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Investigations into the aetiology of common complex
diseases based on observational data should make use
of any opportunity to reduce bias due to unobserved
confounding. In this context, it has become popular to
exploit instrumental variable (IV) methods via
Mendelian randomization but the key to success lies
in finding suitable genetic instruments. Genome-wide
association studies are increasingly yielding large
numbers of biomarkers and the understanding of
the functionality of these variants is continually im-
proving. However, genetic instruments typically ex-
plain only a small proportion of the overall variation
in a given exposure and are therefore loosely regarded
as ‘weak’ instruments. Combining several instruments
intuitively seems like a plausible approach to improv-
ing overall instrument strength. Given the likely avail-
ability of ever more genetic instruments in the
foreseeable future, an investigation into the power
and instrument strength requirements of Mendelian
randomization analyses with multiple instruments, as
proposed by Pierce et al.1, is both relevant and timely.

In a Mendelian randomization study, the typical
target of inference is the effect of an exposure X on
a disease outcome Y in the presence of unmeasured
confounding factors, U, using one or a combination
of several genetic variant(s), G, as an IV. It is often
assumed that X and Y are continuous and that all
relationships are linear with no interactions, as in
Pierce et al.1 (Note that the linear models in
Equations (4) and (6) in Pierce et al.1 are not correct,
as stated: gi should be replaced by xi, as implied in the
surrounding text, and not as written.) The causal par-
ameter of interest is the effect that manipulating X, to
change it by one unit, has on Y—the so-called average
causal effect (ACE)—and happens to coincide with
the coefficient of X in the regression of Y on X and
U under the above model assumptions. The two-stage
least squares (2SLS) IV estimator is commonly used
in this context, as it is asymptotically unbiased for the

ACE under these model assumptions, but, crucially,
this is not necessarily the case in finite samples.

In the work of Pierce et al.,1 simulation studies were
carried out where different strategies for combining
multiple genetic variants into instruments were con-
sidered, and their impact on power to detect a causal
effect of X on Y, based on 2SLS, assessed. The authors
focus on the case of ‘weak’ instruments because of
their relevance to Mendelian randomization applica-
tions. The problem with weak instruments is 2-fold:
not only is there limited power to detect any effect at
all but there can also be ‘weak instrument bias’.
Bound et al.2 noted that any correlation between
G and U, however small, can lead to large inconsis-
tencies in the IV estimate if the true relationship
between G and X is weak and the sample size insuf-
ficiently large to compensate. Even when G is a legit-
imate instrument and no such correlation with U
exists on a population level, sampling variation can
induce an empirical correlation and hence bias in
the IV estimate. The bias is in the direction of
the bias of the ordinary least squares (OLS) estimate
obtained from a regression of Y on X, which is con-
founded by U. The more parameters in the first-stage
regression (of X on G), the greater the opportunity for
any accidental correlation between G and U to affect
the 2SLS estimator—we could call this ‘over-fitting’ of
this first-stage regression, and it can easily arise when
using multiple instruments. The effects of over-fitting
the first-stage regression can be seen clearly in the
reported results of Table 2 of Pierce et al.,1

e.g. where the true allele effect sizes were all equal
but the fitted models allowed them to be distinct. We
can also see that when there is no confounding
between X and Y, over-fitting is actually desirable as
it increases the power, but in this case an IV analysis
is not actually required. In the more relevant case,
when there is unobserved confounding, the IV ana-
lysis is prone to bias, which is larger when there are
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many free parameters (i.e. more instruments) in the
first-stage regression.

These comments highlight the fact that our primary
concern when dealing with ‘weak’ instruments should
be the ‘bias’ of the IV estimator and not the power of
an IV-based test, and indeed this turns out to be of
central importance when interpreting the results in
Pierce et al.1 If the IV estimator is biased, the actual
level of a corresponding statistical test will be larger
than its nominal level and so any comparison of
power between situations with different amounts of
bias is uninformative. This must be kept in mind
when drawing any conclusions about power from
the observations in Pierce et al.1

The above is not a formal definition of weak IVs, nor
do the authors of Pierce et al.1 provide us with such a
definition. It is plausible to relate instrument strength
somehow to the first-stage regression R2 and F statis-
tics,2,3 as R2 is an empirical measure for the variation
explained in the first-stage regression based on a
given data set (adjusted R2 uses the correct degrees
of freedom), and F is a test statistic for the null hy-
pothesis that the IVs G do not predict the exposure X
at all. Although we certainly agree with Bound et al.2

that these should always be reported in any given
analysis, we want to caution against using these
quantities to define instrument strength as they are
affected by sampling variation and do not in them-
selves represent a population quantity. Pierce et al.1

implicitly use this definition in terms of sample quan-
tities, as they ‘keep R2 fixed’ and vary the sample
size and number of parameters in the first-stage re-
gression to obtain different F-values. This involves
adapting the allelic coefficients in every one of the
10 000 repetitions for their simulations, which is
slightly unusual as we tend to regard model param-
eters as fixed, whereas R2 is a sampling statistic and
not a parameter. (Hence, the reported allelic coeffi-
cients in Tables 2 and 3 are presumably averages
over the 10 000 data sets.)

