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Research in Translation

The Problem of Inferring Causality 
in Epidemiology 

The notion of risk is central to 
epidemiological research, both in its 
original context of studying conditions 
thought to be caused by a particular 
factor and, more broadly, in predicting 
the probability of a condition for 
prognostic purposes. For prognostic 
research, all factors associated with 
the outcome are of interest, whether 
they are causal or not. In aetiological 
research, on the other hand, causality 
is meaningful. Here, the focus is 
often on assessing the effect of some 
modifiable exposure on a disease with a 
view to informing health interventions 
at the individual or population level, 
or health advice for particular risk 
groups. For such intervention or advice 
to be effective, it is important to verify 
that the observed association between 
the exposure and disease means that 
the exposure is in fact causal for 
the disease. For example, once the 
relationship between periconceptual 
maternal folate supplementation 
and risk of neural tube defects was 
established [1,2], the United States, 
Canada, and Chile implemented 
mandatory fortification of cereal flour 
and related foods with folic acid and 
reported reductions in neural tube 
defect incidence between 27% and just 
over 50% [3]. However, observational 
research has had several high-profile 
failures when exposures that seemed to 
affect disease risk were later shown to 
be non-causal in follow-up randomised 
controlled trials (RCTs). For instance, 
observational evidence that seemed to 
suggest that vitamin E is protective for 
cardiovascular disease, beta-carotene 
for cancer, and, more recently, 
oestrogen for dementia, has now been 
refuted [4]. Since only candidate 
causes with the strongest observational 

support tend to be followed up in RCTs 
when these are possible, it is likely that 
many more reported observational 
findings are not actually causal [5]. 

Inferring causality from observational 
data is problematic as it is not always 
clear which of two associated variables 
is the cause and which the effect, or 
whether both are common effects 
of a third unobserved variable, or 
confounder (see Glossary). The 
direction of causality can sometimes be 
determined by temporal criteria (e.g., 
the cause must precede the effect) 
or from knowledge of the underlying 
biology. Confounding is more difficult 
to deal with because it is mainly due 
to social, behavioural, or physiological 
factors that are difficult to measure and 
control for. In practice, one can never 
be sure that the relevant confounders 
have been identified and accounted 
for. Besides the fact that RCTs are not 
feasible or ethical for many exposures 
of public health relevance, such as 
toxins, physical activity, or complex 
nutritional regimes, observational 

studies also have some advantages over 
RCTs; for example, the subjects in the 
latter are not always representative 
of the population for which an 
intervention is being considered [6]. 
“Mendelian randomisation” provides 
an alternative way of dealing with the 
problems of observational studies 
[6–9], especially for the case where 
confounding is believed to be present 
but cannot be controlled for because it 
is not fully understood. 

Mendelian Randomisation 

We outline the idea now known as 
“Mendelian randomisation” using 
the example provided by Katan 
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Research in Translation discusses health interventions 
in the context of translation from basic to clinical 
research, or from clinical evidence to practice.

Five Key Papers in the Field 
Chen et al., 2008 [9] A recent application 
of the method that combines information 
from several studies and uses a genetic 
variant as a proxy for an exposure that is 
difficult to measure.

Hernán and Robins, 2006 [8] A recent 
overview of what can and what cannot 
be done in epidemiological studies with 
instrumental variables. 

Davey Smith et al., 2005 [5] A comment 
on the wider picture of where genetic 
epidemiology can contribute to public 
health research. 

Davey Smith and Ebrahim, 2003 [7] The 
first main paper detailing the relevance 
of the method to epidemiological 
research and providing many examples. 

Katan, 1986 [10] This briefly outlines 
the original idea behind the method 
of Mendelian randomisation as it is 
commonly used now. 
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[10] in his early description of the 
concept in 1986, although the first 
implementation of this basic idea in 
an epidemiological setting under the 
flag of “Mendelian randomisation” 
was more recent [11]. Details of the 
derivation of the approach and its 
nomenclature are provided in a recent 
review [12]. 

