that could in principle be applied to anyone
in the target population (cf. also Robins et al. 2004), and even formulates the causal
target of inference in terms of a hypothetical randomised study. A decision theoretic
approach to causality is further strongly advocated by Dawid (2000, 2002), pointing
out that typical assumptions underlying causal inference concern not only the system
under investigation but also the contemplated interventions. The approaches chosen
by these authors are clearly influenced by the kind of applications they have in mind,
for example complex treatment strategies for chronically ill patients, public health or
policy interventions.

In the computer science literature, a ‘treatment’ is instead called an ‘intervention’,
formalised as an external manipulation, possibly triggered by the history of the system,
that sets a variable to a specific value independently of the values of other variables;
we will henceforth regard the words ‘treatment’ and ‘intervention’ as interchangeable.
Although it is not always explicitly required that such interventions should actually
be feasible, they are central to the notion of causality underlying causal diagrams
(Spirtes et al. 2001; Pearl 2000). The qualifier ‘causal’ means specifically that such a
diagram, and hence the associated model, remains invariant under certain interventions
except for those nodes that represent the variables that are being manipulated. Defining
causality in terms of such treatments or interventions facilitates a formal distinction
between association and causation, and hence helps to make the assumptions underly-
ing causal inference explicit. For instance, to assess whether we can estimate the effect
of an intervention from observational (especially non-experimental) data, we can use
the well-known back-door and front-door criteria proposed by Pearl (1995), which
derive their names from the graphical rules used to check them on causal diagrams.

The above view of causality has been criticised in at least two respects (Granger
1986; Aalen and Frigessi 2007; Commenges and Gegout-Petit 2007; Heckman 2008).
For one, it can be argued that some systems, like e.g. cells, economies, climate, or the
planetary system, are driven by causal mechanisms regardless of whether humans can
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intervene in them, let alone subject the system to (randomised) experiments. Once we
understand their functioning it is up to us to devise suitable ways to exploit the causal
relations to achieve our ends, be it to prevent global warming or future financial crises,
or to eradicate the HI-virus etc. Secondly, much of the above literature does not involve
any dynamic modelling even though it is almost universally agreed that a cause has to
precede the effect. Notable exceptions are Robins’ work who has pioneered dynamic
treatments (Robins 1986) and, in econometrics, the work by Heckman and coworkers
(Heckman and Navarro e.g. 2007).

It is therefore not a surprise that in non-experimental subjects like econometrics,
and especially in typical application of time series methodology, a different approach
to causality is more popular. Granger (1969, 1980, 1988) proposed a notion of cau-
sality that is based on the following important points: the cause occurs before the
effect and the cause must contain unique information that is otherwise not avail-
able and helps to predict the effect. Formalising this, he defines that a time series
Xa(t) is causal for another time series Xb(t) if the prediction of Xb(t + 1) based on
all the information in the universe up to time t, I∗(t), is better than the prediction
of Xb(t + 1) based on all that information but without {Xa(s) : s ≤ t}, denoted
by I∗−a(t) (note that it is required that I∗(t) does not contain redundant informa-
tion, e.g. the same measurements just on different scales). As I∗(t) is not available
in practice, the corresponding operational definition is based on a multivariate time
series X (t) = XV (t) = (X1(t), . . . , Xd(t))′, V = {1, . . . , d}, and the information
sets are given by I(t) = {XV (s) : s ≤ t} and I−a(t) = {XV \{a}(s) : s ≤ t}. Granger
then says that the series Xa(t) is noncausal for the series Xb(t) if the prediction of
Xb(t + 1) is the same for I(t) and I−a(t). If the prediction is in fact better based on
I(t), then Xa(t) is called a prima facie cause of Xb(t). We find it noteworthy, and often
overlooked, that according to Granger, a positive definition of causality relies on ‘all
information in the universe’ (and this is meant literally, not just as the model universe);
without this we only have a definition of noncausality and of prima facie causality
(these will henceforth also be called Granger (non)causality). Hence we could ask,
when is the reduced information set I(t) used to replace the impractical I∗(t) suffi-
cient to be confident that a prima facie cause is a cause. This requires to think about
latent (unobservable) processes or time series and how their presence may induce
prima facie causal relations among the observable processes—some suggestions have
been made by Hsiao (1982) and Eichler (2007, 2009).

It is worth mentioning that the essential idea behind Granger’s approach is of course
not restricted to time series. Analogous definitions have also been given for dynamic
systems in continuous time (Schweder 1970; Aalen 1987; Florens and Fougère 1996;
Comte and Renault 1996). These are particularly relevant to survival analysis, or more
generally to event history analysis.

As Granger’s definition of causality rests entirely on prediction (even if based on
I∗(t)), it does not imply that replacing the ‘natural’ variation in Xa(t) by some exter-
nal manipulation, when possible, will have any effect on the distribution of Xb(t +
1). In this paper we therefore investigate a combination of the decision theoretic
approach and Granger’s ideas on causality, building on and expanding some of our
earlier work (Eichler and Didelez 2007). As starting point, we assume that the structure
among the components of a multivariate time series XV (t) is given in terms of prima
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facie causes, or noncausal relations in Granger’s sense. Furthermore, this structure is
represented graphically as suggested by Eichler (2001, 2006, 2007). It can be thought
of as describing the natural or unperturbed behaviour of the time series, which we want
to contrast with changes induced by external manipulations of the system. Hence, the
quantity of interest is the effect of an intervention in one or more components of a
multivariate time series at one or more points in time on the development of these
series at a later point in time. We address various aspects of the connection between
Granger causal relations and effects of interventions. For instance, we formulate con-
ditions under which Granger noncausality implies no effect of an intervention, as well
as criteria that allow us to compute the effect of an intervention possibly based on
a subset X S(t) of the original multivariate series, S ⊂ V . Using the graphical rep-
resentation mentioned above, it becomes obvious that these criteria are comparable
to the back-door and front-door criteria of Pearl (1995). The assumptions we make
correspond to (extended) stability of Dawid and Didelez (2005) and are twofold: they
concern the system under consideration, i.e. presence or absence of certain Granger
causal relations, as well as the contemplated interventions.

The outline of the paper is as follows. We start in Sect. 2 by formalising Granger’s
approach to causality for multivariate time series, as well as the concept of interven-
tions and effects thereof. For the latter we follow closely the framework proposed by
Dawid (2002) and Dawid and Didelez (2005) as it makes the role of interventions
particularly explicit. Section 3 then presents our versions of the back-door and front-
door criteria which enable us to compute effects of interventions from a subset of
the multivariate series, as would be relevant when some of the processes are in fact
latent. How these criteria relate to Granger (non)causality becomes clear in Sect. 4,
where we show how they can be verified using an intuitive graphical representation
of Granger (non)causal structures. We conclude with a discussion of our results and
provide technical details as well as all proofs in an appendix.

2 Causality in time series

In this section we formalise the two basic approaches to causality that will be com-
bined later, Granger (non)causality on the one hand and the effect of intervention
on the other hand. Throughout the paper we consider a multivariate stationary time
series X = {X (t), t ∈ Z} with X (t) = (X1(t), . . . , Xd(t))′. Let V be the index set
{1, . . . , d}. For any A ⊆ V we define X A = {X A(t)} as the multivariate subprocess
with components Xa, a ∈ A. Furthermore, X A(t) denotes the history of X A up to and
including t , i.e. the set {X A(s), s ≤ t}. Furthermore, let XA(t) be the σ -algebra gen-
erated by X A(t). The following regularity assumptions will be imposed throughout.

Assumption

(T1) X = {X (t), t ∈ Z} is a stationary stochastic process on some probability space
(�,F , P).

(T2) The conditional distribution of X (t + 1) given the past X(t), denoted by
P

X (t+1)|X(t), has a regular version that is almost surely absolutely continuous
with respect to some product measure ν on R

d with ν-a.e. positive density.
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(T3) For all disjoint A, B, C ⊆ V , the subprocesses X A and X B are measurably
separated conditionally on XC in the sense that

XA∪C (t) ∩XB∪C (t) =XC (t)

for all t ∈ Z. For this notion of conditional measurable separability we refer to
Florens et al. (1990).

The assumption of stationarity is made for the sake of simplicity. Following the
remarks in Eichler (2001), the concepts and results can also be generalized to non-sta-
tionary time series. The remaining conditions (T2) and (T3) are technical and essen-
tially ensure that the intersection property (C5) of conditional independence (Lauritzen
1996, pp. 29; see also our appendix) holds, as shown in Eichler (2001).

2.1 Granger noncausality

Granger noncausality was introduced by Granger (1969) and has become a popular
concept not only in econometrics. As mentioned in the introduction, the actual def-
inition addresses causality but requires to condition on ‘all the information in the
universe’. In line with most of the literature we therefore define Granger noncausality
for a specific information set given by a multivariate time series. When a series is not
Granger noncausal we will call it Granger causal or prima facie cause. The following
definition also formalises contemporaneous (in)dependence, which is not cast in causal
terms as we agree with Granger (1980) that there cannot be contemporaneous causality.

