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1. Motivation

This paper deals with the question of when and how we can identify the effect of a
sequential decision strategy from the available data and how we can use suitable graphical
models to facilitate this task. To illustrate such sequential decisions we might, for instance,
consider dynamic treatment regimes (cf. Murphy, 2003), where decision rules for how the dosage
level and type should vary with time are specified before the beginning of treatment and these
rules are based on time-varying measurements of subject-specific need.

The problem that I am concerned with arises when the data available to evaluate a strategy
for sequential decisions were not actually collected under this strategy and not even necessarily
under an experimental design, but for instance were collected in an observational study or
under a different strategy. This problem is essentially the same as the one labelled as ‘causal
inference’ (Pearl, 2000, Pearl and Robins, 1995, Dawid et al., 2003), the underlying idea being
that a variable is a ‘cause’ if setting this variable to some specific value (by intervention) changes
the distribution of the response. In order to predict such changes, certain conditions have to
be satisfied regarding the data and how it was collected, as well as the type of intervention and
how these interventions are carried out. As opposed to many causal models that are based on
counterfactual argument, the approach taken here is purely decision theoretic.

Further, the dynamic case is somewhat special and different from for instance the causal
models considered by Pearl (2000). Sequential decisions will typically take the available in-
formation about the past into account, especially the effect of past interventions. The actual
decisions are not known in advance, only the decision rules.

2. Decisions and Interventions

In a dynamic setting, decisions or interventions can take place either at predetermined
points in time or at any time within a certain interval. For simplicity, let us consider the
discrete time situation first. In this case, we consider variables Ay, ..., A7 which are suitable
for intervention, e.g. the administration of a drug, where A; indicates which action is taken
(or treatment received) at time ¢. Further, some covariates Xi,..., X7 might be available,
where we assume that X; is measured before A;, t = 1,...,T, i.e. X; can be used to make a
decision about A;. Note that Xi,..., Xy are meant to contain the awailable information —
this can be more or less information than required to identify a strategy, as shown below. The
final outcome, the effect on which is of interest, is denoted by Y. To simplify notation we use

A = (Ay,..., A7) for the whole vector, A; = (Ai,..., A;) for the past, A* = (A;,..., Ar) for
the future, with analogous notations for the other variables.

The two situations to be contrasted are: (a) The action variables Ay, ..., Ar are ‘under
our control’, i.e. we know the law that gives rise to them (called the interventional regime),
or (b) they are not ‘under our control’. In the latter case they might arise by nature or they
might be controlled by someone else who follows a strategy unknown to us and who might even
use information that is not contained in X; and A, ; when making a decision about A4;. This
will be called the observational regime. In order to formalise and link these two situations we
introduce intervention variables o;, t = 1,...7, which are essentially indicators of whether at



time ¢ a specific strategy s € S is applied or not (cf. Dawid, 2002). Here, S represents the set
of strategies that are to be compared or evaluated. Formally we define

N if no intervention takes place (observational regime)
¢ s if we intervene according to strategy s € S.

Let H; = (/It_l, Et) be the history containing the available information about covariates and
actions before deciding on A;. As o; is a decision variable, any probability statement about
the remaining variables has to be conditional on one of the possible values of 0;. Consequently,
p(A¢|Ht, 0r = o) stands for the (typically unknown) distribution of A; under the observational
regime. In contrast, p(A;|H;,0; = s) describes the interventional regime and typically implies
that A, is equal to some predetermined fixed value a = s(H;), i.e.

1 if a = s(Hy)

p(Ay = alHy, 00 =s) = { 0 otherwise.

However, one might also think of a random strategy s where p(A;|H;, 0y = s) is a non—degenerate
distribution.

3. Conditions for the identifiability

The problem of identifiability can now be posed as to how to infer the post-interventional
distribution p(Y|d = s) from the observational p(Y|G = 0). Note that, for the distribution
p(Y|G = s) to be meaningful and related to a ‘real world’ quantity, it is important that the
strategy s can actually be carried out, i.e. that one can think of interventions that allow to
implement this strategy. In the following, conditions on the interventions will be considered
that ensure identifiability — however, if such interventions cannot actually be carried out it is
obviously impossible to verify such conditions. In general, identifiability can be an impossible
or very difficult task as there is, in principle, no reason why the distribution under intervention
should be in any way related to the distribution without intervention. The intervention could
be of such a kind that all ‘natural’ relations among the variables are altered or destroyed. Also,
it might be the case that some strategies are identifiable but others are not.

