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edure, mul-tiple test problem, multi{way ANOVA, step{wise pro
edures.1 Introdu
tionIf several hypotheses are to be tested simultaneously in the 
ontext of a sin-gle statisti
al experiment, the 
lassi
al test theory does not a

ount for themultipli
ity of the test de
isions. For example the 
lassi
al F{test in a one{way analysis of varian
e is only able to show overall signi�
ant di�eren
esamong the population means but it 
annot spe
ify them. More detailed
omparisons require a multiple test pro
edure to 
apture the 
omplexity ofthe statisti
al problem and the multipli
ity of possibly wrong de
isions.Multiple tests are often applied in the 
ontext of multiple pairwise 
ompar-ison in the setting of an analysis of varian
e. In parti
ular, for the 
ase ofa balan
ed one{way layout numerous pro
edures have been developed andimproved by various suggestions, for instan
e with less restri
tive adjust-ments of the size of the individual tests. The 
orresponding multiple tests
an still be used after appropriate modi�
ations in non{standard situationssu
h as unequal sample sizes or linear 
ontrasts.Multiple tests in the 
ontext of a two or multi{way ANOVA, however, hasnot been paid mu
h attention so far, so that for this 
ase only few pro
eduresare known, e.g. the method of Hartley (1955) or Ottestad (1960, 1970).Further, the pro
edure dis
ussed in Bauer et al. (1998) 
an be adapted forthis situation, as we will show below.



Modi�
ations of the Bonferroni{Holm pro
edure for multi{way ANOVA 3In this paper, multiple test pro
edures are derived, in parti
ular for a two{way ANOVA, whi
h are less 
onservative than for instan
e a pro
edureobtained from a Bonferroni adjustment of simultaneous tests originally pro-posed for a one{way layout. As our proposals are mainly based on a modi-�
ation of the Bonferroni{Holm pro
edure, they 
an easily be extended toappli
ations in a multi{way layout. They are de�ned as step{wise test pro-
edures and are thus more powerful than their simultaneous 
ounterparts.The underlying idea is to 
onsider subfamilies of null hypotheses, for whi
ha `lo
al' test of multiple level ~� exists whi
h is obtained using a Bonferroni{(Holm{)type split (
f. Bauer et al., 1998). In addition, it is investigatedwhether the proposed test pro
edures keep the multiple level �. It 
an beshown that two of our proposals ful�ll this property whereas the third mod-i�
ation does not. Nevertheless, all modi�
ations are dis
ussed sin
e they
an all be en
ountered in pra
ti
e. The pro
edures are then 
ompared withrespe
t to their power by means of Monte{Carlo experiments based on thesimultaneous power (Maurer and Mellein, 1988) and the relative frequen
yof 
orre
tly reje
ted false hypotheses.2 Multiple tests in a two{way ANOVAThe multiple test pro
edures introdu
ed in Se
tion 2.2 are based on theBonferroni{Holm approa
h. This general prin
iple for 
onstru
ting step{wise test pro
edures allows the appli
ation of any suitable level � test. Thus,our pro
edures are not restri
ted to the 
lassi
al Gaussian 
ase as introdu
ed
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tion 2.1 nor do they require a balan
ed design. In fa
t any multi{waylayout where 
omparisons of di�erent levels within sub
lasses are of interest
an be ta
kled with the proposed pro
edures and, if desirable or required,non{parametri
 tests 
ould be used. However, for the sake of simpli
ity werestri
t the exposition to the 
lassi
al two{way ANOVA situation and thesimulation study (Se
tion 3) is based on F{tests for the overall hypothesesand multiple t{tests for the pairwise 
omparisons.2.1 Basi
 notationsFor 
onvenien
e, let us brie
y re
all the 
lassi
al two{way ANOVA setting,where Ykln = �+ �k + �l + (��)kl + �kln; (1)for k = 1; :::;K; l = 1; :::; L; n = 1; :::; Nkl; where Nkl are the frequen
ies of
ombinations k in fa
tor A and l in fa
tor B, and the error terms �kln areassumed to be i.i.d. N (0; �2) random variables. The parameters �k and �lare the main e�e
ts of fa
tor A and B, respe
tively, (��)kl is the intera
tione�e
t, and � the grand mean.The family of hypotheses to be tested in this set{up mainly 
onsists ofthree interse
tion hypotheses 
on
erning the main and intera
tion e�e
ts aswell as the hypotheses of all pairwise 
omparisons within the fa
tors A;B,and the intera
tions A�B. For example, the interse
tion hypothesis w.r.t.fa
tor A is denoted as HA0 withHA0 : �1 = �2 = ::: = �K