In contrast, Staiger and Yogo4 propose two different
ways of defining weak instruments in terms of their
population behaviour. Accordingly, IVs are weak (i) if
the relative bias of the IV 2SLS estimator in relation
to the ordinary observational estimator exceeds a cer-
tain threshold e.g. 10% or (ii) if the actual level of a
statistical test, using the IVs, with nominal a-level
exceeds a certain threshold, e.g. 15% when a¼ 5%.
These definitions are both expressed in terms of
how wrong, ‘on average’, inference based on the
given IVs is. This depends obviously on the amount
of confounding, and also on the sample size, the
(joint) distribution of the instruments, the true coef-
ficients in the first-stage regression and the true re-
sidual variance of the first-stage regression. For a
univariate exposure, the first-stage F-statistic then
happens to provide a significance test for the null
hypothesis that the IV is ‘too weak’, but the critical
value depends on which of the above two definitions

of ‘weak IV’ we use. With the first definition, i.e. that
the induced worst case relative bias is more than 10%
compared with OLS, the check F5 10 for up to four
IVs in the first-stage regression (and F411 for more
IVs) rejects the ‘weak IV’ hypothesis roughly at a 5%
level, giving rise to the much-quoted rule of thumb.
However, for the alternative definition of an IV being
‘too weak’ in the sense that an IV-based test of the
effect of X on Y with nominal a¼ 5% has an actual
level of more than 15%, then the check of F5 10 is
only valid for a single IV and, crucially, the critical
F-value increases dramatically with the number of
IVs in the first-stage regression and is about 26
when there are 15 IVs.3 This latter phenomenon
seems particularly relevant to the power consider-
ations in Pierce et al.1 Like every statistical test,
these tests for weak IVs can lead to erroneous con-
clusions, so any prior knowledge or external evidence
that can confirm the strength of the IVs is always
useful. We hence emphasize that the F-statistic is
only a ‘test’ for weak instruments and that a small
F-value is hence not a ‘definition’ of a weak instru-
ment as is often implied. In particular, we would sus-
pect that any data-driven choice of the first-stage
regression model if systematically based on R2 and
F, which tend to over-estimate the true explained
variation especially when over-fitted, will re-introduce
bias into the analysis.

The most interesting aspect of the investigations of
Pierce et al.1 is that it appears that the weak instru-
ment bias can be alleviated by combining instruments
and hence reducing the number of parameters to be
estimated in the first-stage regression, without much
loss in power. This is particularly suited to Mendelian
randomization applications, where prior knowledge of
the genetic mechanisms determining how the instru-
ments affect the exposure will often be available.
Methods for combining IVs have a natural interpret-
ation in these settings. For example, a total ‘X-increa-
ser’ score obtained from adding up the values of each
of the separate IVs is simply an allele score, which
assumes that the genetic variants have equal and
additive effects with no interactions on the exposure.
If the equal effects model is implausible, a weighted
score can be used, but this now requires either prior
knowledge about appropriate weights or estimates ob-
tained from a separate data set. Again, we emphasize
that the weights should not, of course, be estimated
from the same data on which the IV analysis is car-
ried out as this would be entirely equivalent to fitting
a first-stage regression model with many parameters
and would re-introduce weak instrument bias via
over-fitting. Another option is to incorporate prior in-
formation about major gene vs polygenic effects by
fitting individual coefficients for the major genes
and combining the polygenes into an allele score
assuming equal weights, as is typically done in gen-
etic analyses. If appropriate, this has the added attrac-
tion of not requiring any specification of the true
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weighting factors: it only requires prior knowledge
about which genes have major effects.

The flip side of the above is that in combining the
genetic instruments in a chosen way, we might make
a mistake, e.g. we might choose the wrong major
genes, or we might assume the weights are equal
when they are not. In principle, such mis-specification
of the first-stage regression model might itself induce
bias regardless of the strength of the IV. From those
four such scenarios that were investigated by Pierce
et al.1 (e.g Table 3 using ‘allele counts’ models for
‘continuum of effects’ and ‘2 major genes þ8 poly-
genes’ models), it seems that if this model is not
grossly wrong, the bias is still negligible while main-
taining competitive levels of power. However, it would
be interesting to see whether a seriously incorrect
first-stage regression model could actually induce
more bias than it aims to prevent. Until further ana-
lyses targeting this specific question are performed,
we feel it is premature to draw general conclusions.

To summarize, Mendelian randomization studies
provide a unique opportunity to deal with suspected
unobserved confounding, as we often have good rea-
sons to believe in the validity of proposed genetic in-
struments. However, we will often have to deal with
the case of many weak instruments, potentially run-
ning the risk of biased estimates. The findings of
Pierce et al.1 suggest that, provided we have good
biological evidence or other prior knowledge inform-
ing a more parsimonious modelling of the first-stage
regression, we should be able to reduce the risk of
weak instrument bias and still retain reasonable
power. In our view, strategies for choosing the
first-stage regression model still require more investi-
gation, especially with regard to the questions of: (i)
to what extent these can be data driven without
re-introducing bias in the absence of reliable prior
knowledge and (ii) how problems induced by mis-
specifications of the first-stage regression model are
balanced out by the resulting model simplifications.

Also, the results so far are all specific to the linear/
no-interactions model. An investigation into the use-
fulness of the proposed first-stage strategies to com-
bine multiple genetic instruments for binary outcome
models is arguably more relevant to Mendelian ran-
domization studies. Finally, we must not forget that
the main source of bias is due to violations of model
assumptions and these should therefore be checked
wherever possible.5
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