The joint distribution of all the variables involved given the strategy o can naturally be
decomposed into the univariate conditional distribution according to the chronological devel-
opment as

T
(1) p(Y, A, X|o) =p(Y|A, X,5) H P(Xe| A1, Xi1,001)p(As| A1, Xy, 51).
t=1
For a strategy to be sensible, we assume that it is decided before seeing the data whether
a strategy is followed or not, i.e. we assume that o, 1L A_t_l, Xi. Note that this does not mean
that the actual value assigned to A; is independent of A; 1, X;, in particular when o, = s. If,
in addition,

(2) Y 1 o|A X and

(3) Xt AL Ot—1 | At—laXt—la 1= 21 s aTa

it is obvious from the factorisation (1) that the distribution p(Y, A, X|6 = s) can be inferred
from p(Y, A, X|g = o), as p(Ay|A; 1, X, 0, = s) is known. Conditions (2) and (3) are sat-

isfied if the observational regime corresponds to sequential randomisation, but this is not a
necessary prerequisite. Further, it can be shown that p(Y|o = s) is identifiable under weaker



conditions (Dawid et al., 2003). In fact, under these weaker conditions we can calculate the
post—interventional distribution as

T
P(Y|5 = 3) = /"'/p(Y|AaXaU = 0) Hp(Xt|At—1aXt—1a6t—1 = 0)
t=1
p(At|Atfla Xy, 00 = s)dArdXy---dA;dX,

where all involved conditional distributions can either be estimateg from the observational data
or are the known (possibly degenerate) distributions p(A;|A;—1, Xt, 0, = s). The above is also
known as the G—formula (Pearl and Robins, 1995).

4. Graphical representation

The aim of a graphical representation is to make it easier to think about and to verify
whether the rather abstract conditions (2) and (3) are satisfied. In fact, these conditional
independencies can be depicted by an influence diagram as in Figure 1 (for the case T' = 2).
Missing directed edges represent specific conditional independencies that can be checked by
applying one of the usual separation criteria for directed acyclic graphs, e.g. moralisation.

Figure 1: An influence diagram for T = 2.

On the variables A, X, Y, Figure 1 is a complete graph. The only restrictions refer to the
intervention variables. There are no directed edges into o; implying that whether or not we
intervene is not affected by past observations — this is true if the strategy is fixed in advance,
as mentioned above. Also, oy is pointing only at A;, implying that whether or not we intervene
affects future variables only through A;, i.e. once the value of A; is known oy carries no further
information about the future variables A*t!, X**! and the response Y. This condition can
be violated, for instance, by what is often called unobserved confounders (Parner and Arjas,
1999). In such a case, the value of oy, observation or intervention, might be informative for
predicting X*! even when A, is given. Directed acyclic graphs, like the one in Figure 1,
can be used to verify the conditions for identifiability by including all available knowledge of
potential unobserved confounders or other possibly relevant variables and the way they affect
the observable variables in the graph. Obviously, this requires sound subject matter knowledge
in order to be reliable. Using graph separation, conditional independencies can then be checked,
in particular the conditions (2) and (3).

5. Generalisations

The above approach to identifying and computing the effect of sequential strategies can
be generalised to other dynamic data situations using suitable graphical representations.

Time series. Let {X;} and {A;}, t € T, be time series with a similar interpretation
as above, i.e. {A4;} has to be suitable for intervention. Instead of a response variable Y the
outcome variable in the time series setting will typically be a ‘later’ observation Y = X, when
contemplating interventions at some (not necessarily successive) points in time t1,...,tx 1. As
this is a discrete time situation it can in principle be reduced to the situation of longitudinal



data as described earlier. However, for time series a more succinct graphical representation of
the dependence structure is available which is based on so—called Granger—causality (Eichler,
2000) and makes use of the repetitive nature of dependencies in stationary time series. For the
corresponding ‘causality graphs’, conditions for identifiability similar to the ones above can be
derived to verify whether identifiability is given (Eichler and Didelez, 2003).

Marked point processes (continuous time). The situation of continuous time is inherently
different as it is not possible anymore to use conditional independence graphs to represent
dependencies among the processes except in very special cases. Instead, a dependence concept
similar to Granger—causality can be used, called local independence. For marked point processes,
local independence means that the intensity of an event of a specific type is independent of the
occurrence of certain prior events. Such local independencies (or dependencies) can be depicted
by local independence graphs (Didelez, 2000). Interventions are again included in the graph as
additional o—nodes and conditions on the independence structure can be checked by applying
the so—called d—separation. However, we have to think carefully about what interventions in a
continuous time marked point process might mean. It requires that we are able to induce an
event at a given time or to prevent its occurence. An alternative approach to the continuous
time situation can be found in Lok (2001).
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RESUME

Cet article traite de la question de savoir quand et comment on peut identifier ’effet d’une
stratégy séquentielle en n’utilisant que les données disponibles. Ceci peut poser un probléme si
les données ont eté collectionnées en utilisant des stratégies différentes ou simplement observées
sans suivre de stratégie. Les conditions necessaires pour l'identification dépendent non seule-
ment de la structure des données mais ausst de la stratégie ce qui est souvent oublié. Les modeéles
graphiques peuvent aider a vérifier si ces conditions sont valables en visualisant la structure des
données en ajoutant des noeuds de decision. Les méthodes graphiques habituelles pour vérifier
les propriétés de séparation peuvent de méme étre utilisées pour ces diagrammes de décisions.