Modi�
ations of the Bonferroni{Holm pro
edure for multi{way ANOVA 5and has to be tested againstHA1 : 9 j; k 2 f1; :::;Kg; j 6= k : �j 6= �k:The interse
tion hypotheses HB0 and HAB0 are de�ned analogously. Themultiple pairwise 
omparisons are used to identify those fa
tor levels whi
ha
tually di�er regarding their e�e
t on Y . For fa
tor A, we have in total12K(K � 1) pairwise 
omparisons of the typeHA(jk)0 : �j = �k vs HA(jk)1 : �j 6= �k; 1 � j < k � K:The pairwise intera
tion 
omparisons are given byHAB(jk;lm)0 : (��)jk = (��)lm vs HAB(jk;lm)1 : (��)jk 6= (��)lm;for 1 � j < l � K, 1 � k < m � L. Other 
hoi
es of the individualhypotheses about the intera
tions are possible and depend on the respe
-tive appli
ation and interpretation. With the above 
hoi
e, we 
onsider thegeneral 
ase of analysing any kind of di�eren
es among the intera
tions.In pra
ti
al appli
ations, however, it will often be sensible to redu
e theseto a smaller number of hypotheses being of main interest. For the sake ofsimpli
ity, the hypotheses of pairwise 
omparisons are in the following 
on-se
utively numbered as HA(j)0 with j = 1; :::; K(K�1)2 and HB(j)0 , HAB(j)0analogously.2.2 Modi�
ations of the Bonferroni{Holm pro
edureAs a �rst proposal, we 
onsider the original Bonferroni{Holm pro
edurewhi
h is straightforward to apply not only in the 
ase of a one{way ANOVA



6 Vanessa Didelez et al.but also in ANOVA settings with more than one fa
tor.To use the Bonferroni{Holm pro
edure in a two{way ANOVA the p{valuesof the pairwise 
omparisons, only, are 
onsidered, irrespe
tive of the par-ti
ular fa
tor or intera
tion to whi
h they belong. These p{values are or-dered su
h that p(1) � p(2) � ::: � p(n�) with n� = [ 12K(K � 1) +12L(L � 1) + 12KL(KL � 1)℄: The 
orresponding null hypotheses are de-noted as H(1)0 ; H(2)0 ; :::; H(n�)0 : The Bonferroni{Holm pro
edure reje
ts in-terse
tion hypotheses whenever at least one of the elementary hypothesesof the pairwise 
omparisons forming the interse
tion is reje
ted. In 
ontrastto the pro
edures presented below the interse
tion hypotheses are not testedexpli
itly.The BH pro
edure is given as ('i; i = 1; :::; n�) with step{wise tests'(i) = iYj=1 ~'(j); i = 1; :::; n�; (2)where ~'(j) = 8>>>>>><>>>>>>:0 >for p(j) �(n� j + 1) ; j = 1; :::; n�;1 � (3)and ~'(j) are the individual tests for the elementary hypotheses ordereda

ording to the ordered p{values. For pro
edures of this type, the followingresult originally derived by Holm (1977, 1979) holds.Theorem 1The BH pro
edure a

ording to (2) and (3) keeps the multiple level �.
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ations of the Bonferroni{Holm pro
edure for multi{way ANOVA 7Sin
e the Bonferroni{Holm pro
edure is applied to the pairwise 
omparisonsw.r.t. both fa
tors and all intera
tions, the �rst adjusted signi�
an
e levelis given by �[K(K�1)+L(L�1)+KL(KL�1)℄=2 . This may obviously be very smallwhi
h makes it in most appli
ations diÆ
ult to reje
t the 
orrespondinghypotheses.Bonferroni{Holm Modi�
ation I (BHM I)The se
ond test pro
edure is a 
ombination of the Bonferroni{Holm pro-
edure and the simple Bonferroni adjustment applied to the interse
tionhypotheses. This implies that �rst, a suitable level �=3 test for ea
h of theinterse
tion hypotheses HA0 , HB0 , and HAB0 is performed. If one of these isreje
ted it is investigated whi
h of the 
orresponding means di�er signi�-
antly from ea
h other using the Bonferroni{Holm pro
edure.For a more formal des
ription of this pro
edure let pi; i 2 fA;B;A � Bg;denote the p{values for the interse
tion hypotheses, and pi(j), j = 1; :::; ni;the p{values for the 
orresponding pairwise 
omparisons su
h that pi(1) �::: � pi(ni) for ea
h i 2 fA;B;A � Bg; where nA = K(K�1)2 ; nB =L(L�1)2 ; nA�B = KL(KL�1)2 :The BHM I pro
edure is then given as ' = ('i; 'ij ; i 2 fA;B;A �Bg; j 2f1; :::; nig) with'i = 8>>>>>><>>>>>>:0 >if pi �=3; i 2 fA;B;A�Bg;1 � (4)