In the mid-1980s, there was 
considerable debate over the 
hypothesis that low serum cholesterol 
levels might directly increase the risk 
of cancer. Alternative explanations 
for the observed association were 
that cholesterol levels were lowered 
by the presence of latent tumours 
in future cancer patients (reverse 
causation), or that both cancer risk and 
cholesterol levels might be affected 
by confounding factors like diet 
and smoking. The observation that 
individuals with abetalipoproteinaemia, 
and hence negligible levels of serum 
cholesterol, did not seem to be 
predisposed to cancer led Katan to 
the idea of finding a larger group 
of individuals genetically inclined 
towards lower cholesterol levels. The 
apolipoprotein E (ApoE) gene was 
known to affect serum cholesterol, 
the ApoE2 variant being associated 
with lower levels. Katan’s idea was that 
many individuals will carry the ApoE2 
variant and thus will naturally have 
lower cholesterol levels from birth. 
Crucially, since genes are randomly 
assigned during meiosis (which 
gives rise to the name “Mendelian 
randomisation”), these ApoE2 carriers 
will not be systematically different from 
carriers of the other ApoE alleles in 
any other respect, and in consequence 
there should be no confounding. 
Only if low serum cholesterol is really 
causal for the disease should cancer 
patients have more ApoE2 alleles than 
controls. Otherwise the distribution of 
ApoE alleles should be similar in both 
groups. This can be easily checked 
from the observed distributions.

Katan’s reasoning corresponds 
exactly to what is known as an 
instrumental variable method in 
econometrics [13–16]. The genetic 
variant acts as a so-called instrumental 
variable (or instrument) and helps to 
disentangle the confounded causal 
relationship between intermediate 
phenotype and disease. Once this 
theoretical connection had been made, 
epidemiologists were able to learn from 

and adapt the methods that were so 
well known in econometrics [7,17].

The three key assumptions for 
Katan’s idea to work, and hence 
for a genetic variant to qualify as an 
instrumental variable, are illustrated 
graphically in Figure 1 and interpreted 
as follows. 

The genetic variant is unrelated 1. 
to (independent of) the typical 
confounding factors, i.e., the 
graph has no arrow (in either 
direction) connecting ApoE with the 
confounders. 
The genetic variant is (reliably) 2. 
associated with the exposure, i.e., 
there is an arrow connecting ApoE 
to serum cholesterol and we can 
accurately quantify the relationship 
this represents. 
For known exposure status 3. 
(cholesterol level) and known 
confounders (if the confounders 
were observable), i.e., conditional 
on exposure and confounders, the 
genetic variant is independent of 
the outcome, i.e., ApoE does not 
provide any additional information 
for the prediction of cancer once 
these two variables are measured. 
An equivalent way of expressing this, 
which is less precise but perhaps 
more intuitive, is to say that there 
is no direct effect of genotype on 
disease (no single arrow between 
ApoE and cancer) nor any other 
mediated effect other than through 
the exposure of interest (no other 
routes in the graph between ApoE 
and cancer).

Note that these assumptions have 
to be justified from background 
knowledge of the underlying biology. 
Neither the first nor the third 
assumption can be tested statistically 
since they depend on the confounding 
factors, which, by definition, are 
unobserved. The first assumption 
means that you must have reasonable 
belief that your genetic variant is 
unaffected by the sort of confounding 
that might generally be expected of 
such an exposure–disease relationship. 
Fortunately, the very basis of Mendelian 
randomisation rests on the knowledge 
that alleles are randomly assigned 
from parental alleles at meiosis (see 
above), and this implies that, across the 
population, genetic effects are relatively 
robust, although not immune  to 
confounding [7,18]. Furthermore, the 

type of information needed to explore 
this assumption is often available in 
practice, as it is usually well-studied 
genetic variants that are proposed as 
instruments. Assumption 3 demands 
a comprehensive understanding of 
the underlying biological and clinical 
science, and may appropriately be 
considered in a sensitivity analysis. 
Unlike the first and third, the second 
assumption can formally be tested 
using the observed data, and the 
method works better the stronger 
the association between gene and 
exposure.

