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Mendelian randomization as an instrumental
variable approach to causal inference

Vanessa Didelez Departments of Statistical Science, University College London, UK and
Nuala Sheehan Departments of Health Sciences and Genetics, University of Leicester, UK

In epidemiological research, the causal effect of a modifiable phenotype or exposure on a disease is often
of public health interest. Randomized controlled trials to investigate this effect are not always possible and
inferences based on observational data can be confounded. However, if we know of a gene closely linked
to the phenotype without direct effect on the disease, it can often be reasonably assumed that the gene
is not itself associated with any confounding factors — a phenomenon called Mendelian randomization.
These properties define an instrumental variable and allow estimation of the causal effect, despite the
confounding, under certain model restrictions. In this paper, we present a formal framework for causal
inference based on Mendelian randomization and suggest using directed acyclic graphs to check model
assumptions by visual inspection. This framework allows us to address limitations of the Mendelian
randomization technique that have often been overlooked in the medical literature.

1 Introduction

Inferring causation from observed associations is often a problem with epidemiologi-
cal data as it is not always clear which of two variables is the cause, which the effect,
or whether both are common effects of a third unobserved variable. In the case of
experimental data, causal inference is facilitated either by using randomization or exper-
imental control. By randomly allocating levels of ‘treatment’ to ‘experimental units’, the
randomized experiment of Fisher! renders reverse causation and confounding highly
unlikely. In a controlled experiment, causality can be inferred by the experimental set-
ting of all other variables to constant values although Fisher? argued that this is inferior
to randomization as it is logically impossible to know that ‘all other variables” have been
accounted for. In many biological settings, it is not possible to randomly assign values
of a hypothesized ‘cause’ to experimental units for ethical, financial or practical rea-
sons. In epidemiological applications, for example, randomized controlled trials (RCTs)
to evaluate the effects of exposures such as smoking, alcohol consumption, physical
activity and complex nutritional regimes are unlikely to be carried out. However, when
randomization is possible, the number of spurious causal associations reported from
conventional observational epidemiological studies that have failed to be replicated in
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large-scale follow-up RCTs, such as the association between beta-carotere and smoking-
related cancers®*, for example, is concerning. One of the main reasons for such spurious
findings is confounding whereby an exposure is associated with a range of other factors
affecting disease risk, like socioeconomic position or behavioural choices. Controlling
for confounding is problematic as one can never really know what the relevant con-
founders are (cf. Fisher’s argument above). Furthermore, accurate measurements of
typical confounders can be difficult to obtain.

Mendelian randomization has been proposed as a method to test for, or estimate, the
causal effect of an exposure or phenotype on a disease when confounding is believed
to be likely and not fully understood.>® It exploits the idea that the genotype only
affects the disease status indirectly and is assigned randomly (given the parents’ genes) at
meiosis, independently of the possible confounding factors. It is well known in the econo-
metrics and causal literature,” = and slowly being recognized in the epidemiological
literature'®~1? that these properties define an instrumental variable (IV). Our claim here
is that they are minimal conditions in the sense that unique identification of the causal
effect of the phenotype on the disease status is only possible in the presence of addi-
tional fairly strong assumptions. This has often been overlooked in the medical literature.
Additional assumptions can take the form of linearity and additivity assumptions, as are
typically assumed in econometrics applications, or assumptions about the compliance
behaviour of subjects under study, as are often made in the context of randomized trials
with incomplete compliance.® Without such assumptions it is only possible to compute
bounds on the causal effect,’3~1 typically when all relevant variables are binary.

We begin with a brief description of Mendelian randomization before introducing
the causal concepts required to establish the role of IVs. We will then show how an IV
can be used to test for and estimate the causal effect and conclude with a discussion of
problems and open questions.

2 Mendelian randomization

The term Mendelian randomization, as we use it here, derives from an idea put forth by
Katan.'® In the mid-1980s, there was much debate over the direction of an association
between low serum cholesterol levels and cancer, both in observational studies and in
the early trials on lowering cholesterol. The hypothesis was that low serum cholesterol
increases risk of cancer but it was also possible that either the presence of hidden tumours
induces a lowering of cholesterol in future cancer patients or other factors such as diet
and smoking affect both cholesterol levels and cancer risk. The observation that people
with the rare genetic disease abetalipoproteinaemia, resulting in extremely low serum
cholesterol levels, do not display a tendency to cause premature cancer led to the idea
that identification of a larger group of individuals genetically predisposed to having low
cholesterol levels might help to resolve the issue. The apolipoprotein E (APOE) gene was
known to be associated with serum cholesterol levels. The E2 allele is associated with
lower levels than the other two alleles, E3 and E4, so E2 carriers should have relatively
low levels of serum cholesterol and, crucially, should be similar to E3 and E4 carriers in
socioeconomic position, lifestyle and all other respects. Since lower cholesterol levels in
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E2 carriers are present from birth, Katan reasoned that a prospective study is unnecessary
and a simple comparison of APOE genotypes in cancer patients and controls should
suffice to resolve the causal dilemma. If low serum cholesterol level is really a risk factor
for cancer, then patients should have more E2 alleles and controls should have more
E3 and E4 alleles. Otherwise, APOE alleles should be equally distributed across both
groups.

