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SUMMARY

We derive conditions for decomposition and collapsibility of graphical interaction
models for multivariate time series. These properties enable us to perform
stepwise model selection under certain restrictions. For illustration, we apply
the results to a multivariate time series describing the haemodynamic system as

monitored in intensive care.
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1. INTRODUCTION

In multivariate data, usually a multitude of relations among the variables can
be found. However, many of them may be spurious or indirect, that is induced
by others. Graphical models display the essential relations between the variables
in graphical form. The variables are represented as vertices and those pairwise
associations that persist when removing the effects of the other variables are
shown as edges. In most cases the statistical meaning of association is some
kind of conditional dependence. Thus, a missing edge indicates conditional
independence of the corresponding variables given all the remaining variables.
Dawid (1979) discusses conditional independence as a basic tool for statistical
inference, and the monographs by Whittaker (1990), Cox & Wermuth (1996),

Lauritzen (1996) and Edwards (2000) give broad reviews on graphical models.

Brillinger (1996) proposes a suitable modification of graphical models for
analysing the associations among the components of a multivariate time series,
further developed by Dahlhaus (2000). Their approach is based on the partial
spectral coherency, which measures the linear dependence between two compo-
nents of a multivariate time series after removing the linear effects of the re-
maining components (Brillinger, 1981, Section 8.3). This provides a method to
detect associations due to partial linear, possibly time-lagged, relations between
the variables of a multivariate time series. The graphical representation is thus
termed ‘partial correlation graph’. For a multivariate Gaussian process, condi-

tional independence of two components of a process and zero partial correlations
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at all time lags are equivalent, whereas the former is a stronger property in gen-
eral. The usefulness of partial correlation graphs has already been proved in

medical applications (Timmer et al., 2000; Gather et al., 2002).

In this paper, we focus on dependence structures of subprocesses derived from a
multivariate time series by marginalising with respect to some of the components.
The results that we present are useful for several reasons: In some situations we
might wish to discard some of the components because their measurement is
difficult, inaccurate, or simply incomplete. It is then helpful to know whether
an omission induces spurious or misleading associations among the remaining,
fully observed, components. A similar idea is exploited by Didelez & Pigeot
(1999) in order to cope with missing values in a non—dynamic setting. Another
reason for our investigations is the desire to reduce computational complexity
without distorting the underlying dependence structure. In fact, simplification of
complex manipulations of multivariate distributions is one of the main benefits
of conditional independence graphs and exploited, for instance, by probabilistic
expert systems (Cowell et al., 1999). Finally, let us mention that properties such
as decomposition and collapsibility can facilitate more sophisticated selection
strategies of graphical models. We advocate that one should take advantage of
the structure of zero partial correlations, as far as possible, to obtain a more
refined and reliable selection procedure. This latter aspect will be investigated in
more detail when having presented the theoretical results. While conditions for

decomposability of conditional independence graphs for independent observations
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are well-known (Frydenberg, 1990), they have not yet been derived for graphical

interaction models for dynamic data.

We proceed as follows. In § 2 we introduce the necessary terminology and
review partial correlation graphs for multivariate time series. In § 3 we derive
conditions for decomposability and collapsibility of these models that allow the
use of standard methods to perform the estimations under specific restrictions.
A model selection procedure that exploits these properties is proposed in § 4 and
illustrated in § 5 by an application to a multivariate time series describing the
haemodynamic system of a critically ill patient. We close with some conclusions

in § 6.

2. GRAPHICAL MODELS FOR MULTIVARIATE TIME SERIES

2 - 1. Graph notations

A graph G = (V, E) consists of a finite set of vertices V' and a set of edges
E CV xV, that are ordered pairs of vertices. It can be visualised by drawing a
circle for each vertex and connecting each pair a, b of vertices whenever (a,b) € E
or (b,a) € E by an edge. In this paper we focus exclusively on undirected graphs
where (a,b) € E implies (b,a) € E. The edges are therefore simply represented by
lines. Directed graphs typically encode different dependence structures, subject to
the kind of graph. In the context of stochastic processes, directed edges have been

used to depict asymmetric dependencies (Eichler, 2000; Didelez, 2000) such as
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influences from past events on the presence or future. However, in the undirected

graphs considered here, an edge stands for a symmetric association.

In conditional independence graphs, the vertices represent univariate random
variables. The pairwise Markov property for undirected graphical models then
states that two variables a and b are conditionally independent given all remaining
variables if they are not connected by an edge, that is if (a,b), (b,a) ¢ E. In a
partial correlation graph for a multivariate time series each vertex stands for a
component of that series and a missing edge indicates a zero partial correlation
between a and b at all time lags after removing the linear effects of the remaining

variables (Dahlhaus, 2000). A more formal definition is given in § § 2.2.

If two variables @ and b are connected by a path, that is if vertices a =
ag,...,a; = b, I > 1, exist such that there is an edge between each pair of
successive vertices, then there is some (linear) relation between them, possibly
mediated by other variables. A connectivity component of an undirected graph
is a maximal subset of pairwise connected variables. For an undirected graph
connectivity is an equivalence relation on V. A graph that includes all edges is
called complete. It typically represents the saturated model allowing for all as-
sociations. If we eliminate some vertices retaining only a subset A and eliminate
all edges (a,b) not contained in A X A we get the subgraph G4 induced by A.
The boundary bd(A) of A C V consists of all vertices v € V' \ A that are joined

by an edge to some vertex a € A. The closure of A is AU bd(A).