If the three assumptions seem 
reasonable (i.e., Figure 1 is believable), 
then it can be shown that, as Katan 
originally hypothesised, a simple 
statistical test of association between 
the ApoE genotype and cancer amounts 
to a test for causal effect of cholesterol 
levels on cancer [19]. 

The idea of using a gene as an 
instrument to test for a causal effect 
of an intermediate phenotype on a 
disease has been used for a range 
of other traits, some of which are 
summarised in Table 1 [9,20–28 ]. For 
example, raised plasma fibrinogen 
levels have been associated with an 
elevated risk of coronary heart disease 
(CHD) in large-scale prospective 
studies, prompting suggestions 
that methods to reduce fibrinogen 
levels should be sought [29]. If the 
fibrinogen–CHD relationship were 
causal, then such interventions could 
have considerable clinical and public 
health benefits. However, interventions 
to lower plasma fibrinogen levels would 
not be warranted if the association was 
explained by confounding or reverse 
causation. Doubts about a causal link 
between fibrinogen and CHD have 

doi:10.1371/journal.pmed.0050177.g001 

Figure 1. The ApoE Genotype as an 
Instrumental Variable in a Mendelian 
Randomisation Application
The arrows can be thought of as representing 
causal relationships, but this is not what 
matters here. What is essential is the 
absence of an arrow between ApoE and the 
confounders and between ApoE and cancer, 
as detailed in the three key assumptions in 
the text.
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been raised by evidence that the 
association is considerably attenuated 
by adjustment for smoking, body mass 
index, and plasma apolipoprotein B/
A1 ratio [20], and that there are many 
known correlates of fibrinogen, only 
some of which are typically measured 
and adjusted for in individual studies 
[30]. Furthermore, bezafibrate was 
found to reduce plasma fibrinogen in 
randomised controlled trials, but it did 
not have a greater effect on CHD risk 
than could already be explained by its 
cholesterol-lowering effect [31]. 

Additional light can be cast on 
this relationship from relevant 
genetic studies. A recent large meta-
analysis of genetic association studies 
of fibrinogen promoter region 
polymorphisms (G-455àA and 
C-148àT) showed that there was a 
mean increase in fibrinogen of 0.12 
g/l (95% confidence interval [CI] 
0.09 to 0.14) per copy of the A or T 
allele. However, these same alleles 
were not associated with CHD risk: the 
odds ratio per allele was 0.98 (95% 

CI 0.92 to 1.04) [21]. Since the 95% 
confidence interval  includes the null 
hypothesis value of 1, we cannot reject 
the null hypothesis at the 5% level and 
hence conclude that the data provide 
little or no evidence for a causal effect 
of fibrinogen on CHD. This could 
be due to random error or lack of 
power of the statistical test, which is 
a problem with genetic association 
studies when relatively small effects 
are being sought. The findings are 
also consistent with the hypothesis that 
the associations shown previously in 
observational studies are partially or 
wholly explained by reverse causation 
or confounding. Of course, as with any 
test, the fact that an exposure appears 
to be non-causal does not necessarily 
mean that it is not clinically useful. 
Clearly, it would be dangerous to stop 
investigating the role of fibrinogen in 
CHD risk because of such an outcome. 
What is implied, however, is that more 
investigation is required before making 
any great investment in intervening on 
fibrinogen levels.