8 Vanessa Didelez et al.and 'i(j) = 'i �Qjk=1 ~'i(k), j = 1; :::; ni; with~'i(k) = 8>>>>>><>>>>>>:0 >if pi(k) �=3ni � k + 1 ; k = 1; :::; ni:1 � (5)Here, ~'i(j) represents the individual test for the elementary hypotheses ofthe pairwise 
omparisons belonging to fa
tor i and arranged a

ording tothe p{values. Con
erning the size of this pro
edure, the following result 
anbe shown.Theorem 2The BHM I pro
edure a

ording to (4) and (5) keeps the multiple level �.As the proof of this thorem is essentially based on the Bonferroni inequal-ity (
f. Appendix) it has to be expe
ted that the nominal multiple level ofthis test 
an be
ome smaller than �. Thus, despite of the Bonferroni{Holmadjustment being applied separately to ea
h fa
tor as well as for the inter-a
tions, the pro
edure may be rather 
onservative.Bonferroni{Holm Modi�
ation II (BHM II)The se
ond modi�
ation of the Bonferroni{Holm pro
edure is similar to theBHM I pro
edure, with the only, but important, di�eren
e that the levelsof the three tests of the interse
tion hypotheses are not simply determinedby the Bonferroni inequality. They now depend on the results of the previ-ous tests a

ording to a se
ond Bonferroni{Holm adjustment, su
h that thewhole test may be regarded as a nested pro
edure.
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ations of the Bonferroni{Holm pro
edure for multi{way ANOVA 9Therefore, the p{values of the tests of the three interse
tion hypotheses areordered su
h that p(1) � p(2) � p(3). This modi�
ation leads to a less 
on-servative pro
edure sin
e only the smallest p{value is now 
ompared to �=3.If it is larger than the adjusted level of signi�
an
e, the pro
edure stops, andall interse
tion hypotheses as well as all hypotheses for the pairwise 
ompar-isons 
annot be reje
ted. Otherwise those pairwise 
omparisons have to betested, whose interse
tion yields the reje
ted interse
tion hypothesis. Thishas to be done a

ording to a Bonferroni{Holm pro
edure with multiplelevel �=3. As soon as a p{value for a pairwise 
omparison ex
eeds the 
or-responding level of signi�
an
e, this parti
ular Bonferroni{Holm pro
edurestops, and the whole pro
edure 
ontinues with the next interse
tion hypoth-esis, where p(2) is 
ompared with �=2.Thus, the whole pro
edure stops if and only if one of the interse
tion hy-potheses 
annot be reje
ted or all hypotheses are reje
ted. In 
ontrast,failing to reje
t one of the pairwise 
omparisons only implies that the in-ner Bonferroni{Holm pro
edure stops, without testing any further pairwise
omparisons, but the pro
edure 
ontinues with the examination of the nextinterse
tion hypothesis. However, it does not keep the multiple level �, be-
ause apart from false de
isions on the �rst level of the interse
tion hypothe-ses a type I error 
an also be 
ommitted on the se
ond level when 
arryingout the pairwise 
omparisons.The above pro
edure 
an, however, be improved so as to keep the multiplelevel, namely if the pro
edure does not only stop as soon as one of the in-
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tion hypotheses 
annot be reje
ted, but also if one of the elementaryhypotheses of the pairwise 
omparisons has to be retained.For a formal des
ription of this BHM II test, let pi; i 2 fA;B;A�Bg, denotethe p{values for the interse
tion hypotheses and p(i) the 
orresponding or-dered p{values. The ordered p{values for the pairwise 
omparisons are givenas p(i)(j) with j = 1; :::; n(i); where n(i) = nR(i) and R(i) 2 fA;B;A�Bgis the anti{rank.The BHM II pro
edure is given as ('i; 'ij ; i = 1; 2; 3; j = 1; :::; ni) withthe step{wise tests'(i) = ~'(i) � i�1Yj=1 " ~'(j) n(j)Yk=1 ~'(j)(k)# and (6)'(i)(j) = '(i) � jYk=1 ~'(i)(k); (7)where ~'(i) = 8>>>>>><>>>>>>:0 >if p(i) �3� i+ 1 ; i = 1; 2; 3;1 � (8)and ~'(i)(j) = 8>>>>>><>>>>>>: 0 >if p(i)(j) �=(3� i+ 1)n(i) � j + 1 ; i = 1; 2; 3; j = 1; :::; ni:1 � (9)Here, ~'(i) and ~'(i)(j), respe
tively, denote the individual tests for the inter-se
tion and elementary hypotheses arranged a