Further, we use the notion of strong Granger noncausality, which is formulated in
terms of conditional independence (instead of uncorrelation) and σ -algebras (Florens
and Mouchart e.g. 1982), where the symbol ⊥⊥ denotes independence (Dawid 1979).

Definition 2.1 (Granger noncausality) Let A and B be disjoint subsets of V and let
X A, X B be the corresponding subprocesses of X = XV as defined above.

(i) Then X A is (strongly) Granger noncausal for X B up to horizon h, h ∈ N, with
respect to the process XV if

X B(t + k)⊥⊥ X A(t) | X V \A(t)

for all k = 1, . . . , h and t ∈ Z.
If the above holds for h = 1 we simply say that X A is (strongly) Granger non-
causal for X B with respect to XV , and this will be denoted by X A � X B [XV ].
Similarly, if the above holds for all h ∈ N we say that X A is (strongly) Granger

noncausal for X B at all horizons, and this will be denoted by X A
(∞)
� X B [XV ].

(ii) The processes X A and X B are contemporaneously independent with respect to
the process XV if

X A(t + 1)⊥⊥ X B(t + 1) | X V (t)

for all t ∈ Z. This will be denoted by X A � X B [XV ].
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Fig. 1 Mixed graph associated
with the processes X and Z in
Example 2.2

1 2 3

4

Strong Granger noncausality means that the past of X A up to time t does not help
to predict the distribution of X B at the next point in time t+1 given information about
the past of all the remaining components of XV (including X B’s past). In contrast,
strong Granger noncausality at all horizons implies that this holds not only for the
one-step prediction but for any time in the future. This is more restrictive and if not
stated otherwise we will only deal with strong Granger noncausality at horizon h = 1.
Note that for ease of notation we usually drop the ‘strong’.

Example 2.2 Consider the following multivariate Gaussian process X with

X1(t) = α1 X4(t − 2)+ β12 X2(t − 1)+ ε1(t),

X2(t) = α2 X4(t − 1)+ β23 X3(t − 1)+ ε2(t),

X3(t) = β32 X2(t − 1)+ ε3(t),

X4(t) = ε4(t)

where εi , i = 1, 2, 3, 4, are independent Gaussian white noise processes with
mean 0 and variance σ 2. It is immediately obvious that with respect to the set
{X1, X2, X3, X4}, the component X1 is Granger noncausal for all other variables, and
for instance X3 is Granger noncausal for X1. However, with respect to the reduced
set {X1, X3, X4} it cannot be assumed anymore that X3 is Granger noncausal for X1.
It is less intuitive, but also clear from the full model that X3(t) is also not Granger non-
causal anymore for X1 with respect to {X1, X2, X3} due to the selection effect when
conditioning on the past of X2 which induces an association between X3 and X4. This
shows that the Granger noncausal structure of a multivariate time series depends on
the components chosen to make up the multivariate series X .

In Sect. 4, we introduce a graphical representation for Granger noncausal relations,
where the absence of an arrow from a node a to a node b means that Xa is Granger
noncausal for Xb with respect to the whole multivariate series. The presence of an
arrow from a to b means that Xa is a prima facie cause of Xb. For the above example
the corresponding graph is shown in Fig. 1.

2.2 Effects of interventions

While Granger noncausality describes the ‘natural’ behaviour of a multivariate time
series, we now develop the idea of defining a causal effect as the effect of an inter-
vention in such a system as has first been proposed by Eichler and Didelez (2007).
We start by introducing the concept of intervention indicators, which allows us to
distinguish formally between the ‘natural’ behaviour of a system and its behaviour
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under an intervention (Pearl 1993, 2000; Lauritzen 2001; Dawid 2002; Spirtes et al.
2001).

Definition 2.3 (Regimes) Let X be a multivariate stationary time series. Consider a set
of indicators σ = {σa(t); a ∈ A, t ∈ τ } denoting interventions in Xa(t), a ∈ A ⊆ V ,
at points t ∈ τ in time. Each σa(t) takes values in some set Sa augmented by one
additional state ∅. Different values of σ indicate different distributions of the time
series X in the following way.

(i) Idle Regime: When σa(t) = ∅we let Xa(t) arise naturally without intervention.
With Pσa(t)=∅ (which will often be abbreviated to P∅ or even just P) we denote
the distribution of the time series X under the idle regime. We also call this the
observational regime.

(ii) Atomic interventions: Here Sa = Xa , the domain of Xa(t), such that σa(t) = x∗
means we intervene and force Xa(t) to assume the value x∗. Hence Pσa(t)=x∗
(or shorter Px∗ ) denotes the distribution of the time series X under such an
atomic intervention, with

Pσa(t)=x∗(Xa(t) = x | X V (t − 1)) = δ{x∗}(x),

where δD(x) is one if x ∈ D and zero otherwise.
(iii) Conditional intervention: HereSa consists of functions g(xC (t−1)) ∈ Xa, C ⊂

V , such that σa(t) = g means Xa(t) is forced to take on a value that depends
on past observations of XC (t − 1). With Pσa(t)=g denoting the distribution of
the time series X under such a conditional intervention, we have

Pσa(t)=g(Xa(t) = x | X V (t − 1)) = Pσa(t)=g(Xa(t) = x | XC (t − 1))

= δ{g(XC (t−1))}(x).

(iv) Random intervention: Here Sa consists of distributions meaning that Xa(t)
is forced to arise from such a distribution, i.e. the conditional distribution
Pσa(t)=s(Xa(t)|X V (t − 1)) is known and possibly a function of XC (t − 1),

C ⊆ V .

With this definition, we are considering a family of probability measures Pσ on
(�,F ) indexed by the possible values that σ can take. While P = Pσ=∅ describes the
natural behaviour of the time series under the observational regime, any implementa-
tion of an intervention strategy σ = s will change the probability measure to Pσ=s .
We note that the assumption of stationarity is only made for the natural probability
measure P. In the following, we write Eo (or shorter just E) and Eσ=s to distinguish
between expectations with respect to P∅ and Pσ=s ; the shorthand Ps and Es is used
when it is clear from the context what variables are intervened in. In contrast, we write
E

H X or E
Y X to denote the conditional expectation of a random variable X given a

σ -algebra H or another random variable Y , respectively (Kallenberg e.g. 2001).
Our aim in this paper is to predict the effects of an intervention σ = s from data col-

lected under the observational regime. This is only possible if the multivariate system
as well as the intervention of interest are such that the intervention only changes the
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conditional distribution of the variable at the point in time it targets according to Def-
inition 2.3 (ii–iv), while all other conditional distributions remain the same as under
the idle regime. To formalize this, we say that a random variable Y is independent of
σa(t) conditionally on some σ -algebra H ⊆ F if

E
H
σa(t)=s g(Y ) = E

H
∅ g(Y )

for all s ∈ Sa and y ∈ R and all measurable functions g, which we abbreviate by
Y ⊥⊥ σa(t) |H . If, for example, H = XV (t), we also write Y ⊥⊥ σa(t) | X V (t). It
is important to note that σa(t) is not a random variable and that the above notion
of independence—although being one of statistical independence—is not symmetric.
For a more detailed discussion of conditional independence involving non-random
quantities we refer to Dawid (2002).

With this notation, the required link between the probability measures P and Pσ

under the observational and the interventional regime, respectively, is established by
the following assumptions. They characterise situations where the multivariate system
as well as the intervention of interest are such that the intervention only changes the
conditional distribution of the variable at the point in time it targets according to Def-
inition 2.3 (ii–iv), while all other conditional distributions remain the same as under
the idle regime. These assumptions are analogous to those of (extended) stability in
Dawid and Didelez (2005).

Assumption (Stability) Let X be a multivariate time series that is stationary under
the idle regime. The interventions σ = {σa(t), a ∈ A, t ∈ τ } from Definition 2.3 are
assumed to have the following properties, where we use σA(t) = {σa(t); a ∈ A}.

(I1) for all t /∈ τ : XV (t)⊥⊥ σ | X V (t − 1);
(I2) for all t ∈ τ : XV (t)⊥⊥{σA(t ′); t ′ ∈ τ, t ′ �= t} | (X V (t − 1), σA(t));
(I3) for all t ∈ τ : XV \A(t)⊥⊥ σA(t) | X V (t − 1);
(I4) for all t ∈ τ, a ∈ A: Xa(t)⊥⊥(XV \{a}(t), σA\{a}(t)) | (X V (t − 1), σa(t) = s).

With the above assumptions the distribution of the time series X under the inter-
ventional regime is fully specified by its natural distribution described by P = P∅, for
instance Example 2.2, and the conditional distributions given in Definition 2.3 (ii–iv)
under the chosen intervention. Therefore, whenever we make model assumptions in
the following (or like stationarity, earlier), especially regarding Granger noncausal
structures, these are supposed to be under the idle regime.