Mendelian randomisation can 
also be applied when the exposure 
of interest is a modifiable behaviour 
rather than an intermediate phenotype. 
For example, Chen et al. [9] consider 
the causal effect of alcohol intake on 
blood pressure. An RCT would be 
problematic here, and measurement 
of alcohol intake is prone to error. 
Hence, observational data have to 
be considered in a setting where 
the causal relationship of interest is 
known to be heavily confounded. In 
some populations, a particular variant 
(*2) of the ALDH2 gene is quite 
common. The *2 variant is associated 
with accumulation of acetaldehyde, 
and therefore unpleasant symptoms, 
after drinking alcohol. Carriers 
of this variant tend to limit their 
alcohol consumption, and alleles at 
the ALDH2 locus can hence be used 
as a surrogate or proxy for alcohol 
intake [9]. Based on this assumption, 
a Mendelian randomisation meta-
analysis approach, combining evidence 
from several studies, indicated that 

Table 1. Examples of Mendelian Randomisation Studies

Disease or Outcome Exposure or 
Phenotype of Interest

Genetic Variant 
(Instrument) 

Findings Reference(s)

Coronary heart disease Fibrinogen Beta-fibrinogen G-455àA  

and C-148àT polymorphisms

Evidence from these MR studies would suggest that 

reported observational plasma fibrinogen–CHD 

associations are explained by confounding or reverse 

causation. 

[20,21] 

Stroke Homocysteine MTHFR C677T polymorphism MR evidence is consistent with a causal relation between 

homocysteine concentration and stroke.

[22]

Carotid intima media 

thickness 

CRP CRP gene (haplotypes  

derived from 5 SNPs)

MR evidence from this study does not support a causal  

role for CRP in the development of a thickened intima 

media (and potentially later CHD).

[23]

Myocardial infarction CRP CRP gene +1444 C>T 

polymorphism

MR evidence from this study does not support a causal  

role for CRP in non-fatal myocardial infarction.

[24]

Metabolic phenotypes CRP CRP gene +1444 C>T 

polymorphism

CRP has been associated with metabolic phenotypes in 

observational studies, but MR evidence from this study 

does not support a causal relationship between CRP  

levels and any of the metabolic phenotypes studied. 

[25]

Blood pressure and 

hypertension

CRP CRP gene 1059G/C 

polymorphism

Evidence from this study does not support a causal 

relationship between CRP levels and blood pressure or 

hypertension.

[26]

Blood pressure Alcohol intake ALDH2*2 allele MR evidence supports the hypothesis that (even 

modest) alcohol intake increases blood pressure.

[9]

Type 2 diabetes MIF MIF gene (4 SNPs) MR evidence supports a causal role for MIF in the 

development of T2D in women.

[27]

Fat mass Maternal BMI FTO gene rs9939609 

polymorphism

MR evidence does not support the hypothesis that 

maternal BMI during pregnancy affects fat mass in  

children aged 9–11 years.

[34]

Physical function in 65- to 

80-year-olds

IL-18 Four IL-18 gene 

polymorphisms

MR evidence supports the hypothesis that high IL-18  

levels are a cause rather than a consequence of disability  

in the elderly.

[28]

This table gives a range of examples that illustrate how Mendelian randomisation is used in practice. It is not intended to give a complete and balanced overview of the area, however, as 
there are many more studies that are not referred to here.
BMI, body mass index; CRP, C-reactive protein; IL, interleukin; MIF, macrophage migration inhibitory factor; MR, Mendelian randomisation; SNP, single nucleotide polymorphisms; T2D, 
type 2 diabetes.
doi:10.1371/journal.pmed.0050177.t001
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previous observational evidence on the 
beneficial effects of moderate drinking 
on blood pressure were possibly 
misleading. Exploring biological 
complexity is another important 
application of the method, although 
we have not focused on this aspect 
here. Li et al. [32] use a Mendelian 
randomisation approach to infer 
parts of biological causal pathways, for 
example. 

Problems and Limitations 

The limitations of Mendelian 
randomisation fall into two main 
categories. Firstly, the key assumptions 
for a genotype to be an instrument 
(see above) may not be plausible, in 
which case any inference about the 
causal effect will typically be biased. 
Such limitations include the presence 
of linkage disequilibrium, genetic 
heterogeneity, pleiotropy, population 
stratification, canalisation, or lack of 
knowledge about the confounding 
factors. These limitations have received 
a lot of attention in the literature 
[6,7,33]. However, graphs can be used 
as a visual check, and some apparent 
violations may not actually be problems 
in practice [19]. 