ording to the 
orrespondingp{values. For i = 1, Qi�1j=1[ ~'(j) Qn(j)k=1 ~'(j)(k)℄ is de�ned as 1.
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edure for multi{way ANOVA 11Theorem 3The BHM II pro
edure a

ording to (6) { (9) keeps the multiple level �.For the proof we essentially refer to Bauer et al. (1998) as detailed in theappendix. Like the BHM I pro
edure, but in other situations, the BHM IIpro
edure may be rather 
onservative as will be dis
ussed below.2.3 Comparison of the pro
eduresThere is a 
ru
ial di�eren
e between the BH pro
edure and the BHM I aswell as the BHM II method. While the interse
tion hypotheses for the fa
-tors A;B and the intera
tion A � B are expli
itly tested in the latter twopro
edures, they are only impli
itly tested in the BH pro
edure.Let for instan
e the test of HAB0 have the smallest p{value. If now one of thehypotheses related to the intera
tion 
annot be reje
ted, then the BHM IIpro
edure stops without testing any of the pairwise 
omparisons related tothe main e�e
ts of A and B. Using the BH pro
edure, however, one mighthave the 
han
e to reje
t some of the pairwise hypotheses of the two maine�e
ts. The BHM I pro
edure also allows for testing pairwise 
omparisonsrelated to the fa
tors A and B, even if some of the pairwise intera
tionhypotheses turn out to be non{signi�
ant, sin
e here the two fa
tors andthe intera
tion are treated separately.As mentioned earlier, the BH pro
edure might result in very small adjustedp{values, if many elementary hypotheses are to be tested. But this is alsothe 
ase for the other pro
edures. Consider again the situation that p(A�B)
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tion hypotheses. Then, the smallestp{value of the BHM II pairwise 
omparisons is 
ompared with �=3KL(KL�1)=2 ,whi
h is even smaller than the smallest of the BH pro
edure. However, ifp(A�B) is not the smallest p{value then the adjusted values will be larger.The smallest possible adjusted level of the BHM I pro
edure is �=3KL(KL�1)=2 ,too. However, the adjusted signi�
an
e levels that the two smallest p{valuesof fa
tor A and B have to be 
ompared with are greater for the BHM IIpro
edure than for the BHM I method. This is be
ause the three interse
-tion hypotheses are inter
onne
ted not simply by the Bonferroni inequality,but a