The following notion of a decomposition will be useful for dimension reduction:
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Let (A, B, S) be a partition of V. Then, we say that G' can be decomposed into
subgraphs G aus and Gpgys if (i) S separates A and B in G, implying that every
path between any a € A and b € B necessarily contains at least one vertex s € S,
and if (ii) Gg is complete. The triple (A, B, S) is then called a decomposition of
G. Obviously, for dimension reduction, a decomposition has to be proper, that

is A# () and B # ().

2 - 2. Partial correlation graphs

Let us now address in more detail the statistical models induced by graphs as they
are considered in this paper. Let X(t) = {(X1(t),..., Xk(t))', t € Z}, be a mul-
tivariate stationary time series of dimension k. Suppose that the autocovariance
function

Yan(h) = cov{X,(t + h), Xp(t)}, h € Z,

is absolutely summable with respect to all time lags h for all pairs a,b € V =
{1,...,k}. Then the cross—spectrum between two components {X,(t),t € Z}
and {X,(t),t € Z} of the time series is defined as the Fourier—transform of their

covariance function

Fo) = Frox,(3) = % S yw(h)exp(—iMh), A€ [0,7]

h=—0oc

(see Brillinger, 1981, p. 232). This decomposes the covariance function 7, into
periodic functions of frequencies A. The variables X, and X, are uncorrelated

at all time lags h iff fu,(\) equals zero at all frequencies. Similarly, we can
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define the cross—spectrum between two multivariate time series {X4(t),t € Z} and
{Xjp(t),t € Z} to be the component wise Fourier—transform of their covariance
matrix function {T 45(h), h € Z}. For ease of notation we will also use X4 instead

of {X4(t),t € Z} in the following.

Let (A, B,C) be a partition of the observed variables. In order to assess the
partial linear relations between the variables in A and the variables in B we
eliminate the linear effects of X from X 4 and Xp. Thus, we have to determine a
vector 1% o and a filter {d’} ¢(h), h € Z} minimising the expectation of the vector

product

E

{XA — pac— ZdAC Xct—h)}{XA(t)—uAC—ZdA,C(h)XC(t—h)}].
h

If the spectral density matrix fy(A) for the whole process is regular at all fre-
quencies the solution is unique (Brillinger, 1981, Theorem 8.3.1) and we can define

the residual series {€4.c(t),t € Z} by

eac(t) =Xat) — phc — Zd h)Xc(t—h).

h=—00
The partial cross—spectrum between X4 and X given X can then be defined as

the cross-spectrum between {e4.¢(t),t € Z} and {ep.c(t),t € Z}

fapc(A) = fepceno(A), A €0, 7).

Brillinger (1981, p. 296) shows that the partial cross—spectrum can be calculated
using

fapc(N) = fas(N) = facW{fec(N)} fes(N), (1)
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where the entries of the matrices fac(A), fep(A) and foo(A) are ordinary cross—

spectra between the corresponding variables.

The partial spectral coherency between component processes X, and X, is a

standardisation of their partial cross—spectrum,

_ fab-V\{a,b} ()‘)
{ Faa\ sy V) Fobr\fapy (N /2

that measures partial correlation as a function of the frequency, while the (par-

Rapv\{ap}(N) (2)

tial) phase-spectrum between components a, b is defined via the Eulerian repre-

sentation
fav(A) = [fap(A)| exp{igas(A)} -
It can be interpreted as angle between the residual components of frequency .

Zero partial correlation at all time lags defines an orthogonality relation 1L as

follows:

Xa U Xp|Xe <= covieac(t),epc(t+h)} =0, forallheZ, (3)
<  fapc(A) =0, forall A e€|0,n7],

<= Rapc(\) =0, forall X e[0,n],

where Rap.c()\) denotes the matrix with entries Rg.c, a € A, b € B. For
ease of notation we also write A Ll B|C' instead of X4 Il Xp|X¢ identifying the
components of subvectors with their indices. As mentioned earlier, zero partial
correlation is only equivalent to conditional independence if we assume a Gaus-
sian process. Therefore, any methodology based on this orthogonality relation is

purely linear and the implied limitations should be kept in mind.
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The connection between a graph and the partial correlation structure of a
multivariate time series is formally established as follows. Let the vertices V =
{1,...,k} of G represent the components of a time series Xy,. Then we say that

G is the partial correlation graph of Xy if

(a,b),(ba) ¢ E = allb]|V\{a,b}, (4)

that is if fup.1\{a,p}(A) = O for all frequencies A € [0, 7] and vice versa.

Partial correlation graphs for multivariate time series defined like this generalise
conditional independence graphs for a multivariate normal distribution since for
an independent sample the matrix of cross—spectra is a constant multiple of the

covariance matrix.

Let {ep.c(t),t € Z} be calculated analogously from Xpg. Note, that both
past and future effects of X are eliminated here as we use the resulting partial
correlations to define undirected graphical models. It would be natural to define

directed graphical models for multivariate time series by eliminating past effects

only (Eichler, 2000).