Note that (I1)–(I3) imply that (X V (t − 1), X V \A(t))⊥⊥ σ for t = min{s ∈ τ },
as can be seen by iterative application of property (C4, Appendix) for conditional
independence. By a similar reasoning we also obtain for any t ∈ Z

XV \A(t)⊥⊥ σ | X V (t − 1). (2.1)

In the special case of a single intervention in Xa(t), i.e. A = {a}, τ = {t}, the assump-
tions (I1)–(I3) therefore simplify to

(X V (t − 1), XV \{a}(t))⊥⊥ σa(t) (2.2)
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and

{XV (t + j); j ∈ N}⊥⊥ σa(t) | X V (t). (2.3)

Whether the assumptions of stability (I1)–(I4) hold with regard to a given system
XV depends on the considered or practically feasible interventions as well as on the set
V of components. It may for example be difficult, in practice, to subject a patient to a
certain treatment without changing other aspects of her life. As an example for the sec-
ond issue, assume that an isolated intervention in Xa(t) is possible, but that a variable
Xc that predicts Xa and Xb under the idle regime has been ignored (we could loosely
call Xc a confounder). Then, under σa(t) = x∗, the variable Xa(t) does not carry any
information about Xc(t), whereas under the idle regime it does. As Xc predicts Xb we
can therefore not assume that Pσa(t)=x∗(Xb(t + h) | Xa(t − 1), Xa(t) = x∗, Xb(t))
is the same as P∅(Xb(t + h) | Xa(t − 1), Xa(t) = x∗, Xb(t)), as would be required
for (2.3) with V = {a, b}. Consequently, in the following sections, we will often use
the distinction between the system XV which is such that the assumptions of stability
are plausible, and a sub-series X S, S ⊂ V , which could be the smaller set of actually
observable components. For a discussion of the role of latent variables in the context
of Granger noncausality we refer again to Hsiao (1982) and Eichler (2007, 2009). We
also note that our approach to interventions in a system of multivariate time series is
somewhat related to, but less restrictive than, the settable systems in White (2006).

Let us now consider effects of interventions. In general, this can be any function of
the post-intervention distribution of {XV (t + j); j ∈ N} given an individual interven-
tion σa(t) = s, for instance. It will often involve the comparison of setting Xa(t) to
different values, e.g. setting Xa(t) = x∗ as compared to setting it to Xa(t) = x0 which
could be a baseline value in some sense. One may also want to use the idle case as base-
line for the comparison. Typically, one is interested in the mean difference between
interventions or between an intervention and the idle case, where we note that due to
stationarity of X we can assume without loss of generality that Eo(X (t)) = 0. Hence,
the average causal effect defined below can be regarded as the average difference
between a strategy s and no intervention.

Definition 2.4 (Average causal effect) The average causal effect (ACE) of an indi-
vidual intervention according to strategy s in Xa(t) on Xb(t + h), a, b ∈ V, h > 0 is
given by

ACEs = Eσa(t)=s Xb(t + h).

The effect of multiple interventions σa(t) = sa, a ∈ A ⊆ V , is given analogously by
ACEsA = EσA(t)=sA Xb(t + h), where sA and σA denote the corresponding sets.
The effect of sequential interventions σa(t1) = s1, . . . , σa(tK ) = sK , for t1 < · · · <
tK < t + h is further given by ACEs = Eσa=s Xb(t + h), where s and σa denote the
sets across the points in time when interventions take place.

Note that different strategies can be compared by considering, e.g. ACEs1−ACEs2 .
Even though we will mostly focus on the ACE, the results presented in this paper hold
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more generally for Es f (Xb(t + h)) for any measurable function f and thus for the
post-intervention distribution Ps(Xb(t + h)).

With the above definition of a causal effect in terms of interventions a first connec-
tion between Granger noncausality and the effect of an intervention can be established
as follows.

Corollary 2.5 Consider a multivariate time series X = XV and an individual inter-
vention σa(t) = s satisfying (2.2) and (2.3). If Xa is Granger noncausal for Xb with
respect to XV , i.e. Xa � Xb [XV ], then there is no causal effect of intervening in
Xa(t) on Xb(t + 1).

We cannot say anything analogous for the effect of intervening in Xa(t) on Xb(t+h)

for h > 1 because there might be an ‘indirect’ effect through variables at points in
time between t and t + h. Note that in the proof of Corollary 2.5 we rely on both
conditions (2.2) and (2.3), underpinning that Granger noncausality on its own is not
enough to make statements about the effect of interventions. However, we do not need
the whole XV to be observable in the above corollary—the system XV with respect to
which Xa � Xb [XV ] can therefore include latent time series if this helps to justify
the stability assumptions.

3 Identification of effects of intervention

In this section we will state some sufficient conditions that enable us to estimate the
ACE of a specific intervention or strategy σ = s from data on the observable (i.e. non
latent) components of the multivariate time series that has been collected under the
observational regime σ = ∅; if this is possible then we say that the ACE is identifiable.
Formally, identifiability means that we can express the ACE in terms of observable or
known quantities alone. We will not refer to Granger (non)causality here, but show in
Sect. 4 how the latter can help us to answer the question of identifiability by providing
a graphical check of the conditions.

3.1 Simple back-door criterion

The back-door criterion for an individual intervention in a time series, as given below,
has been established by Eichler and Didelez (2007) and reflects what is known in
epidemiology as adjusting for confounding. The name is due to the graphical way of
checking this criterion (cf. Sect. 4). As we show further below, it can be extended to
the case of sequential interventions.

Theorem 3.1 (Back-door criterion) Let a, b ∈ S ⊆ V , where a = b is possible. If a
conditional intervention is considered as in Definition 2.3 (iii, iv), we also assume for
the conditioning set C that C ⊆ S. Suppose that assumptions (2.2) and (2.3) hold and
that

Xb(t + h)⊥⊥ σa(t) | X S(t) ∀ h ∈ N. (3.1)
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Then S identifies the effect of σa(t) = s on Xb(t+h) for all h ∈ N, and the average
causal effect ACEs is given by

Es Xb(t + h) = E∅E
Xa(t−1),X S\{a}(t)
s E

X S(t)
∅ Xb(t + h). (3.2)

In 3.2 we can estimate EoX S(t) Xb(t+h) from observational data, while the second
expectation is with respect to the interventional distribution, which is fully known. The
outer expectation is again observational. Hence, provided that X S has been observed,
we can use the above to estimate the causal effect ignoring XV \S . Dawid (2002) calls
such a set X S(t) ‘sufficient covariates’ or ‘de-confounder’. Note that under the stability
assumptions, V always identifies the causal effect due to condition (2.3). In this sense
we could say that the whole system V contains all ‘relevant’ variables or components
to identify an individual causal effect of Xa(t) on Xb(t + h). Note however, that if
an intervention σd = s in a different variable, say Xd , d �= a, is considered, a differ-
ent system V ′ might be required to justify the stability assumptions with respect to
this σd .

An example for Theorem 3.1 is given in Eichler and Didelez (2007). We will provide
a more complex example for sequential interventions further below.

3.2 Multiple and sequential back-door criterion

Consider the effect of a joint intervention sA = {sa; a ∈ A} in more than one
variable at a given point in time, i.e. σA(t) = {σa(t), a ∈ A}, A ⊂ V on a set
X B(t + h), B ⊂ V . The causal effect EsA X B(t + h) is given componentwise by
EsA Xb(t+h), b ∈ B. Assuming that (I1)–(I4) are valid, we replace condition (3.1) by
X B(t + h)⊥⊥ σA(t) | X S(t) and obtain the causal effect in complete analogy to (3.2)
as

EsA Xb(t + h) = E∅E
X A(t−1),X S\A(t)
sA E

X S(t)
∅ Xb(t + h).

More interesting is the following theorem that addresses the identifiability of sequen-
tial interventions, i.e. those at different points in time.

Theorem 3.2 (Sequential back-door criterion) Let a, b ∈ S ⊆ V , where a = b is
possible. If conditional interventions are considered as in Definition 2.3 (iii, iv), we
also assume for the conditioning set C that C ⊆ S. Consider interventions σ =
{σa(tk), k = 1, . . . , K , t1 < t2 < · · · < tK } and suppose that assumptions (I1)–(I4)
hold. Let σ>k = {σa(tk+1), . . . , σa(tK )} and σ<k = {σa(t1), . . . , σa(tk−1)} and s>k

analogously. Assume that

Xb(t + h)⊥⊥ σa(tk) | (X S(tk), σ
<k = ∅, σ>k = s>k) (3.3)
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Then S identifies the effect of sequential interventions s = {s1, . . . , sK } in
Xa(t1), . . . , Xa(tK ) on Xb(t + h), and the average causal effect ACEs is given by

ACEs = E∅
K∏

k=1

(

E
X S(tk−1),XS\{a}(tk )
sk E

X S(tk )
∅

)

Xb(t + h), (3.4)

Similar to the simple back-door criterion, (3.4) consists of conditional expectations
that can either be estimated if X S is observable, or that are known by the chosen
intervention. For longitudinal and survival settings, formula (3.4) is well known as
G-formula (Robins 1986). The conditions (3.3) are in the same spirit as those given
in Dawid and Didelez (2005) for the longitudinal case.

Example 3.3 Let X be a stationary and purely nondeterministic Gaussian process. In
order to satisfy the technical conditions (T1) to (T3), we furthermore assume that X has
spectral matrix f (λ), λ ∈ [−π, π ], with eigenvalues that are bounded and bounded
away from zero uniformly for all λ ∈ [−π, π ] (Eichler 2007).