In short, the idea is to test the hypothesis of a causal relation between serum cholesterol
levels and cancer by studying the relationship between cancer and a genetic determinant
of serum cholesterol. The former association is affected by confounding, the latter is
not since alleles are assigned at random conditionally on the parents’ alleles. Causality
can be inferred because we are more or less back in the world of Fisher’s randomized
experiment although the analogy with RCTs is much more approximate in population-
based genetic association studies than it is in parent-offspring designs, for instance.’
Unlike genetic epidemiology, the aim in a Mendelian randomization analysis is not
to identify groups of individuals at risk on the basis of their genotype but to study
the genotype because it mimics the effect of some exposure of interest. While Katan’s
original idea was centred around hypothesis testing to confirm or disprove causality,
the method is now also applied to estimate the size of the effect of the phenotype on
the disease together with a measure of its uncertainty!” and, indeed, to compare this
estimate with that obtained from observational studies in order to assess the extent to
which the observational studies have controlled for confounding. Katan’s idea was never
actually implemented but the subsequent statin trials on the effects of high-cholesterol
levels on coronary heart disease (CHD) risk, disproved the original hypothesis.'$"

3 Causal concepts and terminology

Accounts of Mendelian randomization feature frequent use of causal vocabulary to
express something that is more than association between genotypes, intermediate phe-
notypes and disease. While this is common practice in the medical literature where
underlying knowledge about the biology of the problem may indeed allow one to
deduce the direction of an observed association and where ‘causal pathways’ for dis-
ease are familiar concepts, it is important for our purposes that we make a formal
distinction between association and causation.

3.1 Interventions

As elsewhere in the literature, we regard causal inference to be about predicting
the effect of interventions in a given system. For the applications we are considering, this
would typically constitute a public health intervention such as adding folate to flour,
vitamin E to milk or giving advice on diet, and so on. There are many other notions of
causality including, for instance, its use in a courtroom for retrospective assignment of
guilt, but we will not consider those here.

Let X be the cause under investigation, for example, cholesterol or homocysteine level,
and Y the response, that is, the disease status, such as cancer or coronary heart disease.
By intervening on X, we mean that we can set X (or more generally its distribution)
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to any value we choose without affecting the distributions of the other variables in
the system, other than through the resulting changes in X. This is clearly an idealistic
situation and not always justified for the examples of public health interventions given
above. For example, increasing dietary folate will not determine a specific homocysteine
level (see Davey Smith and Ebrahim® for a discussion of this example) which is why
we need results from a controlled randomized trial on the effect of adding folate to
the diet to inform the intervention. However, a causal analysis exploiting Mendelian
randomization can be used to generate hypotheses that can afterwards be investigated
by controlled randomized trials where applicable. Moreover, if a phenotype is found to
be causal in the above sense, different ways of intervening on this phenotype can then be
explored.

3.2 Causal effect

The causal effect is a function of the distributions of Y under different interventions
in X denoted as p(y|do(X = x)) by Pearl.” It is well known that this is not necessarily
equal to the usual conditional distribution p(y|X = x) which just describes a statistical
dependence.”?! The different notations are reflecting the common phrase ‘correlation
is not causation’. (In the Appendix we show, for example, that E(Y|do(X = x)) is not
the same as E(Y|X = x) in a linear model with confounding.)

We define the (average) causal effect (ACE) as the difference in expectations under
different settings of X:

ACE(x1,x2) = E(Y|do(X = x1)) — E(Y|do(X = x3)) (1)

where x; is typically some baseline value. In particular, X is regarded as causal for Y if the
ACE (Equation (1)) is non-zero for some values x1, x,. If X is binary, the unique ACE is
given by E(Y|do(X = 1)) — E(Y|do(X = 0)). If Y is continuous, a popular assumption
is that the causal dependence of Y on X is linear (possibly after suitable transforma-
tions), that is E(Y|do(X = x)) = « + Bx. In this case, the ACE is B(x1 — x2) and can
be simply summarized by B. (See Section 6.1 for more discussion on the linear case.)
In the cases of more than two categories and/or non-linear dependence, the ACE is not
necessarily summarized by a single parameter and one may want to choose a different
causal parameter altogether (Section 6.3). In many applications it makes sense to also
condition on covariates in Equation (1) in order to investigate the causal effect within
specific subgroups, for example, age groups or people with specific medical histories.

3.3 Identifiability

A causal parameter is identifiable if it is unique given the distribution of the observable
variables. Mathematically, this amounts to being able to express the parameter in terms
that do not involve the intervention (i.e., the ‘do’ operation) by using ‘observational’
terms only. As noted above, p(y|do(X = x)) is not necessarily the same as p(y|X =
x) due to confounding, for example. Hence we cannot easily estimate parameters of
p(yldo(X = x)) from observations that represent p(y|X = x). In the rare case of known
confounders, it can be shown that the intervention distribution can be re-expressed in
observational terms and can hence be estimated from the observed data by adjusting
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for these confounders; graphical rules can be used to determine the variables to adjust
for.2=22 The IV technique based on Mendelian randomization allows a different way
of identifying causal parameters when the confounders are unobservable.

4 Instrumental variables

We now define the core conditions that characterize an instrumental variable (IV). These
properties have been given in many different forms. Our terminology and notation
closely follow Greenland'® and Dawid.?® Other authors use counterfactual variables®!3
or linear structural equations.”?* We express these properties as conditional indepen-
dence statements where A_L B|C means ‘A is conditionally independent of B given C’. On
their own, they do not allow identification of the ACE as we will discuss more fully later.
For now, we just present these conditions together with a graphical way of depicting and
checking the relevant conditional independencies.

4.1 Core conditions

Let X and Y be defined as above with the causal effect of X on Y being of pri-
mary interest. Furthermore, let G be the variable that we want to use as the instrument
(the genotype in our case) and let U be an unobservable variable that will represent
the confounding between X and Y. The ‘core conditions’ that G has to satisfy are the
following:

1) GLU, that is, G must be (marginally) independent of the confounding between X
and Y;

2) G X, that is, G must not be (marginally) independent of X;

3) YLG | (X,U), that is, conditionally on X and the confounder U, the instrument
and the response are independent.