ording to the Bonferroni{Holm prin
iple.Another aspe
t of multiple test pro
edures besides 
ommitting errors oftype I 
on
erns the possibility that their 
omponents may lead to overallde
isions whi
h are not free of 
ontradi
tions. Comparing the above pro
e-dures w.r.t. the 
on
epts of 
oheren
e and 
onsonan
e introdu
ed by Gabriel(1969) it is obvious that all three pro
edures are 
oherent by 
onstru
tion,but only the original Bonferroni{Holm pro
edure is also 
onsonant whereasthe BHM I and BHM II pro
edures may yield non{
onsonant de
isions.3 SimulationIn the previous se
tion, it was shown that the Bonferroni{Holm pro
edureand two of its modi�
ations, namely BHM I and BHM II, keep the multiplelevel � and thus also 
ontrol the per{
omparison error rate. To get an idea,whi
h of these three test pro
edures is best regarding its power, a small
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ations of the Bonferroni{Holm pro
edure for multi{way ANOVA 13simulation study is performed, with 1000 simulation runs 
arried out forea
h 
onstellation.The 
omparison is based on the simultaneous power, brie
y denoted aspower I in the following, as analogue to the multiple level, and on theproportion of 
orre
tly reje
ted false hypotheses, brie
y denoted as powerII, 
orresponding to the per{
omparison error rate.3.1 DesignThe simulation study is based on model (1) assuming normality for the errorterms, homogeneity of varian
es, and a balan
ed design. For ea
h fa
tor wehave three levels, i.e. K = L = 3. This results in three pairwise 
omparisonsfor ea
h fa
tor and in 36 hypotheses 
on
erning all possible intera
tion 
om-parisons. The individual tests are performed as F{tests for the interse
tionhypotheses and as t{tests for the pairwise 
omparisons.The multiple level � is �xed at 5%, whi
h results in 5:95 � 10�4 as adjustedsigni�
an
e level in the �rst step of the BH pro
edure. If p(A�B) is the small-est p{value of the three interse
tion hypotheses, the smallest p{value of thepairwise 
omparisons using the BHM I or BHM II pro
edure is 
omparedwith 2:31 � 10�4, whi
h is even smaller than the one of the BH pro
edureas noted above. The adjusted signi�
an
e levels, with whi
h the two small-est p-values of the tests for the pairwise 
omparisons within fa
tors A andB are 
ompared afterwards, are larger using the BHM II pro
edure with4:17 �10�3 and 8:33 �10�3 than using the BHM I pro
edure with 2:78 �10�3.



14 Vanessa Didelez et al.Using the polar Marsaglia pro
edure (Moes
hlin et al., 1995) normally dis-tributed random numbers are generated. The sample size N is �xed at 100and the grand mean � is 0 without loss of generality. Regarding the vari-an
e, another parameter is important to judge the power of the di�erentmultiple tests: the smallest di�eren
e of two (non equal) means denoted byÆ. Di�erent values of Æ allow us to get an idea of the 
apa
ity of the variouspro
edures to dete
t small di�eren
es in the means. It seems reasonablenot to look at Æ and � separately, but to use a 
ombined measure, i.e. Æ=�.Thus, the a
tual value of � is no longer of parti
ular interest. It is therefore�xed at 1, but varying values of Æ=� are 
onsidered ranging from 0:03 to0:90 with a step width of 0:03. The obtained Monte{Carlo results are onlyreported for the most interesting 
ases.Three 
onstellations of true and false elementary hypotheses are investi-gated. First, all elementary hypotheses, i.e. those belonging to the two fa
-tors and to the intera
tion, are true. Se
ond, they are all false, and in thethird 
ase they are partially true and false.Let us denote the number of true elementary hypotheses belonging to thefa
tors A, B and the intera
tion A�B as jIij as above, the number of falseelementary hypotheses as jI ij; i 2 fA;B;A�Bg. If some of the elementaryhypotheses of the intera
tion are false, there are di�erent possibilities forthe number of true and false hypotheses. We de
ide to report only the 
asesjIA�B j = 12 or 5. For all other situations with jIA�B j < 12, the results tendto be of the same order of magnitude. For jIA�B j �18, however, the results
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ations of the Bonferroni{Holm pro
edure for multi{way ANOVA 15Table 1 Power I and power II for the situation of main e�e
ts for exa
tly twolevels of ea
h fa
tor A and B and no intera
tions.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.15 0.006 0.156 0.000 0.139 0.000 0.0730.18 0.028 0.306 0.000 0.255 0.006 0.1530.21 0.074 0.436 0.000 0.333 0.011 0.2440.24 0.188 0.565 0.000 0.394 0.022 0.3570.27 0.383 0.755 0.000 0.466 0.138 0.5310.30 0.590 0.859 0.000 0.488 0.270 0.6640.33 0.730 0.919 0.000 0.499 0.459 0.7860.36 0.858 0.964 0.000 0.500 0.644 0.8810.39 0.929 0.985 0.000 0.500 0.781 0.9340.42 0.982 0.994 0.000 0.500 0.892 0.9680.45 0.997 0.999 0.000 0.500 0.942 0.984are quite di�erent espe
ially 
on
erning the most powerful test. Only in the
ase des
ribed in Table 4 the results obtained for jIA�B j � 18 are in generalof similar size as those obtained for jIA�B j � 12. Some sele
ted simulationresults are summarized in Tables 1{8.3.2 ResultsLevel of Signi�
an
eThe situation of homogeneity of means and of no intera
tion e�e
ts is mainly
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onsidered to assess the nominal multiple level a
hieved by the proposedpro
edures. In the simulation, we observe a multiple level of signi�
an
eof 3.7% for the BHM I and II pro
edure and a value of 3.5% for the BHpro
edure. Thus, the problem already addressed above, that the nominallevel 
an be 
learly below �, in fa
t o