While the foregoing definition of partial correlation graphs refers to a pairwise
property it implies much more vanishing partial correlations than are apparent
at first glance. Dahlhaus (2000) proves for partial correlation graphs that, under
the assumption of the spectral matrix being regular at all frequencies, the above
pairwise Markov property (4) for partial correlation graphs implies the so—called

global Markov property. The latter is generally stronger than the pairwise prop-
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erty and states that two subprocesses, A and B, have zero partial correlations at
all time lags given the linear effects of a subprocess C C V\(A U B) whenever
C separates A and B in G. Put differently, the variables in A and B are not
associated if the linear effects of a separating subset C are controlled. Note that
A, B, C do not need to be a partition of V', so that zero partial correlations can be
retained even when discarding the components in V\(AU BUC), nor is C neces-
sarily unique. The requirement that the spectral density matrix be regular at all
frequencies essentially implies that there is no linear relationship among the com-
ponents of the multivariate time series at any frequency. This would mean that
some of the components would carry no new information making them redundant

at a frequency where the spectral matrix is not regular.

In order to illustrate partial correlation graphs for time series we use a VAR(1)-

process X = (Xi,...,X10)" with ten variables
X(t) = ®X(t—1)+e(t),

where {e(t) : t € Z} is a white noise process consisting of N(0, I)-distributed
errors and ® = (¢;;) with ¢;; = 0-3,7i = 1,...,10, ¢12 = P21 = o =
¢3,2 = (!53,4 = ¢6,5 = ¢6,8 = ¢7,6 = ¢9,7 = ¢9,8 = ¢10,8 = ¢8,10 = 0- 3, and the
remaining ¢, = 0. As proved by Dahlhaus (2000), in the partial correlation
graph for such a VAR(1)-process two component processes a and b have to be
connected by an edge iff ¢op # 0, or ¢y, # 0, or if @ and b jointly affect a third
component, more precisely if there exists a ¢ € V' \ {a, b} such that ¢., # 0 and

¢ep # 0. The resulting partial correlation graph for this multivariate process
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is shown in Figure 1. The edges induced by two components jointly affecting
a third one are: (2,4), (5,8), and (7,8). A conditional independency that
can be read off the graph using the pairwise Markov property is, for instance,
113 | {2,4,5,6,7,8,9,10} because there is no edge between X; and Xj.
Further we get from the global Markov property that conditioning on X, suffices
to make X; and X3 independent so that 1 1l 3|2, due to the corresponding graph

separation.

Figure 1 about here

3. DECOMPOSITION OF PARTIAL CORRELATION GRAPHS

In the following we derive some properties of partial correlation graphs that aim at
reducing complexity in several ways. In particular, we are interested in the partial
correlation structure of subprocesses X4, A C V, or, more formally, in the partial
cross—spectra fap.a\(a,p}(A), @,b0 € A. Note that the pattern of vanishing partial
correlations in such a submodel does not necessarily have to match the subgraph
G 4 of the partial correlation graph G for the whole process. Marginalising with
respect to Xy 4 might induce other associations or zero partial correlations than
those shown in G 4. Such phenomena are known as Simpson’s Paradox (Simpson,

1951).

Throughout this section we assume that G = (V, F) is the partial correlation

graph of a multivariate stationary time series Xy, and that the spectral density



Decomposability and selection of graphical models for time series 12

matrix of Xy is regular at all frequencies A.

PROPOSITION 1 (Decomposition). If (A, B, S) is a decomposition of G then the
subgraph G aus is not smaller than the partial correlation graph of the subprocess
Xaus in the sense that all edges missing in G aus are also missing in the partial

correlation graph of this subprocess.

Proof. 'This result can be proved in the same way as Proposition 12.2.1 in
Whittaker (1990) using the global Markov property shown by Dahlhaus (2000).

O

The condition in Proposition 1 ensures that missing edges in a subgraph can still
be regarded as zero partial correlations within the corresponding subprocess after
marginalising over the remaining components. This applies for instance to the
AR(1)-process introduced in the last section choosing the subgraph G 23456}

since ({1,2,3,4},{7,8,9,10}, {5,6}) is a decomposition.

The next proposition transfers a result on collapsibility, which is well-known
in the case of conditional independence graphs (Whittaker, 1990, Proposition
12.5.1), to partial correlation graphs for multivariate time series. It uses
Proposition 1 to characterise subsets that can be neglected without inducing

additional dependencies among the remaining components.
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PROPOSITION 2 (Collapsibility). If the boundary of each connectivity compo-
nent of B C 'V is complete then Gy\p 1s not smaller than the partial correlation

graph of the subprocess Xy\g. We say that G is collapsible onto V\B (or over B).

Note, that the condition of each connectivity component of B C V being
complete corresponds to the notion of a simplicial subset as introduced by

Frydenberg (1990).