These assumptions cannot easily be tested and have to be justified on the basis of subject
matter or background knowledge. This is because U, by definition, is not observable:
if it were, we could adjust for it and would not need any instrument to identify the
effect of X on Y. Furthermore, the above assumptions do not imply testable conditional
independencies regarding the instrument G. In particular they do not imply that G is
independent of Y, either marginally or conditionally on X alone.

4.2 Graphical representation

Graphical models based on directed acyclic graphs (DAGs) can be used to represent
conditional independencies amongst a set of joint variables in the following way. Every
node of the graph represents a variable and these can be linked by directed edges which
we represent as arrows (—>). If a —> b we say that a is a parent of b and b is a child
of a.If a —> --- —> b then a is an ancestor of b and b is a descendant of a. A cycle
occurs when there exists an unbroken sequence of directed edges leading from a back to
itself. DAGs have no such cycles. All the conditional independencies represented in the
graph can be derived from the Markov properties of the graph by which every node is

independent of all its non-descendants given its parents.>2¢
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Figure 1 DAG representing the core conditions for an instrument.

Figure 1 shows the unique DAG involving G,X,Y and U that satisfies the core
conditions 1)-3) of Section 4.1. From the graph, we have that GLU because G and
U are non-descendants of each other (and their parent sets are empty). Likewise, G/ X
because X is a descendant of G, and YL G|(X, U) because (X, U) are the parents of Y
and G is a non-descendant of Y. The conditional independence restrictions imposed by
the graph in Figure 1 are equivalent to a factorization of the joint density in the following
way:

Py, x,u,8) = p(y|u, x)p(x|u, g)p(u)p(g) (2)
From this it can be seen (by integrating out y and conditioning on x) that G/ U|X, for

instance. Similarly, by integrating out x and conditioning on y, we have that G U|Y,
or formally

pap@) Y POl )p(xlu,g) — _ p)p(Q)p(ylus g)
2 g P@P(Q) 2o, b, )p(x|u, &) P()

p(g,uly) = # p(gly)p(uly)

even though marginally p(g, ) = p(g)p(u). This is the so-called selection effect whereby
two variables such as G and U, which are marginally independent, may become depen-
dent once we condition on a common descendant. The selection effect is particularly
relevant to case—control data when everything is conditional on the outcome Y. In graph-
ical terms, a moral edge is induced between two variables that have a common child when
conditioning on this child or a descendant thereof (Cowell et al. ?°, for example). Here, as
G and U have a common child X, and the variable we condition on, Y, is a descendant of
X, such a moral edge is required to represent the case—control situation (Figure 2). Partic-
ular consideration will therefore be given to the suitability of Mendelian randomization
for case—control data.

Note that DAGs only represent conditional dependencies and independencies: they
are not causal in themselves despite the arrow suggesting a ‘direction’ of dependence.
We say that the DAG has a causal interpretation with respect to the relationship between
X and Y, or, more specifically, the DAG is causal with respect to X, if we believe that
an intervention in X does not affect any of the other factors in the joint distribution of
Equation (2)°, that is,

p(y,u, gldo(X = x0)) = p(ylu, x0)p(u)p(g) 3)

U
G X )

Figure 2 Conditioning on the outcome Y possibly induces an association between G and U.
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Graphically, the intervention corresponds to removing all the arrows leading into X from
the graph in Figure 1°. Note that the validity of the assumption about the intervention
that allows Equation (3) depends on the variables included in the graph and the actual
kind of intervention being contemplated. After all, why should the conditional distri-
butions of the remaining variables remain unchanged, in general, if a potentially very
different situation is created by intervening? For this to be plausible, the graph typically
needs to be augmented by additional variables that might be relevant and U specified
in more detail in order to represent what is thought to be the data generating process
based on subject matter knowledge. An example of this is given in the next subsection
and several more in Section 7.

4.3 G-X association

Core condition 2) states that G and X need to be associated. The stronger this associ-
ation the ‘better’ G as an instrument providing more information on the causal effect of
X on Y in the sense of small standard errors and narrow confidence intervals; this is well
known for the linear case discussed in Section 6.1. In the extreme case where G almost
fully determines X, knowing that G is independent of U means that X cannot depend
much on U and thus confounding is low. Martens et al.!* discuss the functional relation
between strength of instrument and amount of confounding for the linear case, and
show that it is impossible to find a strong instrument when the amount of confounding
is high. In practice, the requirement that G and X be strongly associated may also pose a
problem as we are limited by what is known from genetic studies and many phenotypes
of interest may not have a strong, or well understood, genetic component.