For example, Figure 2 addresses the 
case where the chosen instrument, 
Gene1, is in linkage disequilibrium with 
another gene, Gene2, which has not 
been observed. Here, Gene2 directly 
affects the disease level or risk, and 
hence Gene1 is not an instrument 

due to violation of the third key 
assumption. However, if Gene2 only 
affects the disease via its effect on the 
same intermediate exposure, as shown 
in Figure 3, there is no such violation 
and Gene1 can be used as an instrument 
in a Mendelian randomisation analysis. 
Note that Gene1 would also qualify as 
an instrument if its association with 
the exposure was only via its association 
with Gene2 (Figure 4). Hence, it does 
not really matter whether Gene1 or 
Gene2 is the causal variant for the 
exposure when they are in linkage 
disequilibrium, as either one qualifies 
as an instrumental variable in this case. 

A similar check for violations can 
be applied to the situation described 
in Lawlor et al. [34], where the 
hypothesised causal effect of maternal 
adiposity on offspring adiposity is 
investigated using maternal FTO 
genotype as an instrument. The 
reason that one must also adjust for 
offspring FTO genotype in the relevant 
regression in order to perform a 
Mendelian randomisation analysis 
can be illustrated quite simply by the 
graph in Figure 5. Without adjusting 
for (conditioning on) offspring FTO, 
key assumption 3 would be violated 
due to the existence of an alternative 
path to the outcome via this genotype. 
Note that this situation is specific to 
the graph in Figure 5, which assumes 
that there is no other confounder of 
offspring FTO and offspring adiposity 
(such as paternal FTO).

If the three key assumptions of an 
instrumental variable are satisfied 
by the genetic variant, testing for a 
causal effect of phenotype on disease 
by testing for an association between 
genotype and disease is straightforward 
for most practical purposes. Any 
statistical test that is appropriate for 
the variables being considered will 
suffice. However, calculation of the 
magnitude of the causal effect requires 
additional strong assumptions, such 
as linearity of all relationships (e.g., 
constant increase of disease with 
exposure) and no interactions. If these 
assumptions are satisfied, we can obtain 
an estimate of the causal effect from 
a mathematically simple combination 
of the observed genotype–disease and 
genotype–exposure associations [13]. 
The second class of limitations of 
Mendelian randomisation concerns the 
validity of such additional assumptions. 
These limitations have not generated 

so much discussion to date, although 
in many observational studies the 
outcome is a binary variable, and, 
under the mathematical models that 
are typically applied—e.g., logistic 
or probit regression—conventional 
linearity is not satisfied [19]. In 
consequence, the estimate that is 
valid in the all-linear case should not 
really be applied to binary outcome 
data, although it has sometimes been 
advocated [17,26]. Generalisations of 
the instrumental variable method to 
the non-linear case can be found in 
the literature [8,15,35–39], but are 
typically aimed at very different kinds 
of applications. Their usefulness in the 
context of Mendelian randomisation 
has yet to be investigated. It is, perhaps, 
important to stress that these extra 
distributional assumptions are only an 
issue for estimation of the magnitude 
of the causal effect and not for testing 
for the presence of such an effect.

The Future for Mendelian 
Randomisation 

A Mendelian randomisation analysis 
does not aim to identify genetic factors 
that are causal for disease risk in order 
to target individuals on the basis of 
their genotype. On the contrary, the 
focus is on the causal association 
between an exposure and a disease 
with a view to informing the potential 
impact of non-genetic interventions 
on that exposure. To that end, such 
analysis exploits a well-studied genetic 

doi:10.1371/journal.pmed.0050177.g002

Figure 2. A Mendelian Randomisation 
Study Where the Chosen Instrument Is 
in Linkage Disequilibrium with a Variant 
Associated With, or Causal For, the Disease
Note that the direction of the arrow depicting 
the statistical association between the two 
genes is interchangeable. 