Suppose now that, for time points t1 < t2 < t3, we are interested in the average
causal effect of setting Xa(t1) and Xa(t2) to the values x∗1,a and x∗2,a , respectively, on
Xb(t3), and that the effect is identified by the variables in S. By the assumptions on
the spectral matrix, the subprocess X S has a mean-square convergent autoregressive
representation

X S(t) =
∞∑
j=1

�( j) X S(t − j)+ εS(t), (3.5)

where ε(t), t ∈ Z, are independent and identically normally distributed with mean
zero and non-singular covariance matrix �. Moreover, the best h-step predictor E

X S(t)

X (t + h) is equal to the best linear h-step predictor, that is,

E
X S(t) X (t + h) =

∞∑
j=1

�(h)( j) X (t − j + 1). (3.6)

Here, the coefficients �(h)(k) of the multi-step predictor can be computed recursively
from the coefficients of the autoregressive representation in 3.5 using the relations

�(h)(k) =
k−1∑

j=1

∑

s∈S
�(1)( j)�(h− j)(k)+�(1)(h + k − 1), (3.7)

where �(1)( j) = �( j) (Box et al. e.g. 1994, Section 5.3).
From Theorem 3.2, we find that the causal effect of an intervention at Xa(t1) and

Xa(t2) on Xb(t3) is given by

E∅ E
XS(t1−1),XS\{a}(t1)
s1 E

XS(t1)
∅ E

XS(t2−1),XS\{a}(t2)
s2 E

XS(t2)
∅ Xb(t3). (3.8)
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Letting hi = ti+1 − ti , i = 1, 2 and applying 3.6 twice, we obtain

Es (Xb(t3)) = φ
(h2)
ba (1) x∗2,a + φ

(h2)
ba (h1 + 1) x∗1,a +

∑

c∈S\{a}
φ

(h2)
bc (1) φ(h1)

ca (1) x∗1,a

+
h1∑

j=2

∑

c∈S
φ

(h2)
bc ( j) φ

(h1− j+1)
ca (1) x∗1,a .

Here, the first term represents the causal effect of the intervention in Xa(t2) on Xb(t3),
the second term gives the effect of the intervention on Xa(t1) that is not mediated
by any of the variables X (t2), . . . , X (t1 + 1) while the remaining terms collect the
indirect effects mediated by all variables in X (t2), . . . , X (t1 + 1) but Xa(t2).

3.3 Front-door criterion

As counterpart to the back-door criterion, Pearl (1995) introduced the so-called front-
door criterion to identify causal effects. In brief, it characterises situations where there
is unobserved confounding between the cause and effect of interest, but where the
causal effect can still be recovered because it is fully mediated by a third variable
(or set of variables) which is not affected by the confounding factors. It turns out
that the computation of the causal effect can then be decomposed in the effect of the
cause of interest on the mediator and the effect of the mediator on the target variable,
without the need to actually be able to intervene in the mediating variable (Pearl,
2000, p. 82). We show here that the same principle can be applied to time series.
However, we need somewhat more technical preliminaries than for the back-door
criterion.

We consider the causal effect of a sequential intervention in all of Xa

(t − h), . . . , Xa(t − 1) on Xb(t), a �= b, specified by s = {sh, . . . , s1}. The inter-
ventions are allowed to be conditional on X S(t − h − 1) as well as previous values
of Xa(t − h), . . . , Xa(t − 2) (which is only relevant if they are random interven-
tions). Let XC be the set of mediating series, then S = {a, b} ∪ C is the identify-
ing set and U = V \S stands for the unobserved set of possible confounders. The
assumptions following below characterise the situation in which the front-door crite-
rion applies to time series. The first of the two assumptions is stated with respect to a
measure Qk , in which the conditional distribution of XC (t− j) given XV \C (t− j) and
X V (t − j − 1) is replaced by the marginal distribution of XC (t − j) for 1 ≤ j ≤ k.
The exact definition of Qk is given in the appendix. Heuristically one can say that
the measure Qk mimicks an interventional regime where XC (t − k), . . . , XC (t − 1)

is drawn randomly from its marginal distribution. Note however, that it is not nec-
essary to assume that such interventions in XC (t − j) are practically feasible, nor
that they would indeed result in an intervention distribution corresponding to Qk if
they were feasible, as can be seen from the proof of the following theorem in the
appendix.
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Assumption Consider a multivariate time series XV (t) with intervention indicator
σ = {σa(t − h), . . . , σa(t − 1)}, a �= b ∈ V, C ⊂ V \{a, b} and U = V \(C ∪{a, b}).
For all t ∈ Z and k ≥ 1 we assume

(F1) Xb(t)⊥⊥(Xa(t − k), σa(t − k)) | X V \{a}(t − k) [Qk−1];
(F2) XC (t)⊥⊥ XU∪{b}(t) | Xa(t), XC (t − 1) [P]

A rough interpretation of assumption (F1) is that the effect of Xa(t − k) on Xb(t)
is fully mediated by XC between t − k + 1 and t − 1. In addition, (F2) can be
thought of as ensuring that XC is not affected by confounding. Note that (F2) is with
respect to the observational regime σ = ∅. The causal effect can now be computed as
follows.

Theorem 3.4 (Front-door criterion) Suppose that (F1) and (F2) hold for XV , as well
as (I1)–(I4). For any h ≥ 2 the causal effect of interventions in Xa(t−h), . . . , Xa(t−1)

on Xb(t), a �= b, is identified by S = {a, b} ∪ C, and is given by ACEs =

Es Xb(t) = Eo
h∏

j=1

[

E
XC∪{a}(t− j)
s j EoXC∪{a}(t− j−1),Xa(t− j)

]

E
X S(t−h−1),XC (t−1)

Qh
Xb(t), (3.9)

where E
X S(t−h−1),XC (t−1)

Qh
Xb(t) for fixed values of X S(t − h − 1) and XC (t − 1) is

given by

∫

xb(t)d Qh (xb(t)|x̄C (t − 1), x̄S(t − h − 1))

=
∫

· · ·
∫

xb(t) d P (xb(t)|x̄S(t − 1))
h∏

j=1
d P

(
x{a,b}(t − j)|x̄S(t − j − 1)

)
.

The last expectation in (3.9) is in fact the same as the effect of XC on Xb if an interven-
tion in XC were possible, while the product of expectations corresponds to the effect
of sequential interventions in Xb on XC . Both can be compared to the G-formula (3.4).

Similar to the back-door criterion, all expected values required to compute the ACE
with the front-door criterion are either known or can be estimated from observable
quantities if X S can be observed. The expectation with respect to Qh relies entirely
on S as can be seen from the last line of the above theorem; note that this is the same
expression as given (without proof) in Eichler and Didelez (2007).

Example 3.5 Consider again the situation in Example 3.3 and suppose that the assump-
tions of Theorem 3.4 are satisfied. To compute the joint average causal effect of
Xa(t − 2) and Xa(t − 1) on Xb(t), we first evaluate the conditional expectation with
respect to Q2. We have

E
XC (t−1),X S(t−3)

Q2
Xb(t) = �bC (1) XC (t − 1)+ [�bC (2)+�bb(1)�bc(1)

+�ba(1)�ac(1)] XC (t − 2)+ terms linear in X S(t − 3).
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Thus the average causal effect is given by

Es Xb(t) = �bC (1)�Ca(1) Xa(t − 2).

We note that Xa(t − 1) has no effect on Xb(t) since any causal effect from Xa on Xb

must be mediated by XC and thus takes at least two time steps to reach Xb.
For larger lags h, the average causal effect can be computed similarly. For instance,

for h = 3, we obtain

Es Xb(t) = �bC (1)�Ca(1) Xa(t − 2)+ [�bC (2)+�bC (1)�CC (1)�Ca

+ �bb(1)�bC (1)+�ba(1)�aC (1)] Xa(t − 3).

4 Graphical representation

In this section we revisit the graphical representation of Granger(non)causal relations
in a multivariate time series suggested by Eichler (2001) and Eichler (2007). An exam-
ple was given in Fig. 1 for the time series in Example 2.2. Using these graphs or path
diagrams, we devise graphical rules to check if a set S ⊂ V exists that satisfies the
back-door or front-door criteria. This will provide us with further interesting insights
into the relation between Granger causality and intervention causality.

Note that we do not address, here, the question of how to find the Granger causal
relations among a multivariate time series, but instead we assume that they are given,
e.g. due to background knowledge. Causal search algorithms are detailed in Spirtes
et al. (2001) (and briefly in Pearl (2000)), some issues concerning their application to
multivariate time series are discussed in Eichler (2009).