It is important to note that for G and X to be associated, the instrument G does
not need to be causal for X, that is, the arrow G — X in Figure 1 is not representing
a causal relation. (See also Hernan and Robins'2.) The association could instead be
due to mediation or via another unobserved variable that affects both G and X. This
is illustrated in the graph of Figure 3 where we consider two genotypes, G| and G3,
which might be related by linkage disequilibrium (cf. also Section 7). The conditional
independencies encoded by this graph are

(G1,G) LU, XLGi|(G,U), YL(Gy,G)I(X,U)

where the first and second conditional independencies together imply X 1L.G1|G»%’. The
corresponding factorization of the density is given by

Py, x,u,81,82) = p(ylx, wW)p(x|u, £2)p(g11g2)p(g2)p (1)

NN

Figure 3 An alternative formulation to the IV conditions.
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If we believe that we can intervene in X without affecting anything else, we have

p(y,u,81,821do(X = x0)) = p(ylxo, w)p(g11g2)p(g2)p(u) (4)

Now, assuming that only Gy, not Gy, is observed, the joint distribution of the remaining
variables is

p(y’ X, U, gl) = P(Y|x, M)P(xWa gl)P(gl)P(M)

This is the same as the factorization in Equation (2) and equivalent to assuming our core
conditions 1)-3) with only Gy as IV. It also yields the same intervention distribution as
before

p(y,u, g1|ldo(X = x0)) = p(y|xo, w)p(g)p(u)

which is alternatively obtained by integrating out g in Equation (4). For our purposes
therefore, we do not have to find the ‘right’ gene as it does not matter how the association
between X and the genotype comes about. Hence, without loss of generality, we will
assume the situation depicted in Figure 1 and described algebraically in Equation (2),
and in Equation (3) for the intervention case. However, as mentioned above, the stronger
the G — X association the better the instrument.

5 Testing for zero causal effect

Assuming that the core conditions 1)-3) of Section 4.1 are satisfied, let us first consider
the situation where we just want to know whether there is a causal link from a phenotype
X to a disease Y without quantifying it. In this section, we investigate whether a test
for dependence between X and Y can be replaced by a test of dependence between the
instrument G and Y. Because of the selection effect in case—control data mentioned
above, we consider prospective and retrospective views separately.

5.1 Prospective view
From Equation (3) we obtain the distribution of Y under intervention as

pOIdo(X = x0)) = I p(ylu, x0)p(w)p(g) = D p(ylut, x0)p() (5)
u,g u

This can be recognized as the usual adjustment formula if U were observable, that is,
we partition the population according to U, assess the effect of X on Y within each
subgroup and then average over the subgroups (Pearl”, p. 78). The ACE, as defined by
Equation (1), is then

ACE(x1,x2) = Z(E(YIU =u, X =x1) — E(Y|U = u, X = x2))p(u)

If E(YIU=u,X =x)=E(Y|U=u), or more strongly if p(ylu,x) = p(ylu) (i.e.,
Y L X|U) then the causal effect is obviously zero. Note that YL X|U has a graphical



Mendelian Randomisation 317
/U\
X v

counterpart, shown in Figure 4, which is obtained by deleting the arrow from X to Y in
Figure 1. However, the reverse is not necessarily true. If the ACE is zero, or formally if
p(yldo(X = x)) does not depend on x, then we cannot conclude that p(y|u, x) does not
depend on x because, as implied in Equation (5), there could be an interaction between
X and U in their effect on Y which together with the weights p(u) cancels out the overall
effect. This is the problem of ‘non faithfulness’ — a joint probability distribution is said
to be faithful to a DAG if there are no conditional independence relationships between
the variables that do not follow from the directed Markov property.?® In the special case
of models without interactions, more specifically, when for any u # #' we have

G
Figure 4 DAG representing Y1 X | U.

EYIU=u,X=x1) —E(Y|U=u,X = x3)
=EY|U=u,X=x1)—EYIU=du,X =x))

a zero causal effect leads to the conclusion that E(Y|U, X) does not depend on X. Such
interactions, of course, can never be completely ruled out as U is unobservable. However,
one has to presume that even when allowing for possible interactions between X and U,
it would be rare in practice to obtain a zero causal effect without at least having that
E(Y|U = u, X = x) = E(Y|U = u) because the cancellation discussed above requires a
very specific numerical configuration.

It would be convenient if (under conditions 1)-3)) YL X|U if and only if YL G. This
would imply that if we believed that the conditional distribution of Y under intervention
in X is the same as when X is just observed (i.e., the DAG has a causal interpretation
so p(y|x,u) = p(y|do(X = x),u)) and if we disregard the particular numerical cancel-
lations discussed above, we could test for a causal effect by checking for association
between G and Y. Using Equation (2) and integrating out x and u gives the marginal
joint distribution of (Y, G)

p(,8) =p(@) Y p) > p(ylu, x)p(x|u,g)

We can see that if YALX|U, i.e., if p(y|u, x) = p(y|u), then

p(,8) = (@) Y pOlwp(e) Y p(xlu,g) = p()p(y)

So YA X|U = YLG. We note that the joint distribution also factorizes if p(x|u, g) =
p(x|u), i.e., if X and the IV are not associated but this has been ruled out by core
condition 2).
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The reverse argument Y. G = YL X|U does not hold, however, even if we know
that p(x|u,g) # p(x|u). Again, this is due to the possibility of very specific numer-
ical cancellations that might induce a factorization of p(y,g) without the desired
independence.

Summarizing, we have

GLY < YLX|U= p(yldo(x)) = p(y) (6)

whereas the reverse implications can be violated if specific numerical patterns of the
parameters of the involved distributions occur. As the latter would appear unlikely in
practice, we will consider it reasonably safe to regard the three statements in Equation (6)
as ‘equivalent for practical purposes’. The complementary implications of Equation (6),
especially G/ Y = Y X|U are true in any case, so that if a test finds that G and Y are
not independent we can conclude that the outcome does depend on the phenotype given
the confounders.