Proof of Proposition 2. First suppose that B consists of one connectivity
component only. We define A =V \ {BUbd(B)}. Since the boundary of B is
complete and separates A from B we have that (A, B, bd(B)) is a decomposition.
Thus, the result is a simple consequence of Proposition 1. If there are several
connectivity components the result follows from repeated application of this

argument by successively discarding the connectivity components of B. O

In our example, we can apply this proposition to B = {1,7,8,9,10} so that
the missing edges in Gyp3456) correspond to zero partial correlations within
X{2,3,4,5,6}-

We will now show that zero partial correlations have their counterpart in zero
regression coefficients in dynamic regression. Here, the separating subset can be

incomplete as we consider relations between the separated sets A and B only.
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PROPOSITION 3 (Dynamic regression). Let (A, B,S) be a partition of V. A
and B are partially uncorrelated at all time lags, A 1L B|S, iff all entries of the
optimal linear filter djy g ,5(h) being coefficients of components in B equal zero at

all time lags h.

Proof. The optimal vector y% p s and the optimal linear filter d’ p s can be
calculated from a multiple regression of X4 on Xp_ s in the frequency domain

considering each frequency individually (Brillinger, 1981, Theorem 8.3.1):

/'I’:l,BUS = E XA(t)_{ZdZ,BuS(h)}E{XBuS(t)}] (5)
s = 5 [ AW e @ ©)

-1

. feB(A)  fBS(A)
with A = (faB(A); fas(N)) : (7)

fsB(A)  fss(A)
It is easily verified that this inverse can be written as
N1 —N"Mm
~PN' {fss(N}"' + PN-'M
where M = fps(M{fss(M)} ", N = fep(A) = fs(\{fss(A)} ' fsp(A) and P =

{fss(N)} " fsB(N).

Assume now that all entries of d’y p s(h) which correspond to components in B
equal zero at all time lags h. This is equivalent to all functions in the Fourier
transform A()) of the filter, that correspond to elements in B, being identical to

zero, see (6). From (7) we see that this is equivalent to

0 = {fap(N) = fasW{fss(N)} " fs(A) N
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<~ 0 = fap(\) = fasN){fss(N)} " fsp(N).

From formula (1) we see, in turn, that this is equivalent to f4p.s(A\) being equal
to zero for all frequencies which defines the orthogonality A 1L B|S, see (3).
Further, we see immediately from formula (5) that u% p,s does not depend on

the variables in B in this case. O

Since the above argumentation is symmetric in A and B, we also find that all
entries of the optimal linear filter d 4.,5(h) being coefficients for components in

A equal zero at all time lags, too.

For the AR(1)-process introduced in § 2, we see from Proposition 3 that the
optimal linear filter for X; given the other variables, for instance, depends only
on Xs6. In principle, Proposition 3 can be used to construct optimal filters
for a model satisfying the restrictions by a partial correlation graph. The next
proposition provides a computationally more efficient solution for the estimation
of the partial spectral coherencies in special cases. It is similar to Proposition
1. However, it is stronger than the latter since it shows that not only the
zero partial spectral coherencies but all partial spectral coherencies within the
subprocesses X4 or Xpg are retained if (A, B, S) is a partition of the graph such

that A 1L B|S.

PROPOSITION 4. Let (A, B, S) be a partition of V' such that A Ll B|S. Then
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a) the partial spectral coherency of a,a € A with regard to Xy is the same as
the partial spectral coherency of these components with regard to Xayg, or

more precisely
Raav\{aa}(A) = Raa-(aushfaay(A), A €[0,7].

b) the partial cross—spectrum of a € A and s € S with regard to Xy is the same
as the partial cross—spectrum of these components with reqard to Xayg, or

more precisely
fas-V\{a,s} (A) = fas-(AUS)\{a,s} ()‘)a A€ [057"-] :

Proof. a) Since S separates A and B in G, it is obvious that (S U A) \ {a,a}
separates {a,a} from B in this graph. Using Proposition 3 we see that in the
optimal filter dZ,V\ {a,a} 2ll coefficients of variables in B equal zero. Thus, the
non-zero elements of the optimal filter for a taking all components into account
are the same as when taking only AU S into account, and the optimal constants
,u;V\ (0.6} and u;( AUS)\{a,a} BT€ also the same. This implies that the residual series
EaV\{a,a} and €4.(4us)\{a,a} are identical. The same is true for a, of course, and
hence a and a have the same partial spectral coherencies in both processes.

b) For s € S the residual series €5.V\{a,s} aNd €,.(Aus)\{a,s} are usually not identical.

However, the difference is a linear transform of Xy (4 as
55-(AUS)\{a,s}(t) - gs-V\{a,s}(t) = IU‘:,V\{a,s} + Z d:,V\{a,s} (“)XV\{a,s}(t —u)

_ru’:,(AUS)\{a,s} - Z d:,(AUS)\{a,s} (U)X(Aus)\{a,s} (t—u).