4.1 Graph notation

The graphs G = (V, E), with nodes (or vertices) V and edges E , used here are so-
called mixed graphs that may contain two types of edges directed edges a- - -b or
a←− b, and (dashed) undirected1 edges a- - -b for distinct nodes a, b ∈ V . Multiple
edges between two nodes are allowed if they are of different type or orientation, i.e.
there can be up to three edges between two nodes. Most of the terminology known
for directed acyclic graphs can still be applied for these mixed graphs. For instance
when a −→ b, we call a a parent of b, and the set pa(b) is the set of all parents of b;
and when a- - -b then a is a spouse of b, where sp(b) is the set of all spouses of b. As
in Frydenberg (1990), a node b is said to be an ancestor of a if either b = a or there
exists a directed path b −→ · · · −→ a in G. The set of all ancestors of elements in
A is denoted by an(A), which by definition includes A itself. Notice that this differs
from Lauritzen (1996).

1 In contrast to Richardson (2003), we use dashed undirected edges - - - instead of bi-directed edges←→ as
we use directed edges exclusively for indicating direction in time; dashed edges with a similar connotation
have been used by Cox and Wermuth (1996).

123



M. Eichler, V. Didelez

Fig. 2 Example of a mixed
graph a b c

The notion of a path in a mixed graph deserves some special attention. A path in
our graphs cannot uniquely be defined by a sequence of nodes as there may be differ-
ent edges between two nodes. Hence a path π from a to b is defined as a sequence
π = (e1, . . . , en) of not necessarily distinct edges ei ∈ E , such that ei is an edge
between vi−1 and vi for some sequence of not necessarily distinct vertices v0 =
a, v1, . . . , vn = b. A path π in G is called a directed path if it is of the form a −→
. . . −→ b or a ←− . . . ←− b; in the former case we say it is a directed path from
a to b and in the latter from b to a. Similarly, if π consists only of undirected edges,
it is called an undirected path. Furthermore, a path between vertices a and b is said
to be b-pointing if it has an arrowhead at the endpoint b, that is, en = vn−1 −→ b.
More generally, we call a path a B-pointing path if it is b-pointing for some b ∈ B.
Similarly, we call a path between vertices a and b bi-pointing if it has an arrowhead
at both endpoints, that is, e1 = a ←− v1 and en = vn−1 −→ b. In particular we will
make use of the following definition.

Definition 4.1 (Front- and back-door paths) Let π = (e1, . . . , en) be a path from a
to b. We say that π is a front-door path from a to b if e1 = a −→ v1. Otherwise we
call π a back-door path from a to b.

An intermediate vertex c ∈ {v1, . . . , vn−1} on a path π is said to be an m-collider if
the edges preceding and succeeding c on the path both have an arrowhead or a dashed
tail at c (e.g. −→ c ←−, - - - c- - - , - - - c ←−); otherwise the vertex c is said to be
an m-noncollider on the path (e.g. −→ c −→, - - - c −→,←− c −→). Notice that
at least one of the edges that are adjacent to an m-noncollider c on a path must be a
directed edge with a tail at c. Also notice that the first and last vertices on a path are
neither colliders nor noncolliders. Furthermore, if the path passes through a vertex c
more than once, this vertex may be a m-collider as well as a m-noncollider depending
on its position on the path.

Definition 4.2 (m-blocked) With the above definitions, a path π between vertices a
and b is said to be m-connecting given a set S if

(i) every m-noncollider on the path is not in S, and
(ii) every m-collider on the path is in S,

otherwise we say the path is m-blocked given S.

Note that a path is also m-blocked when the same node is a m-collider and a m-
noncollider at different stages on the path because then (i) and (ii) cannot both be
satisfied.

Example 4.3 In the simple graph given in Fig. 2 we find that on some paths between a
and c the node b is an m-collider like a −→ b- - - c and on others it is an m-noncollider
like a −→ b −→ c. Hence, the latter paths are m-blocked given {b} but the former
are not. Further, for example, any path between a and a itself is only blocked given
the empty set. This is because on any such path either c or b is a m-collider.
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Fig. 3 Illustration of global
Markov property

4.2 Graphical time series models

In order to represent Granger noncausality graphically we identify the components
X1, . . . , Xd of the time series with the nodes V = {1, . . . , d} of a mixed graph
G = (V, E). The case that Xa is Granger causal (at horizon h = 1) for Xb with
respect to XV is represented by a directed edge a −→ b, and the case that both time
series are contemporaneously dependent with respect to XV is represented by an undi-
rected edge a- - - b. Vice versa, the absence of a directed (undirected) edge implies
Granger noncausality (contemporaneous independence) with respect to XV . When
the graph G is constructed in this way for a given multivariate time series XV , and
assuming (T1)–(T3), then it satisfies the following Markov properties, as shown in
Eichler (2001, 2007).

Definition 4.4 (Global Markov properties) Let X be a multivariate stationary time
series and G = (V, E) be a mixed graph. Then X satisfies the global Granger causal
Markov property with respect to G if the following two conditions hold for all disjoint
subsets A, B, and C of V .

(i) If every B-pointing path between A and B is m-blocked given B∪C , then X A is
Granger noncausal for X B with respect to X A∪B∪C , i.e. X A � X B [X A∪B∪C ].

(ii) If every bi-pointing path between A and B is m-blocked given A ∪ B ∪ C and
there is no undirected edge between A and B, then X A and X B are contempo-
raneously independent with respect to X A∪B∪C , i.e. X A � X B [X A∪B∪C ].

To confirm the construction of these graphs, we note that if there is no directed
edge a −→ b, then every b-pointing path between a and b is m-blocked given V \{a}
because every such path has an edge v −→ b with v �= a. Hence the above implies that
the absence of an individual directed edge a −→ b indeed means that Xa � Xb [XV ];
more generally we have for B ⊂ V

XV \(pa(B)∪B) � X B [XV ]. (3.10)

With a similar reasoning we obtain

XV \(sp(B)∪B) � X B [XV ]. (3.11)

Example 4.5 For the graph in Fig. 3 it follows from (3.10) that X{a,d} is noncausal for
Xb with respect to X{a,b,c,d}, and from (3.11) it follows that X{a,c,d} is contemporane-
ously independent of Xb. With the Global Markov properties we can, however, also
determine what the relations are in subsets of {a, b, c, d}. For instance, it is obvious
that every path between a and b is b-pointing, and c but not dm-separates these two
nodes. This is because every path has to go through c which is always a m-noncollider
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due to the directed edge to b. In contrast, d can be a m-collider or m-noncollider on dif-
ferent paths and it is hence not enough to condition on d. Consequently, Xa is Granger
noncausal for Xb with respect to X{a,b,c} but not with respect to X{a,b,d}. In contrast,
Xb � Xa[X{a,b,c}] as well as Xb � Xa[X{a,b,d}] because on every a-pointing path
c as well as d are always m-noncolliders. For the same reason Xa � Xb[X{a,b,c}] as
well as Xa � Xb[X{a,b,d}].

In particular cases we can read off a time series graph when Granger noncausality
holds at all horizons. These are characterised as follows (Eichler cf. 2007, Thm 4.5).

Theorem 4.6 (Noncausality at all horizons) Suppose that X satisfies the global Mar-
kov properties with respect to a mixed graph G. Let A, B, C be disjoint subsets of V . If
every an(B)-pointing path between A and an(B) is m-blocked given B∪C, then X A is
Granger noncausal at all horizons with respect to X A∪B∪C , i.e. X A

(∞)
�X B [X A∪B∪C ].

As every an(B)-pointing path between V \an(B) and an(B) is m-blocked by an(B),
an immediate implication of the above is that

XV \an(B)
(∞)
�X B [XV ], (3.12)

i.e., as one would expect intuitively, those variables that are not a graphical ancestor
of X B are Granger noncausal for X B at all horizons with respect to XV . In Fig. 3, for
instance, Xb is Granger noncausal for X{a,c,d} at all horizons. The following corol-
lary addresses the question if a similar statement can be made about the effect of an
intervention in a node Xa that is not an ancestor of Xb.

Corollary 4.7 Consider a multivariate time series X that obeys the global Markov
properties for a graph G under the observational regime, and a single intervention
σa(t) satisfying (2.2) and (2.3). For a, b ∈ V , whenever a /∈ an(b), then intervening
in Xa(t) has no causal effect on Xb(t + h) for all h ∈ N.

Like Corollary 2.5, the above relies on the stability assumptions (2.2) and (2.3),
and again XV may be chosen to contain suitable latent series if this helps to justify
these assumptions. Note that the converse of Corollary 4.7 is not necessarily the case:
a ∈ an(b) does not necessarily imply that an intervention in Xa(t) has an effect on
Xb(t + h) as the overall effect is a combination of direct and indirect effects that may
cancel each other.

A special case arises when the graph G associated with a multivariate time series
XV contains no undirected edges, i.e. when there is no contemporaneous dependence
among the variables. The above graphical representation and properties are then anal-
ogous to the local independence graphs for continuous time processes proposed by
Didelez (2007, 2008).

4.3 Graphical criteria for identifiability

Let us now address the question of how we can see from the Granger causal structure
of a multivariate time series whether any of the criteria that permit identification of
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causal effects are satisfied. The following result has been shown by Eichler and Didel-
ez (2007) for the case of an individual intervention; we show here that it also applies
to multiple and sequential interventions and we specify how to construct the minimal
identifying set. Due to Corollary 4.7 we only need to consider the case a ∈ an(b).

Theorem 4.8 (Back-door criterion) Consider a multivariate time series X that obeys
the global Markov properties for a graph G. Assume that a ∈ an(b).