5.2 Retrospective view

In the case control study situation where we condition on the outcome Y, the data only
allow us to identify properties of the distribution p(x, u, g|y) which from Equation (2)
is seen to be

o, gly) = p(ylaty )p(x|uty @) p () p(g)
o > s POt X)p(xl)pan)

This will typically not factorize in any way: there are no independencies among X, G, U
conditional on Y, as reflected in the moral link induced in the graph by this conditioning
and as discussed in Section 4.2. However, assuming, as in the prospective case, that for
practical purposes ‘no causal effect’ is equivalent to Y L X|U, then the above conditional
distribution becomes

p(yl)p(x|u, Q)p(1)p(g)
2w bl ()

p(xaua gly) =

if there is no causal effect. By summing out x and # we then find that p(g|y) = p(g).
Hence, for a case control study, we can also expect that if there is no causal effect there
should be no association between Y and G, or equivalently, if we find an association
between Y and G then there is a causal effect.

6 Identification of a causal effect

Identifiability of the ACE from observational data requires more than the core conditions
1)-3). We consider the additional assumption that all conditional expectations of the
variables in Figure 1 are linear in their graph parents without interactions (Section 6.1).
When linearity is doubtful, for instance because the response is binary, it is possible to
derive upper and lower bounds for the causal effect (Section 6.2). Section 6.3 addresses
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the question of why the non-linear case cannot be treated in a similar manner to the
linear additive case.

6.1 The easy case: linearity without interactions

In the following we assume general linear models for the dependencies among the
variables Y, X, G and U. Furthermore, we suppose that all dependencies only affect the
mean. In other words, we assume that

EY|X=x,U=u) =a + Bi1x+ Bru
EX|G=g U=u) =y +8i1g+du (7)

with both X and Y having constant (possibly different) conditional variances. In addi-
tion, we assume that the first expectation is the same if we intervene in X, that is, the
link is causal and hence

E(Y|do(X = x0),U = u) = a + pixo + pou

In this framework, as noted in Section 3.2, B is the causal parameter that we are inter-
ested in since ACE(x1,x2) = B1(x1 — x2). It cannot be estimated from a linear least
squares regression of Y on X and U, as U is unobserved, nor is it estimable from a linear
least squares regression of Y on X alone, as X and U are correlated. A linear least squares
regression of X on G, however, will yield a consistent estimate rx|G of 81, the coefficient
of G, because G and U are uncorrelated. Since the regression coefficient ry|g of G in a
linear least squares regression of Y on G alone can be shown to be consistent for 8161,
the required causal parameter, B1, can be consistently estimated as the ratio

1 =
X|G

A rY|G
/3 =

(see Appendix for technical details.) Obviously we need rx|G to be non-zero but this is

provided by condition 2): G/ X. The variance of 1 depends on the conditional variance
of Y given do(X) as well as on the variance of the IV, G, and inversely on the covariance
of X and G (cf. discussion by Martens et al.'!). A strong G—X association thus increases
the precision of the IV estimator, as mentioned in Section 4.3. Note that these results
rely on models without interactions. In particular, there can be no interactions with
the unobserved confounder U and, since U is unknown, this is obviously an untestable
assumption.

Straightforward generalization to the case where G is binary is possible. In this case,
the parameter §; would then be the mean difference in X for the two different values
of G. In fact, G can have more than two values as long as its relation with X is linear.
The implication for Mendelian randomization applications when G could assume three
values, one for each genotype in the simplest diallelic case, is that the expected change
in X between genotypes 0 and 1 must be the same as the expected change in X between
genotypes 1 and 2. In other words, the genetic model must be additive. There is no
sensible genetic model that is consistent with this requirement for a polymorphic locus
with more than three genotypes.
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The case where X is binary is often tackled in the econometrics literature using a
dummy endogenous variable model.”*® This is based on a threshold approach which
assumes an underlying unobservable continuous variable X, with linear conditional
expectation E(X.|G, U) as given in Equation (7) above. The observable quantity is X
where X = 1if X, > 0and X = 0 otherwise. It can be shown that 81 can still be recovered
as before. (See Appendix for details.)

6.2 Bounds on the causal effect

When only the core conditions 1)—3) can be assumed without additional assumptions
such as linearity and no interactions, the causal effect is not identifiable and we can
at best give lower and upper bounds that will contain the ACE.3 =1 This method,
however, requires all observable variables to be binary or categorical which could be
achieved by suitable categorization of continuous variables. In the binary case, let p;;., =
p(Y =i,X =j|G = k) represent the conditional probabilities which can be estimated
easily from the data using the corresponding relative frequencies. It can be shown that
the bounds for the average causal effect, ACE(1,0) = p(Y = 1|do(X = 1)) — p(Y =
1ldo(X = 0)), are given by

p11.1 + pooo — 1 1= po1.1 — P10.0
p11.0 + poo.a — 1 1= pot.o — P10
p11.0 — p11.1 — P10.1 — Po1.0 — P10.0 —Po1.0 + Po1.1 + Poo.1 + P11.0 + P00.0
P11.1 — P11.0 — P10.0 — Po1.1 — P10.1 < ACE < | —po1.1 + P11.1 + Poo.1 + Po1.o + P00.0
—po1.1 — P10 - - p11.1 + Poo.1
—po1.0 — P10.0 P11.0 + P00.0
Poo.1 — Po1.1 — P10.1 — Po1.0 — P00.0 —P10.1 + p11.a + poo.1 + P11.0 + P10.0
P00.0 — P01.0 — P10.0 — Po1.1 — P00.1 —P10.0 T P11.0 + P00.0 + P11.1 + P10.1

These bounds are sharp in the sense that they cannot be improved upon without making
additional assumptions. Wide bounds, possibly containing zero, will reflect that the
data, including the IV, are not very informative for the causal effect. Reasons for this
could be small sample size, weak instrument or a true ACE close to zero.