doi:10.1371/journal.pmed.0050177.g003

Figure 3. A Mendelian Randomisation 
Study Where the Chosen Instrument Is in 
Linkage Disequilibrium with a Variant That 
Is Also Causal for the Intermediate Exposure

doi:10.1371/journal.pmed.0050177.g004 

Figure 4. A Mendelian Randomisation 
Study Where the Chosen Instrument Is 
Not Directly Causal for the Exposure, But 
Is in Linkage Disequilibrium with Another 
Variant That Is

doi:10.1371/journal.pmed.0050177.g005

Figure 5. Maternal FTO Only Qualifies as an 
Instrument Conditional On Offspring FTO
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factor for its known relationship with 
the exposure.

In order to widen the applicability of 
the approach, more general methods 
for the common, but statistically non-
standard, case with a binary disease 
outcome need to be developed. 
In particular, the relevance to 
observational epidemiology of related 
methods in other areas, especially in 
terms of the particular assumptions 
required, is currently being 
investigated. We should also stress the 
importance of obtaining good estimates 
from genetic association studies, in 
particular ensuring sufficiently large 
sample sizes with adequate power to 
detect the typically modest effects one 
might expect for the determinants 
of common multifactorial diseases 
[6,20,40]. The need to formally 
combine information from different 
sources, such as the large biobanks that 
are currently being set up worldwide, is 
also essential [41].

Mendelian randomisation has 
received its fair share of criticism 
(e.g., [42]). One objection is that 
good genetic instruments are not easy 
to find, but recent rapid advances in 
genetic epidemiology are addressing 
this issue [5]. Most criticisms concern 
the violations of the key assumptions 
implicit in Figure 1. Confounding of 
the genotype–disease relationship is 
one such violation that has received 
some attention. However, it has 
recently been re-emphasised that this 
violation may not be as serious as may 
at first appear because, as outlined 
above, Mendelian randomisation 
analyses are fundamentally less 
susceptible to confounding than 
conventional epidemiology analyses 
[18]. 

Summary 

It is often unavoidable (and sometimes 
desirable) to use observational data 
to infer causality, but it may then be 
difficult to disentangle causation from 
association, especially in the presence 
of confounding. We would argue that 
some of the confusion and misleading 
interpretations of results from 
observational studies are partly due to 
the lack of a clear formal approach to 
distinguish between association and 
causation. Causal terminology is often 
used loosely in the medical literature. 
It is intended to convey more than a 
simple association between potential 

risk factors and their effects, but this 
is rarely made explicit. More formal 
approaches are based on the idea of 
a hypothetical intervention [43,44], 
which seems particularly suited to 
the present context where we have 
potential health interventions in mind. 
These formal approaches highlight the 
usefulness of Mendelian randomisation 
studies for inferring causality and 
enable precise specification of the key 
assumptions (as depicted in Figure 1) 
necessary for the method to be valid.

Given the tendency of high-profile 
findings to persist in the literature, 
and influence public health and 
clinical policy, long after they have 
been formally refuted by RCT analyses 
[4], and given the expense and the 
scientific and ethical constraints of 
RCTs, it is fortunate that advances 
in biology, biotechnology, and 
epidemiology have provided us with 
an alternative tool, in the shape of 
Mendelian randomisation, that can 
help us to formally assess causality 
based on observational data. But 
the approach demands a sound 
understanding both of the underlying 
biomedicine and of the statistical 

assumptions invoked in its application. 
If it is used wisely, Mendelian 
randomisation could make a major 
contribution to our understanding 
of the aetiological architecture of 
complex diseases; but if it is used 
unthinkingly, it could sow seeds of 
confusion and set back progress 
in bioscience. This short article is 
aimed at encouraging the former and 
avoiding the latter. ◼
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change in Y caused by a unit change in 
X is constant for all values or levels of X. 
Any departure from this criterion is a non-
linear relationship.
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