(i) The assumptions (3.1) and (3.3) of Theorems 3.1 and 3.2 are satisfied if all
an(b)-pointing back-door paths between a and an(b) are m-blocked given S.

(ii) The minimal set S satisfying (i) is given by S = {a, b} ∪ pa(a) ∪ D, where D
is the set of all nodes v such that there is a back-door path from node a to v

for which all intermediate nodes are m colliders and all intermediate nodes as
well as v itself are ancestors of b.

Example 4.9 Consider the graph in Fig. 3 and assume we are interested in the (individ-
ual or sequential) effect of Xc on Xb. According to Theorem 4.8 part (ii), the minimal
set S required to identify this is S = {a, b, c, d}, i.e. the whole system. Note that a
has to be included because it is connected to c via a back-door path c- - - d ←− a
such that the intermediate node d is an m-collider and both a, d are ancestors of b.
It may seem counterintuitive that we need to take Xa and Xd into account as neither
have a directed edge into Xb. However, they both predict Xc at points in time between
t and t + h which in turn predicts Xb(t + h) and therefore act as confounders. If, in
contrast, we are interested in the (individual or sequential) effect of Xa on Xb then
the minimal identifying set is S = {a, b, d}. The node c is not included because any
back-door path from a to c starts with a ←− d, so the node d is an m-noncollider.
Again, this might seem counterintuitive as c has a directed path into a as well as b and
may therefore be suspected to be a confounding process. However, the confounding
is, in this case, fully accounted for by including Xd .

When more specific knowledge about the time series model is available, e.g. at
what lags dependencies occur, it may be possible to reduce the identifying set S given
in Theorem 4.8 (ii). However, at the general level considered here, where we do not
impose any other structure than the Granger (non)causal relations shown in the graph,
this is not possible.

We mentioned earlier the special case of graphs without any undirected edges. For
such graphs the following is obvious from the definition of the set S in Theorem 4.8
(ii).

Corollary 4.10 If the graph G contains no undirected edges, then the set S in Theorem
4.8 (ii) is given by S = {a, b} ∪ pa(a).

Example 4.11 This is a continuation of Example 2.2. Suppose that we are interested
in the effect of an intervention setting X3(t) to x∗3 on X1(t + 2). From the full model,
we obtain immediately that

Eσ3(t)=x∗3 X1(t + 2) = β12β23x∗3 .
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Fig. 4 Path diagram associated
with the process described in
Example 4.13

1 2 3

4

Using Corollary 4.10 (or Theorem 4.8 part (ii)), however, we see that the minimal
set required for identification of the above causal effect is given by S = {1, 2, 3} as
pa(3) = 2 and there are no undirected edges. Simple calculations show that X{1,2,3}
has the autoregressive representation

X1(t) =
(

α1α2

1+ α2
2

+ β12

)

X2(t − 1)− α1α2β23

1+ α2
2

X3(t − 2)+ ε̃1(t),

X2(t) = β23 X3(t − 1)+ ε̃2(t),

X3(t) = β32 X2(t − 1)+ ε̃3(t), (3.13)

where ε̃i , i = 1, 2, 3, are again independent zero mean Gaussian white noise processes.
Thus, the effect of setting X3(t) = x∗3 on X1(t + 2), as identified by S = {1, 2, 3},
can be obtained from the autoregressive representation 3.13 as

Eσ3(t)=x∗3 X1(t + 2) = φ
(2)
13 (1) = φ12(1)φ23(1)+ φ13(2) = β12β23x∗3 .

Further using Corollary 4.10, we see that identification of the effect of an intervention
in X2(t) on X1(t+h) would require all variables as pa(2) = {3, 4}, while identification
of the effect of an intervention in X2(t) on X3(t + h) requires S = {2, 3, 4}.

The following theorem provides a graphical check for the assumptions (F1) and
(F2) of Theorem 3.4.

Theorem 4.12 (Front-door criterion) Consider a multivariate time series X that obeys
the global Markov properties for a graph G. Assumptions (F1) and (F2) for the front-
door criterion hold if

(G1) every directed path from a to b is m-blocked given C;
(G2) there are no directed edges v −→ c for all v ∈ V \(C ∪ {a}) and c ∈ C;
(G3) there are no undirected edges v- - - c for all v ∈ V \C and c ∈ C.

Example 4.13 Consider the graph in Fig. 4 and assume we are interested in the effect
of intervening in X3 on X1. The back-door criterion requires the minimal set S =
{1, 3, 4}. However, assume that X4 is a latent process, so we have to check if, instead,
the front-door criterion can be applied with C = {2}. The only directed path from X3
to X1 is 3 −→ 2 −→ 1 which is clearly m-blocked by 2. Further V \(C∪{3}) = {1, 4}
has no directed edges into C = {2}, and V \C = {1, 3, 4} has no undirected edges with
{2}. Hence, the front-door theorem can be used to compute the effect of an intervention
in X3(t−h), . . . , X3(t−1) on X1(t) if X̄{1,2,3}(t) is observable. This illustrates nicely
that the back-door principle works by adjusting for confounding, while the front-door
principle is based on obtaining a total effect by exploiting mediating variables.

123



Granger causality and interventions in time series

5 Discussion and conclusions

In this paper we have proposed a way of combining Granger’s ideas on causality with
an intervention based approach. Granger (1980) himself points out that controllability,
as aimed at by interventions, is a deeper concept than Granger causality, and he gives
an example for a situation where the structure of a system is altered by changing a
previously uncontrolled variable to one that is controlled. This latter case is exactly
what is excluded by our assumptions of stability. While Granger noncausal and prima
facie causal relations describe the ‘natural’ behaviour of a multivariate system of time
series, we have to believe that certain aspects of this system remain the same (i.e.
stable) under intervention (i.e. control) in order to be able to draw any inference for
the latter case. The stability assumptions essentially demand that the system as well as
the intervention can be chosen so that all conditional distributions, except for the ones
of the variables targeted by the intervention, remain the same. Then, we can deduce
that if a process is Granger noncausal for another process (with respect to this system)
an intervention in the former will not affect the latter one time lag later.

Related to the previous comments is the observation that the notion of Granger
noncausality describes the absence of a direct causal relation, as we can only infer the
absence of a causal effect at one time lag. Hence, Granger causality (or prima facie
cause) implies the possibility of a direct as well as indirect effect over several lags. We
showed that it is in fact the absence of a directed path from Xa to Xb, i.e. of a chain
of Granger causal relations, that permits to exclude a causal effect of an intervention
at any lag h. Vice versa, one may say that when we investigate the causal effect of an
intervention in Xa(t) on Xb(t + h) we do not care whether this is a direct effect or
whether it is mediated by other (or the same) components at the times between t and
t + h.

A problem with Granger’s original definition is that it relies on conditioning on all
the information in the universe up to time t . Similarly, our assumptions of stability
will also be easier to justify when the system XV is ‘large’ enough, in practice this will
often mean that it contains latent time series. The global Markov properties can then
be used to infer what the Granger (non)causal relations among a, say observable, sub-
set X S of the whole system are; and the identifying back-door and front-door criteria
characterise when the effect of interventions can be computed from X S . The graphical
rules to find a minimal set S illustrate that the notion of ‘confounding’ is less obvious
for the time series case, due to the potential for indirect relations via several time lags.
However, interestingly, the graphical check of the back-door criterion is the same for
single, multiple or sequential interventions.

Our approach is complicated by the possible presence of contemporaneous depen-
dencies, which allow for correlated errors at a given point in time that are independent
across time points. It is clear that these are not relevant to the effects of interventions.
However, they can affect identifiability by giving rise to what is known as selection
effect (Hernán et al. 2004) when conditioning, for instance, on the past of certain
components. The proposed identifying criteria take this into account. The special case
where there is no contemporaneous dependence may often be unrealistic for multivar-
iate time series, but it is plausible for certain multivariate stochastic processes in con-
tinuous time, like marked point processes. The corresponding graphical representation
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(Didelez 2007, 2008) is based on the continuous time analogue of Granger noncausality
called local independence (Schweder 1970). As local independence graphs correspond
essentially to the graphs for time series without undirected edges, we suspect that our
results about the effects of interventions, here, can be transferred to the continuous
time case. A formal investigation of this conjecture will, however, necessitate some
subtle measure-theoretic considerations.

Acknowledgements We acknowledge financial support from the London Mathematical Society.

Appendix

A. Conditional independence

The following properties of conditional independence are heavily used for the proofs
and are therefore stated here. They go back to Dawid (1979) (see also Lauritzen (1996,
pp. 29)).