urs. All pro
edures are 
onservativewith the BH pro
edure slightly more 
onservative than the others.For the nominal per{
omparison error rate we get a value of 0.22% using theBHM I and II pro
edure and a value of 0.14% using the BH method. Again,the latter is most 
onservative. Note that the nominal multiple level andthe nominal per{
omparison error rate are also kept with designs di�erentfrom the one 
hosen here.
PowerThe simultaneous power depends substantially more on the size of the dif-feren
es in the means than the power II. To a
hieve a simultaneous powerlarger than zero, Æ=� has to be at least { with a few ex
eptions { 0.15 if allelementary hypotheses 
on
erning the intera
tion terms are true. OtherwiseÆ=� must be larger than 0.27. For a positive power II, however, we only needthe di�eren
es in the means to be 0.03 times the standard deviation.Regarding the remaining simulation results, let us point out that there isno simple answer to the question whi
h of the pro
edures is best with re-gard to its power. One should be aware of the fa
t that the performan
esof the test pro
edures heavily depend on the true parameter values. But
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edure for multi{way ANOVA 17Table 2 Power I and power II for the situations of no (one) true null hypothesisfor the main e�e
ts of fa
tor A, one (no) for the main e�e
ts of fa
tor B, and 12true (in bra
kets 5) null hypotheses for the intera
tions. The results are the samefor both 
onstellations of fa
tors A and B.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.39 0.040 0.850 0.000 0.721 0.101 0.879(0.114) (0.941) (0.000) (0.763) (0.242) (0.957)0.42 0.137 0.890 0.000 0.762 0.232 0.919(0.143) (0.958) (0.000) (0.781) (0.314) (0.970)0.45 0.194 0.923 0.000 0.808 0.381 0.946(0.359) (0.977) (0.000) (0.798) (0.540) (0.980)0.48 0.364 0.951 0.000 0.842 0.539 0.968(0.548) (0.983) (0.000) (0.806) (0.727) (0.990)0.51 0.493 0.970 0.000 0.857 0.664 0.981(0.793) (0.994) (0.000) (0.822) (0.850) (0.997)0.54 0.644 0.980 0.000 0.873 0.797 0.989(0.824) (0.995) (0.000) (0.840) (0.922) (0.998)0.57 0.784 0.989 0.000 0.886 0.855 0.993(0.880) (0.997) (0.000) (0.869) (0.954) (0.999)0.60 0.859 0.994 0.000 0.896 0.937 0.997(0.934) (0.998) (0.000) (0.900) (0.973) (0.999)0.63 0.902 0.996 0.000 0.895 0.959 0.998(0.981) (0.999) (0.000) (0.914) (0.992) (1.000)0.66 0.972 0.999 0.000 0.901 0.992 1.000(0.987) (1.000) (0.000) (0.922) (0.993) (1.000)