In principle, these bounds can also be calculated for factors with more than two levels.
However, the more categories there are, the more difficult the computations and the less
informative the bounds. In Mendelian randomization applications, Y is usually binary
and G can often be considered as binary with one genotype having an effect on the trait
and the others pooled into one that has no effect. To calculate the above bounds, we
would dichotomize the usually continuous phenotype X as being above or below a given
threshold and compare the bounds for different discretizations of X. Note, however, that
the core conditions then have to be satisfied for the dichotomized version of X, which is
not automatically implied if they hold for the continuous one.

The above bounds are not applicable to the case—control data situation because they
rely on estimating p;; x which cannot be done when the data have been selected on Y.

However, knowledge of the disease prevalence, p(y), will almost always be available.
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This, together with the genotype distribution p(g) permits calculation of the bounds for
case—control data since

_ )
p(y,x|g) = P(g,xly)P(g)

and p(g, x|y) can be estimated from the data.

In practice, the bounds provide an assessment of how informative the data themselves
are in the absence of additional parametric assumptions. Any parametric approach
should therefore be supplemented by the computation of these bounds. Furthermore,
by insisting that all the upper bounds are greater than or equal to the lower bounds,
testable constraints arise which, if violated, imply that at least one of the core conditions
is not satisfied.

6.3 The difficult case

From Section 6.1 and the corresponding derivations in the Appendix we can see that
in order to use the IV technique we need to, firstly, specify what our causal parameter is
and, secondly, determine how it relates to the regression parameters of a regression of X
on G and a regression of Y on G. The latter involves marginalizing over U and the result
in the non-linear case is typically not independent of the unknown distribution of U.

6.3.1 Causal parameter for non-linear models

Assume we have a binary response variable Y, as is the case in many epidemiological
applications. The ACE is then the risk difference. To determine the ACE, we have to
integrate out U in order to determine E(Y|do(X = x)), which in the case of a non-linear
dependence of Y on X and U will typically depend on the unknown distribution of U.
For instance, assuming a logistic regression we obtain

exp{a + B1x + Boru}
1+ expla + Bix + Bou}

E(Y|do(X = x)) = / p(u) du (8)

where p(u) is the unknown density of U. The above expectation cannot generally be
written in the same model form with a different constant. In particular, for this case,

E(Y|do(X = x)) # - ffig{aj flgl}x} i’

even when U is assumed to be normally distributed. Greenland et al.3° discuss this
problem referring to it as non-collapsibility of the logistic regression model.
Alternative causal parameters are the odds ratio or relative risk. The former is par-
ticularly important when the data come from case—control studies, as these only allow
identification of odds ratios. We can define the causal odds ratio (COR) as

p(Y = 1ldo(X = x1)) p(Y = 0|do(X = x3))

COR(x1,x2) = p(Y — O|dO(X =x1)) p(Y = 1|dO(X = x2))
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where p(Y = 1|do(X = x1)) = E(Y|do(X = x1)). However, from Equations (8) and (9),
it is not guaranteed that B is the causal parameter of interest in the sense that

COR(x1, x2) # exp{Bi(x1 — x2)}

In fact, COR again depends on the unknown confounder distribution. For the causal
relative risk (CRR) defined as

p(Y = 1]do(X = x1))
p(Y = 1]do(X = x2))

CRR(x1,x7) =

we consider a (causal) log-linear model corresponding to this parameter
E(YIX =x,U=u) = E(Y|do(X = x),U = u) = exp{a + Bi1x + Bru}

which does imply that E(Y|do(X = x)) = exp{a™® + Bix} after marginalizing over U
(where typically o® # «), independently of the distribution of U. Thus, the log-linear
shape is retained, CRR is exp{B1(x1 — x2)} and B is the relevant causal parameter.

6.3.2 Relationship between regression parameters

The next step is to investigate how the regression parameters estimated by a regression
of Y on G and a regression of X on G are related to the causal parameter of interest.
From the Appendix we see that this relies on working out

E(Y|G = g) = EyExju,c=¢E(Y|X, U)

that is, we compute the conditional expectation of Y given (X, U), then integrate out X
with regard to its conditional distribution given (U, G = g) and then integrate out U with
respect to its marginal distribution, thus exploiting the core conditional independencies
to obtain the conditional expectation of Y given G. The derivation in the Appendix cru-
cially depends on the different expectations being additive in the conditioning variables
so that taking expectations is straightforward. But if we assume a logistic regression
for a binary response variable Y, E(Y|X, U) = p(Y = 1|X, U) is not additive in X and
U and so the expectation Ex|y,g=¢E(Y|X, U) is not straightforward to compute as it
involves an integral to which there is not necessarily an analytic solution. Thompson
et al 3! suggest an approximation. However, this approximation ignores U and assumes
that Y L G|X which, if true, would mean that an IV approach is unnecessary as there
would be no confounding and the effect of X on Y could be estimated from the data.
Hence, this does not provide a way of identifying the COR in the situation where there
is confounding but it can be used as a heuristic check for the presence of confounding.3

If we model p(Y = 1]X, U) log-linearly corresponding to the CRR, then E(Y|X,U) =
p(Y = 1|X,U) is multiplicative in X and U and is again not additive. Hence, just
as for the logistic relationship, solving E(Y|G = g) = EyEx|u,c=¢E(Y|X, U) requires
an approximation. The derivation provided in Thomas and Conti*® also ignores U
and assumes that Y 1L G|X. The same general problem arises with the approxima-
tion for the probit link that these authors refer to. The probit model can however be
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used under certain assumptions when it is held that all binary variables are generated
by unobserved underlying continuous variables that have a joint multivariate normal
distribution.?*

7 Complications for Mendelian randomization

The limitations of Mendelian randomization, from the perspective of complicat-
ing features leading to poor estimation of the required genotype—phenotype and
genotype—disease associations, have been discussed in detail in several places in the
literature.>333%3¢ More crucially, biological complications can sometimes violate one
or more of the core conditions 1)-3) so that Figure 1 no longer applies. Our focus
here is on explicating what any added complexity implies with regard to meet-
ing these conditions. This is illustrated using DAGs that are ideally dictated by the
biology.