Let (�,F , P) be a probability space and let Fi , i = 1, . . . , 4 be sub-σ -algebras of
F . Recall that two sub-σ -algebras F1 and F2 are said to be independent conditionally
on F3 if E(X |F2∨F3) = E(X |F3) a.s. for all real-valued, bounded, F1-measurable
random variables X . Then the basic axioms of conditional independence are:

(C1) F1⊥⊥F2 |F3 ⇒ F2⊥⊥F1 |F3 (symmetry)
(C2) F1⊥⊥F2 ∨F3 |F4 ⇒ F1⊥⊥F2 |F4 (decomposition)
(C3) F1⊥⊥F2 ∨F3 |F4 ⇒ F1⊥⊥F2 ∨F3 |F3 ∨F4 (weak union)
(C4) F1⊥⊥F2 |F4 and F1⊥⊥F3 |F2 ∨F4 ⇒ F1⊥⊥F2 ∨F3 |F4 (contrac-

tion)
(C5) F1⊥⊥F2 |F3∨F4 and F1⊥⊥F3 |F2∨F4 ⇒ F1⊥⊥F2∨F3 |F4 (inter-

section property)

Properties (C1)–(C4) are always satisfied, while poperty (C5) requires additional
assumptions that essentially ensure that there are no logical redundancies. In our
case, assumptions (T1)–(T3) ensure that (C5) holds for the multivariate time series
we consider. Dawid (1979) discusses more general notions of the above properties.

B. Proofs

Proof of Corollary 2.5 As Xa � Xb [XV ] (under the idle regime), we know that
Xb(t + 1)⊥⊥ Xa(t) | X V \{a}(t). From (2.3) it follows that Xb(t + 1)⊥⊥ σa(t) | X V (t).
Both together imply with (C4) of the properties of conditional independence that
Xb(t + 1)⊥⊥ σa(t) | (XV \{a}(t), X V (t − 1)). With (2.2) and again (C4) it follows in
turn that Xb(t + 1)⊥⊥ σa(t) which implies Es Xb(t + 1) = EoXb(t + 1), i.e. the
intervention has no effect on Xb(t + 1). ��
Proof of Theorems 3.1 and 3.2 By the law of iterated conditional expectation

Es Xb(t + h) = Es E
X S(t1−1),XS\{a}(t1)
s E

X S(t1)
s Xb(t + h).
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The last expectation in the above line can be modified exploiting (3.3). The mid-
dle expectation can be modified due to Assumption (I4) and the first one is equal
to the expectation under the idle regime because using (I1)–(I3) we obtain X S(t1 −
1), X S\{a}(t1)⊥⊥ σ . Hence

Es Xb(t + h) = E∅ E
X S(t1−1),XS\{a}(t1)
s1 E

X S(t1)
s>1 Xb(t + h),

where s>k = {sk+1, . . . , sk}. Similarly, the last expectation can now be written as

E
X S(t1)
s>1 Xb(t + h) = E

X S(t1)
∅ E

X S(t2−1),XS\{a}(t2)
s2 E

X S(t2)
s>2 Xb(t + h).

Substituting back into the expression for Es Xb(t+h), replacing the inner expectation

iteratively for k = 1, . . . , K , and noting that E
X(tK )

s>K = E
X(tK )
∅ we obtain

Es Xb(t + h) = E∅
K∏

k=1

[

E
X S(tk−1),XS\{a}(tk )
sk E

X(tk )
∅

]

Xb(t + h)

which was the claim.
For K = 1, this proves in particular Theorem 3.1. ��

Preliminaries for the proof of Theorem 3.4 For ease of notation, we use the following
abbreviations

Yt = Xb(t) Xt = Xa(t) Zt = XC (t) Ut = XU (t),

furthermore, let Wt = X S(t) = (Xa(t), Xb(t), XC (t)) and let Vt = XV (t).
Under assumptions (T1) to (T3) on the time series, the conditional distribution

of Zt given V t−1, Ut , Xt , Yt and the marginal distribution of Zt have densities
f (zt |vt−1, ut , xt , yt ) and f (zt ), respectively, with respect to a product measure ν

and are related by

∫

h(zt ) d P(zt ) =
∫

h(zt )
f (zt )

f (zt |vt−1, ut , xt , yt )
d P(zt |vt−1, ut , xt , yt )

for every measurable function h(zt ).
Let Q j be measures on (�,F ) obtained iteratively from P by setting Q0 = P and

Q j (A) = EQ j−1

(
f (Zt− j )

f (Zt− j |V t− j−1, Ut− j , Xt− j , Yt− j )
1A

)

for j = 1, . . . , h, and let Q j = Q
V t
j be the measures on R

NV
induced by V t . Sim-

ilarly, we define measures Q j,s for experimental regimes with interventions in Xt

obtained from Ps instead of P. Since the construction of Q j leaves the marginal dis-
tribution of V t− j−1 unchanged, we have Q j (A) = P(A) and Q j,s(A) = Ps(A) for
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all A ∈ σ {V t− j−1}. Further, under Q j (or Q j,s), Zt−1, . . . , Zt− j are independent
of any past or contemporaneous variables or interventions. Hence condition (F1) is
equivalent to Yt ⊥⊥ Xt− j , σt− j | Zt−1, Y t− j , U t− j [Q j−1]

Note also that under (F2), f (zt |vt−1, ut , xt , yt ) = f (zt |wt−1, xt , yt ). It follows
that the marginal distribution of W t under Qh can be determined from its marginal
distribution under P.

Proof of Theorem 3.4 Writing the ACE in integral notation, Es(Yt ) =
∫

yt d Ps(yt ),
we will first show that

d Ps(yt ) =
∫

· · ·
∫

d Qk,s>k (yt |zt−1, vt−k−1)
k∏

j=1

[
d P(zt− j |xt− j−1, zt− j−1)

× d Ps j (xt− j |xt− j−1, wt−h−1)
]

d Ps>k (vt−k−1) (B.1)

for 0 ≤ k ≤ h, where s>k = {sh, . . . , sk+1}. We proceed by induction over k. For
k = 0, the relation follows immediately from d Ps(yt ) =

∫
d Ps(yt |vt−1) d Ps(vt−1)

and Q0,s = Ps . For the induction step, assume that B.1 holds for k− 1. First, we note
that by assumption (F1)

d Qk−1,s≥k (yt |zt−1, vt−k) = d Qk−1,s>k (yt |zt−1, yt−k, ut−k). (B.2)

Next, the last factor in B.1 can be factorized as

d Ps≥k (vt−k) = d Ps≥k (vt−k |vt−k−1) d Ps>k (vt−k−1).

Since with assumption (F2), intervention in Xt−k and exploiting (2.1), the vari-
ables Zt−k, Xt−k , and (Ut−k, Yt−k) are independent conditionally on V t−k−1, d Ps≥k

(vt−k |vt−k−1) can further be factorised into

d Ps≥k (yt−k, ut−k |vt−k−1) d Ps≥k (zt−k |vt−k−1) d Ps≥k (xt−k |vt−k−1). (B.3)

For the first factor of (B.3), we find

d Ps≥k (yt−k, ut−k |vt−k−1) = d Ps>k (yt−k, ut−k |vt−k−1)

since the distribution of Ut−k and Yt−k is not affected by the intervention in Xt−k (due
to (I3)), while the third factor of (B.3) equals the intervention distribution due to (I4)

d Ps≥k (xt−k |vt−k−1) = d Psk (xt−k |xt−k−1, wt−h−1).

For the second factor of (B.3), we obtain again by assumption (F2), and using (2.1) to
drop the subscript of P ,

d Ps≥k (zt−k |vt−k−1) = d P(zt−k |xt−k−1, zt−k−1).
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Substituting the factors and B.2 back into B.1, we obtain d Ps(yt ) =
∫

· · ·
∫ [∫

d Qk−1,s>k (yt |zt−1, yt−k, ut−k) d Ps>k (yt−k, ut−k |vt−k−1)

]

k∏

j=1

[
d P(zt− j |xt− j−1, zt− j−1) d Ps j (xt− j |xt− j−1, wt−h−1)

]

× d Ps>k (vt−k−1). (B.4)

Evaluating the first term in brackets, using (F1), as

∫

d Qk−1,s>k (yt |zt−1, yt−k, ut−k) d Ps>k (yt−k, ut−k |vt−k−1)

=
∫∫

d Qk−1,s>k (yt |zt−1, yt−k, ut−k) d Ps>k (yt−k, ut−k, xt−k |vt−k−1)

=
∫∫

d Qk−1,s>k (yt |zt−1, vt−k) d Ps>k (yt−k, ut−k |xt−k, vt−k−1) d Ps>k (xt−k |vt−k−1)

=
∫

d Qk−1,s>k (yt |zt−1, xt−k, vt−k−1) d Ps>k (xt−k |vt−k−1)

Since, under Qk−1,s>k , Zt−k depends only on Xt−k and Vt−k−1, the conditional dis-
tribution of Yt given Zt−1, Xt−k , and V t−k−1 is the same under Qk−1,s>k and Qk,s>k .
Similarly, the conditional distribution of Xt−k is the same under Ps>k and Qk,s>k .
Noting furthermore that Zt−1⊥⊥ Xt−k | V t−k−1 under Qk , we finally obtain in (B.4)
for the first term in brackets

∫

d Qk,s>k (yt |z̄t−1, xt−k, v̄t−k−1) d Qk,s>k (xt−k |z̄t−1, v̄t−k−1)

= d Qk,s>k (yt |z̄t−1, v̄t−k−1),

This proves B.1 by induction.
It now follows for k = h, and with Ps>h = P and Qh,s>h = Qh

d Ps(yt ) =
∫

· · ·
∫ [∫

d Qh(yt |zt−1, wt−h−1, ut−h−1) d P(ut−h−1|wt−h−1)

]

×
h∏

j=1

[
d P(zt− j |xt− j−1, zt− j−1)d Ps j (xt− j |xt− j−1, wt−h−1)

]

× d P(wt−h−1)

=
∫

· · ·
∫

d Qh(yt |zt−1, wt−h−1)
h∏

j=1

[
d P(zt− j |xt− j−1, zt− j−1)

× d Ps j (xt− j |xt− j−1, wt−h−1)
]

d P(wt−h−1),

which yields the asserted expression for the ACE.
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To conclude the proof of the front-door criterion, we need to show that the expec-
tation with respect to Qh in the expression of the ACE is indeed of the stated form.
We have

E
Zt−1,W t−h−1
Qh

Yt =
∫

d Qh(yt |wt−1)
h∏

j=1
d Qh(yt− j , xt− j |wt− j−1).