U=—00
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Since €4.v\{a,s} 1L Xv\{a,s}, Se€ Proposition 3, we have

COV{Ea.(AUS)\{a,5} (1), Es-(AUS)\{a,s} (T + D) }
= COV{Ea.V\{a,S} (t), €s.V\{a,s} (t + h)}
+ cov{€av\{a,s}(t), €s-(aus)\{a,s} (E + ) = Esn\{a,s} (E+ h)}

= cov{€av\{a,s}(t); EsV\ (a5} (t + h)} + 0

for all time lags h € Z. The partial cross—spectrum between a and s is simply

the Fourier transform of these covariances which proves the result. Il

Given the partial correlation graph G of Xy and a partition (A, B, S) such that
A 1L B|S, the above result allows us to estimate the partial spectral coherency
between variables a € A and a € A discarding the variables in B using only the
subprocess A U S, without any loss of information. Amongst other things, we
may then also test zero partial spectral coherencies within X 4 with regard to the
whole time series Xy, using only subprocesses in AU S. We may then argue that
the latter tests will usually be more powerful as we do not adjust for irrelevant
variables. This is particularly interesting when the subgraph induced by AU S
is complete since then simple computational formula exist, see (1). For a given
partial correlation graph, we can estimate the partial spectral coherency between
variables a and b using the unrestricted process X, ), since bd(a,b) separates
{a, b} from V' \ cl(a, b). In our running example, it is sufficient to observe Xy 34}

for estimating the partial spectral coherency among X3 and Xj.
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In most practical applications, however, we do not know the partial correlation
graph beforehand so that the above ideas cannot directly be applied. In the
following section we therefore suggest a stepwise procedure, where we first
estimate a preliminary graph, the separation properties of which are then
exploited to find more reliable estimates based on subprocesses. Note that the
empirical partial spectral coherencies will rarely have exact zero entries when
the underlying partial correlation is zero. Therefore, the estimates based on the
whole process and those utilising the subprocess X 45 will typically differ even

though the theoretical ones do not.

4. SELECTION OF PARTIAL CORRELATION GRAPHS

4-1. Motivation

In applications, when investigating research hypotheses by empirical analysis
of multivariate time series data, one can first estimate the cross—spectra from
the data and then use the empirical versions of equations (1) and (2) to esti-
mate the partial spectral coherencies. Thereafter, a decision has to be made
whether the underlying partial spectral coherency may be zero — obviously,
sampling variability will cause estimates to be distinct from zero. The pro-
gram ‘Spectrum’ developed by Dahlhaus & Eichler (can be down-loaded from
http://www.statlab.uni-heidelberg.de/projects/graphical.models/) es-
timates the cross—spectrum using a nonparametric kernel estimator. In addition,

it constructs an approximate 95%—confidence bound for the maximal squared es-
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timated partial spectral coherency in the saturated model, corresponding to the
complete graph, assuming that the considered true partial spectral coherency is
zero. Thus partial uncorrelatedness of each pair of variables can be tested si-
multaneously at the same approximate local significance level by comparing the
estimated partial spectral coherency with this bound. Such a procedure results
in an one-step selection of a partial correlation graph: Edges (a, b) have to be in-
cluded whenever the partial spectral coherency between X, and X} is significantly

different from zero.

In many applications it is known that associations may have different strengths
and it seems straightforward to include this information into the graph. The
strength of an association can heuristically be regarded as an expected relative
change in one of the variables when the other one changes by a certain relative
amount adjusting for all remaining variables. A classification of the strength may
be based on the area under the partial spectral coherency Rgp.v\{q,} as measured

by the partial mutual information

1
—%/log{l — |Rap-v\{a,0} (NP},

between the time series X, and X, (Brillinger, 1996; Granger & Hatanaka, 1964),
or by variants of this. In a clinical context, Gather et al. (2002) use gradually
distinct edges to classify the strength of the associations estimated in the satu-
rated model. Note, however, that all properties of the correlation structure that
can be read off the graph rely only on the missing edges, that is on zero partial

correlations, regardless of the strength of the non-vanishing associations.
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Although reporting the strength of the associations provides information on
ambiguous edges it is still a heuristic approach. When calculating the partial
spectral coherencies between two variables with regard to Xy we eliminate the
linear influences of all other variables and not only the linear effects of those
variables that are really relevant. It seems plausible to suspect that this may
hide some associations by reducing the power to reject zero partial correlations.
Such a mistake might be prevented by conditioning on smaller sets whenever

possible.

More refined, but still ad hoc, selection strategies often proceed stepwise such
as backward or forward procedures. Application of this kind of strategies to time
series data requires the estimation in models where some of the partial spectral
coherencies are restricted to zero. However, to the best of our knowledge, there is
no general estimation theory for such a task available yet. We run into problems
even if we do not use a non—parametric approach but assume a parametric model

like a Gaussian vector autoregressive model (Dahlhaus & Eichler, 2001).

Instead, we suggest using the properties of partial correlation graphs derived
in the previous section and estimate the partial spectral coherencies taking into
account at least those restrictions that come along with a separation of the graph.
Starting by estimating the partial spectral coherencies in the saturated model we
then eliminate associations for which the area below the curve representing the
squared partial spectral coherency which is above the approximate joint 95%

confidence bound is very small. The separation properties of the graph found
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in this first step may in turn be exploited in a second step to double—check
missing and dubious interactions by restricting the computations to appropriate
submodels exploiting Propositions 2 and 4. This double check can repeatedly be

applied if the graph changes in the second step.