Linkage disequilibrium refers to the association between alleles at different loci across
the population, as is the case when loci are physically close on the chromosome and
thus tend to be inherited together, or may be due to other reasons such as natural
selection, assortative mating and migration.?” When our chosen gene Gy is in linkage
disequilibrium with another gene G, which has a direct or indirect influence on the
disease Y, condition 3) (Y L G1|(X, U)) might be violated, as shown in Figure 5(a), or
else condition 1) (G L U) might be violated, as shown in Figure 5(b).

Pleiotropy is the phenomenon whereby a single gene may influence several traits. If the
chosen instrument G is associated with another intermediate phenotype which also has
an effect on the disease Y (Figure 6(a)), condition 3), Y 1L G|(X1, U), is again violated if
we do not also condition on X,. Moreover, a genetic polymorphism under study might
have pleiotropic effects that influence confounding factors like consumption of tobacco
or alcohol, for example, Davey Smith and Ebrahim®. This is represented in Figure 6(b)
and violates condition 1).

’ U Gz—;/w\
GI/ \X& , Gl/ 2 v
(a) )

Figure 5 Linkage disequilibrium in a Mendelian randomization application.

(b

Xo U\ Xo - U\
G/Xlx y G/Xl/ y
(a) (b)

Figure 6 Pleiotropy in a Mendelian randomization application.
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Genetic heterogeneity arises when more than one gene affects the phenotype. The
core conditions may still hold for the chosen instrument Gy in the situation of Figure 7,
where none of the other genes influence Y in any way other than via their effect on X. If
instead the situation is similar to Figure 5(b), for example, the core conditions may be
violated as already explained. Also, in Figure 7, genetic heterogeneity could weaken the
G1—X association.

Population stratification denotes the co-existence of different disease rates and allele
frequencies within subgroups of individuals. In Figure 8(a), we see that condition 3), Y L
G1|(X, U), is again violated: we need to condition on the population subgroup as well.
However, if population stratification causes an association between allele frequencies
and phenotype levels, as in Figure 8(b), all conditions for G to be an instrument are
still satisfied, and, in this situation, the G=X association may in fact be strengthened or
weakened, as a result.

Furthermore, the true biological situation could involve several genes affecting several
phenotypes whose joint influence on the disease of interest is subject to confounding (Fig-
ure 9). Keavney et al.?® consider six lipid-related genes and two plasma apolipoproteins
affecting CHD. Each gene was considered as a separate instrument and the ratio of the
plasma lipoproteins taken as the intermediate phenotype. However, the reported geno-
type—CHD associations were not consistent with the genotype—phenotype associations
whereby genes that adversely affected lipoprotein levels were not necessarily associated
with increased risk of CHD. One explanation is that the underlying biology is more like
Figure 9 and that interactions between genes and between phenotypes need to be taken

—~ N
(;1/

Figure 7 Genetic heterogeneity in a Mendelian randomization application.

Vi ANVAVAN

b

Figure 8 Two examples of population stratification for Mendelian randomization.

Figure 9 A more complicated example for gene-phenotype-disease relations.
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into account. There is currently no simple extension of the current IV approach that is
applicable to this situation.

8 Discussion

It seems to us that applications of Mendelian randomization can benefit from a for-
mal framework for causal inference.?® For example, the ‘do’ operation of Pearl® that
we have used in the present paper allows explicit specification of what the causal aim
under investigation is and under which conditions it can be attained. We argue and
confirm that Mendelian randomization can often be reasonably assumed to satisfy the
conditions of an IV. Moreover, these core conditions can be represented using DAGs
and can hence be verified by visual inspection (e.g., Section 7). Our focus regarding
causal inference is on testing for and estimating the causal effect, and on the special
case of retrospective as opposed to prospective studies. Our findings are as follows.
Testing for a phenotype—disease causal effect by testing for a genotype—disease asso-
ciation, as suggested by Katan'®, is reasonable for practical purposes (Section 5). For
calculation of the ACE, one must rely on additional strong parametric assumptions
such as linearity and no interactions but these are not typically justifiable for epidemi-
ological applications with a binary disease outcome. At least, one should carry out
sensitivity analyses if such models are used. In the non-linear/interaction case, even the
specification of the causal parameter is not obvious and determination of its relation-
ship to the relevant regression parameters is not straightforward (Section 6). ‘There is,
in fact, no agreed upon generalization of IVs to non-linear systems. This is partic-
ularly alarming as in a case—control study, generally only the odds ratio can sensibly
be considered. Assuming no more than the core conditions for a genotype to be an
instrument, bounds on the ACE can always be calculated if all variables are binary
and these can be adapted to the case—control situation if the disease prevalence is
known.