18 Vanessa Didelez et al.Table 3 Power I and power II for the situations of three (one) true null hypothesesfor the main e�e
ts of fa
tor A, one (three) for the main e�e
ts of fa
tor B, andno intera
tions. The results are the same for both 
onstellations.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.15 0.084 0.184 0.084 0.184 0.031 0.0890.18 0.135 0.275 0.135 0.275 0.025 0.1210.21 0.301 0.447 0.301 0.447 0.108 0.2380.24 0.443 0.614 0.443 0.614 0.213 0.3790.27 0.595 0.717 0.595 0.717 0.550 0.5130.30 0.721 0.832 0.721 0.832 0.464 0.6330.33 0.881 0.933 0.881 0.933 0.668 0.7900.36 0.934 0.965 0.934 0.965 0.809 0.8890.39 0.961 0.985 0.961 0.985 0.890 0.9310.42 0.976 0.992 0.976 0.992 0.940 0.9660.45 1.000 1.000 1.000 1.000 0.992 0.998additional information for instan
e due to subje
t{matter knowledge mayhelp to rea
h a de
ision. The results are now given in more detail.A striking result is that the simultaneous power of the BHM II pro
edureis exa
tly zero whenever at least two of the interse
tion hypotheses but notall of the asso
iated pairwise hypotheses are false (
f. Tables 1, 2). Sin
ethis pro
edure stops as soon as one of the elementary hypotheses 
annotbe reje
ted, the false hypotheses belonging to the other fa
tor will always
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edure for multi{way ANOVA 19Table 4 Power I and power II for the situations of no main e�e
ts of the fa
torsA and B, and 12 (in bra
kets 5) true null hypotheses for the intera
tions.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.39 0.037 0.800 0.037 0.800 0.085 0.848(0.083) (0.932) (0.083) (0.932) (0.154) (0.945)0.42 0.104 0.870 0.104 0.870 0.200 0.902(0.218) (0.955) (0.218) (0.955) (0.284) (0.963)0.45 0.216 0.906 0.216 0.906 0.344 0.930(0.400) (0.972) (0.400) (0.972) (0.488) (0.978)0.48 0.367 0.939 0.367 0.939 0.473 0.956(0.585) (0.985) (0.585) (0.985) (0.657) (0.988)0.51 0.485 0.957 0.485 0.957 0.593 0.970(0.696) (0.989) (0.696) (0.989) (0.757) (0.991)0.54 0.617 0.971 0.617 0.971 0.741 0.982(0.834) (0.994) (0.834) (0.994) (0.869) (0.995)0.57 0.774 0.985 0.774 0.985 0.848 0.991(0.872) (0.996) (0.872) (0.996) (0.919) (0.997)0.60 0.859 0.992 0.859 0.992 0.894 0.994(0.957) (0.998) (0.957) (0.998) (0.963) (0.999)0.63 0.921 0.996 0.921 0.996 0.958 0.998(0.963) (0.999) (0.963) (0.999) (0.978) (0.999)0.66 0.946 0.998 0.946 0.998 0.978 0.999(0.995) (1.000) (0.995) (1.000) (0.997) (1.000)



20 Vanessa Didelez et al.Table 5 Power I and power II for the situation of no main e�e
ts of the fa
torsA and B and all possible intera
tions present.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.24 0.000 0.856 0.000 0.856 0.000 0.8680.27 0.025 0.898 0.025 0.898 0.006 0.9040.30 0.133 0.932 0.133 0.932 0.095 0.9330.33 0.350 0.959 0.350 0.959 0.245 0.9570.36 0.530 0.976 0.530 0.976 0.421 0.9730.39 0.648 0.986 0.648 0.986 0.563 0.9830.42 0.774 0.992 0.774 0.992 0.659 0.9870.45 0.878 0.996 0.878 0.996 0.810 0.9940.48 0.954 0.999 0.954 0.999 0.894 0.997be retained whi
h yields the above phenomenon. In addition, its power II
an never rea
h 1 in these situations sin
e the BHM II pro
edure 
an reje
tall false elementary hypotheses within one fa
tor, but not those within theother one if it stops when not reje
ting some true elementary hypotheses.As illustrated in Table 1, the power II, for instan
e, 
annot ex
eed 50% ifthere are exa
tly two false elementary hypotheses per fa
tor regarding themain e�e
ts (and no intera
tions).Another general result is that both modi�
ations, BHM I and BHM II, havethe same power I and II when exa
tly one interse
tion hypothesis is false(
f. Tables 3, 4, 5). This seems plausible as both pro
edures would typi
ally
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edure for multi{way ANOVA 21Table 6 Power I and power II for the situation of all three main e�e
ts of fa
torA and B being present and no intera
tions.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.15 0.000 0.495 0.003 0.336 0.000 0.2840.18 0.006 0.641 0.026 0.423 0.000 0.4020.21 0.064 0.755 0.088 0.538 0.000 0.5000.24 0.190 0.842 0.254 0.693 0.006 0.5860.27 0.361 0.894 0.445 0.797 0.032 0.6780.30 0.652 0.950 0.711 0.902 0.177 0.7950.33 0.802 0.973 0.843 0.955 0.383 0.8660.36 0.882 0.985 0.906 0.973 0.600 0.9250.39 0.965 0.996 0.974 0.994 0.763 0.9570.42 0.991 0.999 0.992 0.997 0.886 0.9800.45 0.997 1.000 0.998 0.999 0.942 0.993start by testing this interse
tion hypothesis using the same lo
al level ofsigni�
an
e.In the 
ase that there are no intera
tions, the power of the Bonferroni{Holmpro
edure is usually the worst (
f. Tables 1, 3, 6). This is be
ause the BHMI and II pro
edures start with an adjusted signi�
an
e level for the pairwise
omparisons of the main e�e
ts of �=33�i+1 whi
h is mu
h larger than the oneof the BH pro
edure with �42�i+1 for 1 � i � 3. The bad performan
e of theBonferroni{Holm pro
edure, here, is due to the mu
h higher number of el-