For illustration we simulate 1000 observations from the VAR(1)-process intro-
duced in § 2. Applying the program ‘Spectrum’ to the simulated time series
reveals strong partial correlations among (1,2) and (3,4), for instance, see Fig-
ure 2. However, the partial spectral coherencies between (2,4) and (1,6) exceed
the critical bound only slightly at a few frequencies, just like the partial spectral
coherency for (4,5). In contrast, the partial spectral coherency for (7,8) does
not even cross the confidence bound even though there is an edge in the model.
Therefore, the one—step selection would probably either neglect or include all of
(2,4),(1,6),(4,5) and certainly neglect (7,8). Figure 3 depicts the preliminary
model for the partial correlation graph. Ambiguous edges are represented by

dashed lines.

Figure 2 about here

Partitions (A, B, S) of G with A1l B|S and |A| > 1 allow us to double—check the
importance of ambiguous and missing edges within A using only the subprocess
X aus, see Proposition 4a). In principle we could consider all these separations and
include an edge if it is significant for any of them. However, in case of many vari-

ables there may be many separations and using all of them is computationally ex-
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pensive. We therefore suggest using only the partition [{a, b}, V' \ cl(a, b), bd(a, b)]
to verify the absence or presence of an edge (a,b) as cl(a,b) is the minimal set
for which the partial spectral coherency among (a,b) is the same as for the whole
process if we assume that the given partial correlation graph is true. For the
missing edge (7,8) we have cl(7,8) = {2,5,6,7,8,9,10}. Again, ‘Spectrum’ can
be used to estimate the partial spectral coherencies within the saturated model
for AU S. Although this does not use the information provided by the absence
of some of the edges within A, it does use the information on the absence of
associations between A and B. We therefore consider the results obtained in
this way to be in better agreement with the current model than the estimates
calculated in the first step. In the simulated example, however, the estimated
partial spectral coherency of (7,8) does not change much, confirming the ab-
sence of (7,8). For the edges (2,4) and (4,5) we have ¢l(2,4) = {1,2,3,4,5,6,8}
and cl(4,5) = {2,3,4,5,6,7,8,10}. Alternatively, we could also check the pres-
ence of (4,5) within the subgraph cl(2,4) exploiting Proposition 4b). Applying
‘Spectrum’ to this subgraph results in a decrease of the estimated partial spec-
tral coherency between (4,5). Similarly, the estimated partial spectral coherency
between (5,7) decreases when we consider the submodel for {4,5,6,7,8,9,10}.
Therefore, we could decide that these edges have to be omitted, hence modifying
the result of the one—step model selection in the second step. In this particular
example, exploiting the information on collapsible subsets in the selection process

thus leads to a result which is closer to the true graph.
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Figure 3 about here

4 - 2. Selection strategy

Before describing the selection procedure in more detail let us mention some
general principles that should guide the model selection. Firstly, we propose
an adherence to the principle of coherent model selection (see Edwards, 2000,
p. 165), which implies in our situation that once a zero partial correlation can
clearly be rejected this should not be doubted in further steps if the conditioning
set is reduced. This principle is supported by Propositions 1 — 3 since the partial
correlation graphs of subprocesses may indeed have less, but not more edges
than the corresponding subgraph of the original graph. Thus, only those zero
partial correlations found in the first step that can be confirmed by the analysis
of the collapsible subprocesses are valid, whereas a similar statement for the
non—zero partial correlations is only possible under the special conditions given
in Proposition 4. The latter therefore allows us to investigate whether some of the
edges which in previous steps have been found to be ambiguous can be deleted.
Secondly, it is important to realise that if, in a stepwise selection, the edges of
the current graph G’ are a superset of those in the true graph G any separation
found in the former will still hold in the latter. Hence we start with the complete
graph and focus on deleting edges in further steps. Thirdly, and related to the
foregoing aspects, expert knowledge on existing and absent associations should
be included whenever possible to improve the selection results and to concentrate

on the unsettled problems.
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In more detail, the model selection we propose proceeds as follows.

1. In the first step, we measure the area below the squared absolute partial
spectral coherencies which is above the 95% confidence band in the complete
model for all pairs of variables and utilise these values to classify all possible

edges according to the following categories:

(I) Edges that clearly have to be included.
(A) Ambiguous edges that possibly have to be included.

(O) Edges that may be omitted.

2. Since false omission of an edge is worse than wrong inclusion of an edge
because it creates separations that might not be reliable, we next examine
the edges in (O) in a second (forward) step using separation properties of
the graph where only edges belonging to category (O) are omitted. Every
edge (a,b) contained in (O) with V'\ cl(a,b) # 0 is reclassified based on the
estimated partial spectral coherency calculated in the saturated model for
Xei(ap)- If cl(a,b) =V we can possibly apply Proposition 4b) to a separation
(A, B,S) with a € A and b € S. We suggest using only separations where
|A U S| is minimal. This procedure is repeated until the results no longer

change.

3. Thereafter, in a third (backward) step, we examine all edges belonging to
the updated (A) proceeding as explained above. If the graph can be reduced

we may possibly find more separations. In particular, if an edge (a,b) is
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reclassified as (O) we get the possibility to reclassify the edges (a,c) and
(b,c), c € V, that are not contained in (I) using a reduced set cl(a, c) and

cl(b, c) respectively. We repeat steps two and three in this case.

