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1 Introduction

Graphical models have proven to be a valuable concept in various fields of multi-
variate data analysis as underpinned by several contributions to this book. How-
ever, the pure definition of conditional independence graphs is not satisfactory
for the representation of two closely related dependence concepts: causal and
dynamic dependence — both sharing for instance the property of being asym-
metric, as opposed to conditional dependence. In graphical models directed edges
symbolize specific sets of conditional independence hypotheses. Thus, without
additional assumptions they neither imply nor assume causal relations or a tem-
poral ordering of the variables. We may even construct examples where due to
latent variables or to a selection process the directions of the edges do not coin-
cide with the flow of time or causality (Lauritzen and Richardson, 2001). There-
fore, extensions and modifications of conditional independence graphs have been
developed. The main approaches applying graphical models for an adequate rep-
resentation of causal relations are due to Spirtes et al. (1993) and Pearl (1995,
2000). Recently, graphical models have also been modified to cope with dy-
namic dependencies among stochastic processes (Dahlhaus, 2000; Eichler, 2000;
Didelez, 2001).

In the following, I want to focus on two aspects: First, the different notions of
causality occurring in the indicated literature are compared. Second, the specific
problems arising in the continuous-time situation are addressed.

2 Granger causality versus intervention causality

The causality graphs introduced by Eichler (2000) are based on dynamic depen-
dencies among the components of multivariate time series which are defined in
terms of Granger causality (Granger, 1969):

Granger causality: Let {Q:} be all the relevant information in the uni-
verse. Then, a subprocess {X;} C {Q:} is causal for another process {Y;} if the
optimal prediction w.r.t. {Y;} is less precise when based on {Q}\{X;} instead
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In other words, only a process which is directly relevant for an optimal pre-
diction is regarded as a cause. Obviously, the assumption of no unmeasured
confounders, and thus the identifiability of Granger causes, is highly question-
able in any real data situation (cf. the example by Dahlhaus and Eichler in this
volume where CO and NO are correlated because both are emitted by cars).
In any given setting with finite information and without background knowledge
on the causal structure, the analysis is instead mostly restricted to associations
between lagged variables. Granger causality nevertheless provides a very intu-
itive concept of dynamic association which can be generalized to a large class of
stochastic processes as addressed below.

In contrast, the causality concept prevailing in the literature on graphical
models or Bayesian networks is usually concerned with the effects of interven-
tions as opposed to the pure observation of a condition. For stochastic processes
an intervention could mean that the values of a process at each point in time
are set to values that have been fixed in advance. We could for instance think
of persons suffering from a chronic disease who have to follow a specific scheme
when taking the prescribed drugs over an indefinite period of time. However, the
definition of a dynamic intervention should also allow for interventions taking
place only at selected points in time instead of all the time, and for interventions
to be conditional on the past (cf. Pearl, 1994). An approach to the analysis
of such sequential plans using graphs has been proposed by Pearl and Robins
(1995). Without going into the technical details, let me formulate an alternative
definition of dynamic causality as follows.

Intervention causality: A process {X:} is causal for {Y;} if an interven-
tion w.r.t. the former affects the prediction of the latter.

Although not explicit in this definition, the identifiability of some causal ef-
fect might require that specific covariate processes have been measured (Pearl
and Robins, 1995; Parner and Arjas, 1999). But in contrast to Granger causality
these do not necessarily include ‘all the information in the universe’. Addition-
ally, in the above definition it does not matter whether the effect of an interven-
tion is due to a direct influence from {X;} to {¥;} or due to an indirect pathway.
Thus, any Granger cause (assuming no unobserved confounding process) is also
a cause w.r.t intervention but not vice versa.

Following the tradition of intervention graphs or influence diagrams (cf. the
contribution of A.P. Dawid to this book), dynamic graphical models could be
extended to take interventions into account for instance by adding intervention
nodes. As for the static situation, this should simplify the derivation of appro-
priate formulae for causal effects of interventions as well as the deduction of
conditions for their identifiability. Note that the effect of an intervention can
be regarded as a causal parameter (Pearl, 2000, p. 39) which is to be estimated
from observational data. This does not necessarily require the actual feasibility
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of an intervention.

3 The continuous—time situation

As noted by R. Dahlhaus and M. Eichler in their contribution to this book, a
drawback of the different graphical models for time series is their sensitivity to
the choice of intervals between the measurements. Larger intervals correspond to
marginalizing over the time in between. One the one hand, this will typically cre-
ate additional correlations due to common causes or mediating events occurring
in the meantime. On the other hand, marginalization might also hide genuine
short—term correlations. One is even led to suppose that the undirected edges in
the TSC or causality graphs indicating instantaneous causality (being less obvi-
ous but also relevant in the PC graphs) are only due either to such meantime
effects or to whole unobserved processes. Not only does this challenge the inter-
pretation in terms of causality — in the sense of Granger or of interventions —
but additionally, the alternative Markov properties which apply to TSC graphs
do not agree with the foregoing explanation of instantaneous causality. It has
been shown that general AMP chain graphs cannot be generated by marginaliz-
ing directed acyclic graphs representing the underlying data generating process
(Richardson, 1998). Yet, it is not clear how else instantaneous causality could
arise.

In addition to the foregoing problems regarding the interpretation of graph-
ical models for time series, it is difficult to follow the advice of choosing the
intervals small enough in order to prevent spurious correlation when the under-
lying process is continuous in time. In this situation one should instead consider
a generalization of the idea of dynamic dependencies inherent in Granger causal-
ity to the continuous—time situation. The basic approach goes back to Schweder
(1970) who introduced the notion of local independence for Markov processes.
Aalen (1987) extended this to stochastic processes that admit a Doob—Meyer
decomposition and Florens and Fougere (1996) showed the analogy to Granger
causality. Local independence reads as follows.

Local independence: A process {Y;} is said to be locally independent of
{X:} given some further information {Z;} if the predictable part, i.e. the com-
pensator AY of {Y;} remains the same regardless of whether it is conditional on
the past FXYZ of all three processes or only on the past FY'% of {Y;} and {Z;}.

Aalen (1987) additionally assumed that the innovations of the involved pro-
cesses are uncorrelated because a notion of independence between processes
would make no sense if they were fed by the same innovations. This assumption
should in practice be carefully checked since it may again be violated by some
unmeasured common causal process. Note that the above definition does not re-
fer to ‘all information in the universe’. Consequently, it does not claim to define
causal relations.

A graphical representation of local independence structures is straightfor-
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ward by representing the components of a multivariate process as vertices and
drawing directed edges for any local dependence whilst omitting the edge when
there is a local independence. The resulting local independence graphs have
been analyzed for the special case of counting processes in Didelez (2001). The
global Markov properties in these graphs can be obtained by the application of
a newly developed separation criterion called d—separation which takes into ac-
count that local independence is asymmetric and that the graphs may be cyclic.
The augmentation of the graphs with intervention nodes for the computation
and identification of causal effects seems to be a promising approach.

While it is often assumed that point processes can be observed in continuous
time by simply registering the time of each event, this rarely seems possible for
other types of stochastic processes which vary steadily in time. As an exam-
ple one might consider the medical time series typically arising in intensive care
online monitoring which are often recorded in intervals of a few seconds. A graph-
ical representation of the dependence structure would have to take into account
that the time between consecutive measurements is always unobserved. Thus,
a class of graphical models generated by marginalizing suitable continuous—time
models over the meantime of the intervals is called for. This should be subject
to future research.
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