Here, the conditional distribution d Qh(yt |wt−1) has the density

fQh (yt |wt−1) = fQh
(yt , wt−1|wt−h−1)

fQh
(wt−1|wt−h−1)

=
∫

fQh
(yt |vt−1) fQh

(vt−1|vt−h−1)dut−1 · · · dut−hd P(ut−h−1)
∫

fQh
(vt−1|vt−h−1)dut−1 · · · dut−hd P(ut−h−1)

. (B.5)

The density fQh (vt−1|vt−h−1) can be further factorized as

fQh (vt−1|vt−h−1) =
h∏

j=1
fQh (zt− j ) fQh (ut− j , yt− j , xt− j |vt− j−1),

where fQh (ut− j , yt− j , xt− j |vt− j−1) = fP(ut− j , yt− j , xt− j |vt− j−1) by defini-
tion of Qh . Since the factors fQh (zt− j ), j = 1, . . . , h, do not depend on
ut−1, they cancel in the ratio B.5. Using (F2), we can also replace them by
fP(zt− j |xt− j , yt− j , ut− j , vt− j−1) = fP(zt− j |zt− j−1, xt− j ). Following the same
steps backwards, we obtain that (B.5) is equal to

fP(yt , wt−1|wt−h−1)

fP(wt−1|wt−h−1)
= fP(yt |wt−1),

which shows that d Qh(yt |wt−1) = d P(yt |wt−1). Similarly, it can be shown that
d Qh(yt− j , xt− j |wt− j−1) = d P(yt− j , xt− j |wt− j−1) for 1 ≤ j ≤ h, which yields the

desired expression for the expectation E
Zt−1,W t−h−1
Qh

Yt . ��
Proof of Corollary 4.7 As a is not an ancestor of b, any an(b)-pointing path between
a and an(b) must contain nodes v,w ∈ an(b), v,w �= a, in the constellation v −→ w,
because otherwise it cannot be an(b)-pointing. Hence there is always the m-non-col-
lider v on any such path so that it must be blocked by V \{a}. With Theorem 4.6 this
implies that Xb(t + h)⊥⊥ Xa(t)|X V \{a}(t) and we can prove the claim in exactly the
same way as Corollary 2.5. ��
Proof of Theorem 4.8 We start by constructing the minimal set S described in part
(ii); note that by definition it has to contain {a, b}. Furthermore, S has to contain
the graph parents of a because otherwise the back-door path a ←− v1 −→ a is
m-connecting and an(b)-pointing (as a ∈ an(b)). Any path starting a ←− v1 · · ·
is blocked by the parents of a as v1 ∈pa(a) is a non-collider. Thus, we now only
need to consider back-door paths that start with a- - -v2 · · ·. If v2 ∈ an(b) it has to
be contained in S otherwise a- - -v2 −→ · · · b is m-connecting. If v2 /∈ an(b) then
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any an(b)-pointing path a- - -v2- - - · · · or a- - -v2 ←− · · · is m-blocked if v2 /∈ S;
and every an(b)-pointing path starting a- - -v2 −→ · · · must contain a constellation
−→ v3- - - or −→ v3 ←− with v3 /∈ an(b), so is m-blocked as v3 /∈ S. The same
reasoning can be applied iteratively to show that any v ∈ D has to be in S. It is clear
from this reasoning that whenever one node of pa(a) or of D is not contained in S an
m-connecting back-door path to an(b) is created, so the set S is minimal.

Now we show part (i), assuming that S has been chosen according to (ii). Define
the set F as the vertices v in S such that v = a or there exists an undirected path
v- - - · · · - - - a with all intermediate vertices lying in S. From the construction of S it
follows that S = {b} ∪ F ∪ pa(F) and as S contains all parents of F (see (3.10))

X F (t)⊥⊥ X V \S(t − 1) | X S(t − 1). (B.6)

(The above, as well as all following conditional independencies that do not explicitly
mention σa(t) all hold under both values of the indicator.) Furthermore, it also follows
that pa(F)∩sp(F) ⊆ F , which implies that X F and Xpa(F)\F are contemporaneously
independent wrt. XV (see (3.11)). If b is a spouse of a vertex in F then b ∈ F , and we
obtain from B.6 and the contemporaneous independence, using (C4),

X F (t)⊥⊥(X V \S(t − 1), Xpa(F)\F (t)) | X S(t − 1)

and further, since in this case S = F ∪ pa(F),

Xa(t)⊥⊥ X V \S(t − 1) | X S(t − 1), X S\{a}(t). (B.7)

If b /∈ sp(F) then X F and X{b}∪pa(F)\F are contemporaneously independent, which
together with B.6 yields again B.7.

Next, we note that from 2.2 we have X V \S(t − 1)⊥⊥ σa(t)|(X S\{a}(t), X S(t − 1)).
By B.7 and (C4), this can be extended to

X V \S(t − 1)⊥⊥ σa(t) | X S(t), (B.8)

that is, when additionally conditioning on Xa(t).
From the definition of F and the global Markov properties, it also follows that

Xa(t)⊥⊥ XV \(S∪sp(F))(t) | X S\{a}(t), X V (t − 1). (B.9)

Due to (I4), the intervention distribution of Xa(t) only depends on XC (t − 1) with
C ⊆ S, the relation holds under both the observational and the experimental regime.
From (I1) it also follows using (C3) that

XV \(S∪sp(F))(t)⊥⊥ σa(t) | X S\{a}(t), X V (t − 1). (B.10)

Properties B.9 and B.10 together imply with (C4) and (C3) that

XV \(S∪sp(F))(t)⊥⊥ σa(t) | X S(t), X V \S(t − 1). (B.11)
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Now (B.8) and (B.11) together imply with (C4) that

XV \(S∪sp(F))(t), X V \S(t − 1)⊥⊥ σa(t) | X S(t). (B.12)

Further it follows from assumption 2.3 that Xb(t+h)⊥⊥ σa(t) | X V (t) and from (3.12)
that Xb(t + h)⊥⊥ X V \an(b)(t) | (X an(b)(t), σa(t)), which together imply

Xb(t + h)⊥⊥ σa(t), X V \an(b)(t) | X an(b)(t). (B.13)

We note that an(b)\S ⊆ V \(S∪sp(F)): every vertex in F∪sp(F) is m-connected to a
given S and thus by definition of S must be in S if it is an ancestor of b. Consequently,
B.13 can be rearranged (with (C2) and (C3)) to give

Xb(t + h)⊥⊥ σa(t) | X S(t), X V \S(t − 1), XV \(S∪sp(F))(t).

Together with B.12 the latter implies

Xb(t + h)⊥⊥ σa(t) | X S(t),

which means that Theorem 3.1 holds for the minimal choice of S. If S is not minimal
then the proof gets more complicated but follows essentially the same lines. Finally,
to see that Theorem 3.2 also holds we simply note that all relations up to B.12 concern
only the distribution of X V (t) and thus are not affected by interventions at later time
points. Similarly, assumptions (I1) to (I4) on interventions imply that

Xb(t + h)⊥⊥ σa(t) | X V (t), σ>t = s,

from which the final result can be obtained similarly as above. ��
Proof of Theorem 4.12 Conditions (G2) and (G3) imply that XV \(C∪{a}) is Granger
noncausal for, and contemporaneously independent of, XC with respect to XV . With
(C4) this immediately implies (F2), noting that U ∪ {b} = V \(C ∪ {a}).

For condition (F1), we note that XC (t − 1), . . . , XC (t − k + 1) and X V (t − k) are
independent under the measure Qk−1. Thus the dependencies of the process over the
period from t − k to t can be described by the graph G̃ obtained from the original
graph by omitting all directed edges with an arrowhead at C and all undirected edges
with one endpoint in C . Then assumption (G1) implies that there is no directed path
from a to b in G̃. It follows that

Xb(t)⊥⊥ Xa(t − k) | X V \{a}(t − k) [Qk−1].

Furthermore, it follows from assumptions (I1) to (I3) (and under either of P or Qk−1)
that

Xb(t)⊥⊥ σa(t − k) | X V (t − k).

Combining the two relations by (C4) we obtain (F1). ��
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