The stepwise search finishes when the classifications are stable. We suggest
constructing the final partial correlation graph based on the classification ob-
tained in the last step using distinct edges for the edges in category (I) and (A)
and omitting the edges in category (O). Note however, that stability might not
necessarily be reached. This is due to the fact that in every step there might be
different separations leading to different conditioning sets and the results might
be conflicting depending on these conditioning sets. Clearly, such edges should

be classified as ambiguous and the procedure terminated.

The sensitivity of the resulting graph to the classifications obtained in the
first step is an important issue and should always be examined. Different initial
classifications could be obtained by using different bounds for the area above the
95% confidence band in the first step, other confidence bands or even completely
different measures. One might also start with a preliminary graph containing
only the edges in (I). This usually increases the number of separations and allows
further model checks. However, the results from this analysis have to be treated
with caution as the starting graph is likely to have too few edges. In general,
neither separation nor collapsibility found in too sparse a graph will hold in the

true graph.



Decomposability and selection of graphical models for time series 26

5. APPLICATION TO PHYSIOLOGICAL TIME SERIES

The previous results are now illustrated with a multivariate time series describing
the haemodynamic system of a critically ill patient measured in intensive care.
The data investigated here was collected by a Unix-based clinical information
system at the surgical intensive care unit of the Hospital Dortmund. We consider
time series of the heart rate (HR), arterial mean pressure (APM), pulmonary
arterial mean pressure (PAPM), central venous pressure (C'V P), pulsoxymetry
(Sp0O2) and blood temperature (T’emp). All variables are automatically recorded
at 1-minute time intervals by bedside medical devices. These measurements
provide crucial information on the clinical status of the patient. Overall, 2440

observations measured at subsequent points in time are available for the analysis.

We expect ‘empirical associations’ found by statistical analysis to reflect ‘phys-
iological associations’. The latter mean, in the clinical context, that a change in
one physiological variable affects another physiological variable. Note that the
term physiological association does not distinguish between causal, linear or non—
linear or in some sense directed relations. Therefore, we do not aim at finding
directed associations but apply graphical interaction models based on symmetric
partial correlations. On the one hand, this can be used to investigate whether
well-known physiological associations among the variables are detected and thus
helps evaluating the selection strategy. On the other hand, it gives an impression

of how current medical knowledge is supported by the data.

Figure 4 about here
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Figure 4 shows the squared pairwise partial spectral coherencies between all
variables estimated in the saturated model, that means for every pair the linear
effects of all remaining components have been removed. For HR and PAPM,
HR and CVP, HR and SpO2, HR and Temp, APM and CV P, APM and
Sp02, as well as for SpO2 and Temp the estimate exceeds the approximate 95%
confidence bound only at a few frequencies by a slight amount. We therefore
classify the corresponding edges to belong to category (O). For APM and Temp,
PAPM and SpO2, PAPM and Temp, CV P and Sp02, as well as for C'V P and
Temp the estimate exceeds the bound in a few regions by a rather large amount.
Thus, we classify these edges into category (A). For HR and APM, APM and
PAPM, and PAPM and CV P the estimate is significantly distinct from zero
over most of the range. We therefore classify these edges into category (I), see

Figure 5.

Figure 5 about here

To refine or validate this model we perform a stepwise search as outlined in
the previous section. In the second step, we check the absence of the missing
edges using suitable separations (A4, B, S) of the partial correlation graph shown
in Figure 5, which can be viewed as a summary of all partial spectral coherencies
calculated in the first step. We use these partitions to estimate the partial spectral
coherencies among the components in AU S applying the program ‘Spectrum’ to
estimate the partial spectral coherencies for the complete subgraph corresponding

to XAUS-
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The absence of (Temp,SpO2) can be checked using cl(Temp, SpO2) =
{APM,PAPM,CV P,Temp, SpO2}. We find only minor changes of the es-
timated partial spectral coherency between Temp and SpO2 as compared to
Figure 4. Similarly, the absence of (HR,Temp) and (HR, SpO2) can be val-
idated by estimation of the partial spectral coherencies from the correspond-
ing closures. Proposition 4a) cannot be used to check (HR,PAPM) since
cl(HR,PAPM) = V. Instead, we consider the decomposition (4, B,S) with
A = {HR}, B = {CVP,Temp,SpO2} and S = {APM,PAPM} applying
Proposition 4b). We do not find this edge to be significant as the estimated par-
tial spectral coherency remains small. Repeated application of Proposition 2 to
check (APM,CV P) using A = {APM,CV P,PAPM,Temp}, however, results
in an increase of the estimated partial spectral coherency, see Figure 6. Therefore
this edge becomes ambiguous. This reclassification is confirmed by the fact that
we already noticed an increase of the estimated partial spectral coherency among
APM and CV P before when considering cl(T'emp, SpO2). A further check using

Proposition 4b) validates the absence of (HR,CV P) and (APM, Sp0O2).