The above framework leads us to see the limitations of Mendelian randomization as
falling into two main categories: in some situations, the core assumptions for a genotype
to be an instrument are not plausible (Section 7), and in other cases, the parametric
assumptions that are required to calculate the causal effect are not reasonable. While
there is much discussion in the literature about the difficulty of obtaining good estimates
from genetic association studies, in particular, due to lack of power or because the
estimates come from different studies,!” the current approaches to testing and estimating
the relevant causal effects are rarely challenged. For instance, the ratio point estimate for
the relevant regression parameter which is valid in the additive linear case (Section 6.1)
has been advocated as appropriate for binary outcomes,’>* which seems dubious to us.
Even in a recent article,*! while it is noted that linearity is required for this estimate, the
assertion that such assumptions are ‘not easily satisfied in a Mendelian randomization
setting’ is not discussed.

In summary, we regard the following issues as most important and pressing for further
research in order to widen the applicability of the method of Mendelian randomization:
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general methods for the non-linear case and consideration of different causal parameters.
The econometric literature could be a promising source of IV methods for some non-
linear models.*>*® In particular, proposals for estimation of the CRR (cf. Mullahy**
or Windmeijer and Santos Silva*) have to be scrutinized with regard to the required
assumptions and might be combined with logit models when events are rare.*® A draw-
back of these methods is that interactions between the phenotype and the confounding
factors are excluded which is a restrictive assumption and calls for generalizations as well
as thorough sensitivity analyses. Also, advances made in connection with the so-called
local causal effect based on randomized trials with partial compliance need to be scruti-
nized as to whether this causal parameter is meaningful in a Mendelian randomization
setting and whether it may be estimated in situations where the ACE cannot. A general
model class proposed in this context is the one of structural mean models (cf. overview
in Hernan and Robins'?). Bayesian approaches have also been proposed for this RCT
scenario.*’ These, again, require further investigation.

Appendix

Background on the linear and no interactions case
Let us first show why B is the causal parameter of interest. With the assumptions
from Section 6.1, we have that
E(Y|do(X = x)) = Eyjdo(x=xE(Y|do(X = x),U)

— EyE(Y|do(X = x), U)

=a+ pix + fanu

=ao* + Bix
where uy = E(U) and using obvious notation for iterated conditional expectation. The
second equality holds because do(X = x) is not informative for U as there cannot be any

dependence between an intervention and an unknown variable (graphically, intervening
on X removes the arrows leading into X from Figure 1). From the above, we obtain

ACE(x1,x2) = Bi(x1 — x2)
so we are interested in estimating S.

Using the usual conditioning without intervention, a regression of Y on X alone
corresponds to

E(Y|X = x) = Eyjx=xE(Y|X = x,U)
= o + B1x + Brlhuix=x

where pyjx=r = E(U|X = x) is typically not constant in x, in particular not equal to
1, due to the dependence between X and U in the non-interventional case, that is, in
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the observational regime. Hence 1 cannot be identified from a regression of Y on X
alone.
Instead consider a regression of Y on G alone. This corresponds to

E(Y|G =g) = Ex,u)6=¢cE(YIX,U,G =g)
= Eyjc=¢Ex|u,6=¢E(Y|X,U) since Y L G|(X,U)
= EyExju,c=¢E(Y|X,U) since UL G
= Ey(a + B1(y + 812 + 62U) + BU)
=ao+ By + p1d1g + (B1d2 + B v
= o + f1o1g

Hence, the coefficient of G in a regression of Y on G is 8141.
Furthermore, a regression of X on G alone corresponds to

E(X|G = g) = Eyjg=¢E(X|G = g, U)
= EyE(X|G = g,U)
=y + 818+ dhuu

so the coefficient of G in this regression is 81. Thus, as given in Section 6.1, the causal
parameter of interest, 81, can be estimated from the ratio of these two regression coef-
ficients. This is usually done in a ‘two-stage-least-squares’ procedure: more details can
be found in Stewart and Gill*8.

Threshold models

The above can be generalized to the case of binary G and X in the following way. Let
E(Y|X =x,U=u) = a + B1x + Bou, as before. Consider an underlying unobserved
variable X, with

EXc|G=¢g,U=u) =y + 618+ du

and define

1, Xc>0
X = ,
0, otherwise

The dependence structure can be represented as in Figure 10 where the relationship
between X and X is deterministic. The conditional independencies with respect to all
variablesare Y 1L (G, X)) |(U, X), X I (G,U)|X.and G L U. But as X, is not observed
we have Y 1L G|(U,X), X WG and still G L U for the remaining variables. Hence, the
core conditions 1)-3) apply to (G, U, X, Y), ignoring X., and B is still the parameter
we are interested in as it describes the required causal effect.
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G— X —>X—>Y

Figure 10 Mendelian randomization for a threshold model.

By an argument similar to that presented above, we have (assuming §; > 0)

E(Y|G = g) = EyExju,6=¢E(Y|X, U)
= Ey(a + B1l(y +61g¢ + 8:U > 0) + BU)
=a + piPu(y +6i1g +6U > 0) + Bouu
U=> (—y —81)

= o+ B1Py 5 + Banu

Recall that G is binary and assumes the value 0 or 1. If we let §g = —y /8, and & =
(—y — 81)/82, the above model can be written as

E(Y|G =g) =a+ B PyU > &) + B1(Pu(U > &) — Py(U > &))g + Ba1u

This is linear in G and its coefficient ryjg=1 = 1(Py(U > &) — Py(U > &p)) can be
estimated by linear least squares. The relationship between the observable X and G
works out to be

E(X|G = g) = EyE(X|G = g, U)
=Py(y + 618 +6:U > 0)
= Py(U > &p) + (Py(U > &) — Py(U > &)))g

which is also linear in G. The relevant coefficient (Py(U > &;) — Py(U > &j)) can
again be estimated by linear least squares. Note that the modelling assumptions made
here, in particular, about the role of U, are very specific and cannot fully be tested
empirically.
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