Figure 6 about here

In the third step we verify the edges that have been found to be am-
biguous before. We can check (PAPM,Temp), (CV P,Temp), (CV P, Sp02),
(PAPM, SpO2), (APM,Temp) and (APM,CVP) using the subprocess
{APM,PAPM,CV P,Temp, SpO2} and find the estimates of the partial spec-

tral coherencies of T'emp to increase slightly in comparison to the estimates
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obtained from the saturated model for all variables, while the estimate for
PAPM and SpO2 remains about the same. Hence, we do not reclassify
these edges. Note that we apply Proposition 4b) for checking (APM, Temp)
and (APM,CVP) here. Verifying (APM,Temp) using cl(APM,Temp) =
{APM,Temp, HR,CV P,PAPM} we also find this edge to be ambiguous. We
do not get new separations in the third step so that the stepwise search finishes

here.

Overall we have found evidence that, in addition to the results of the first
step, the edge (APM,CV P) should be included in the partial correlation graph
of the haemodynamic system due to a weak association. This agrees with med-
ical knowledge since both APM and CV P measure blood pressure and their

association is not expected to be mediated by the other variables in the analysis.

As stated in § § 4.2, the sensitivity of the previous results on the preliminary
partial correlation graph needs to be addressed. In this example, the classes found
in the first step are well separated with respect to the areas below the squared
estimated partial spectral coherencies. Instead of using a different significance
bound we therefore run the procedure again starting with the graph containing
only the edges in (I) as given above omitting all edges in (A) and (O). We do not
report the details of the analysis as the results essentially support those above.
However, this analysis that starts with a sparser graph does indeed provide some
evidence for edges in (A) being spurious. Discarding CV P and PAPM does not

increase the partial spectral coherencies among {H R, Temp, SpO2}. This can be
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regarded as an indicator for some of the weak partial associations between either
Temp and {PAPM,CV P} or SpO2 and {PAPM,CV P} being spurious since
Temp and SpO2 should be expected to show an association when these mediating
variables are omitted. At least the absence of the latter pair of associations is
additionally supported by medical knowledge: There is no obvious reason why
pulsoximetry SpO2 should be associated with any of the other variables. Omitting
the edges (SpO2, PAPM) and (SpO2,CV P) does not affect any of the earlier
results. We may therefore delete them from the final graph justifying this with

the medical background knowledge.

Figure 7 depicts the final partial correlation graph derived from our stepwise
search strategy. The graph reveals the associations among the different measures
of blood pressures with the association among CV P and PAPM and PAPM
and APM being stronger than among APM and CV P. This agrees with the
fact that CV P and PAPM as well as PAPM and APM are measured very close
by each other, while the distance in the blood circuit between the measurement
of APM and CV P is rather large. Moreover, we see a strong association among
HR and APM, while HR is not associated directly with PAPM and C'V P. This
might be due to the current clinical state of the patient (see Gather et al., 2002).
The weak associations between the blood temperature and all blood pressures

agree with existing medical knowledge.

Figure 7 about here
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6. CONCLUSION

We have derived conditions for decomposition and collapsibility of partial corre-
lation graphs for multivariate time series. The results enable us to restrict the
estimation of the partial spectral coherencies to subprocesses so that problems
arising from missing data or zero restrictions for some of the partial spectral
coherencies can be dealt with. These theoretical findings correspond to those
well-known and important results for conditional independence graphs. Our re-
sults thus underpin the usefulness of the generalisation of graphical models to

dynamic data proposed by Dahlhaus (2000).

There are still some open problems regarding the general applicability of par-
tial correlation graphs to multivariate time series. For model selection strategies
based on stepwise elimination or deviance comparison, as commonly used in case
of independent data, we lack appropriate methods in the time series context or
would require further restrictive assumptions (Dahlhaus & Eichler, 2001). The
results provided here solve the problem of estimation of the partial spectral co-
herencies under specific restrictions on the dependence structure and facilitate a

more refined, though still heuristic, model selection.

As to the medical application considered in § 5, a clinical study (Gather
et al., 2002) provides evidence that distinct clinical states like pulmonary
hypertension, congestive heart failure or septic shock come along with distinct
partial correlation structures. We therefore expect to gain new insights into

the causes of clinical complications and the effects of medical interventions
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by application of graphical interaction models. Reliable strategies for model

selection and model checking as presented here are very valuable in this regard.
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Figure 1: True partial correlation graph for a special VAR(1)-process.
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Figure 2: AR(1)-process: Squared estimated partial spectral coherencies (below the
diagonal) and partial phase spectra (above the diagonal). Some strong partial correla-
tions are evident from the partial spectral coherencies, see (V1,V2), while other partial

spectral coherencies are close to zero, see (V1,V3).



Figure 3: Partial correlation graph for data simulated from a special VAR(1)-

process, one-step selection.
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Figure 4: Squared estimated partial spectral coherencies (below the diagonal) within
the haemodynamic system of one patient. Strong partial correlations are found between

HR and APM, APM and PAPM, as well as between PAPM and CV P.
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Figure 5: Partial correlation graph for the haemodynamic system, one-step selection.
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Figure 6: Estimated partial spectral coherencies (below the diagonal) within APM,

PAPM, CVP and Temp. Here, the partial spectral coherency among APM and CV P

is weakly significant.
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Figure 7: Partial correlation graph for the haemodynamic system derived from appli-

cation of a stepwise search strategy.