22 Vanessa Didelez et al.ementary hypotheses for the intera
tions than for the main e�e
ts togetherwith all these intera
tion hypotheses being true. In a situation where thesubsets of elementary hypotheses are of equal size one might expe
t resultsthat are more favourable for the BH pro
edure. Further, if there are nointera
tions and the power I of the BHM II pro
edure is not zero, BHM IIis usually better than BHM I w.r.t. power I but worse regarding power II(e.g. Table 6) so that no 
lear ranking of these two modi�
ations 
an beestablished for these 
onstellations.If there is a 
onsiderable amount of intera
tions, however, the Bonferroni{Holm pro
edure is usually the most powerful (
f. Tables 2, 4, 7). A fewambiguous situations o

ur when all intera
tions are present with no maine�e
ts in one ore both fa
tors (
f. Tables 5, 8) but the power II of BHM Iand of the original Bonferroni{Holm then still seem to be very similar.4 Dis
ussionFrom the above simulation results it be
omes obvious that no simple andgeneral rule 
an be given for one of the pro
edures being the best one. Su
ha rule does not even exist if it is restri
ted to parti
ular situations sin
ethe performan
e of the tests heavily depends on the true parameter 
on-stellation. It would of 
ourse be helpful to have some further knowledge ofthe empiri
al situation before 
hoosing a test pro
edure. Typi
ally, su
h aninformation is, however, not known in advan
e. Without going into details,one possible way{out might be to perform preliminary tests in order to rea
h
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edure for multi{way ANOVA 23Table 7 Power I and power II for the situations of no (all) main e�e
ts of fa
torA, all (no) main e�e
ts of fa
tor B, and 12 (in bra
kets 5) true null hypothesesfor the intera
tions. The results are the same for both 
onstellations.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.39 0.051 0.840 0.078 0.841 0.119 0.881(0.093) (0.937) (0.000) (0.828) (0.181) (0.951)0.42 0.131 0.882 0.151 0.896 0.231 0.914(0.189) (0.961) (0.000) (0.850) (0.354) (0.972)0.45 0.245 0.923 0.282 0.927 0.398 0.946(0.402) (0.975) (0.003) (0.865) (0.583) (0.983)0.48 0.383 0.950 0.417 0.951 0.520 0.965(0.524) (0.983) (0.010) (0.875) (0.644) (0.988)0.51 0.507 0.966 0.556 0.968 0.671 0.979(0.690) (0.990) (0.060) (0.889) (0.773) (0.993)0.54 0.639 0.979 0.686 0.981 0.760 0.987(0.847) (0.996) (0.247) (0.914) (0.884) (0.997)0.57 0.797 0.984 0.800 0.986 0.896 0.995(0.893) (0.997) (0.474) (0.945) (0.942) (0.998)0.60 0.839 0.991 0.861 0.992 0.895 0.994(0.927) (0.998) (0.758) (0.974) (0.951) (0.999)0.63 0.926 0.995 0.926 0.996 0.956 0.998(0.972) (0.999) (0.912) (0.991) (0.992) (1.000)0.66 0.971 0.999 0.986 0.998 0.990 0.999(1.000) (1.000) (0.984) (0.997) (1.000) (1.000)



24 Vanessa Didelez et al.Table 8 Power I and power II for the situations of no (all) main e�e
ts of fa
torA, all (no) main e�e
ts of fa
tor B, and all intera
tions present. The results arethe same for both 
onstellations.BHM I BHM II BHÆ=� Power I Power II Power I Power II Power I Power II0.24 0.000 0.835 0.000 0.789 0.000 0.8530.27 0.021 0.897 0.022 0.811 0.032 0.9320.30 0.094 0.932 0.099 0.850 0.135 0.9430.33 0.244 0.961 0.257 0.893 0.240 0.9620.36 0.616 0.980 0.622 0.945 0.633 0.9830.39 0.676 0.987 0.677 0.956 0.641 0.9880.42 0.770 0.993 0.773 0.972 0.757 0.9940.45 0.889 0.996 0.890 0.985 0.883 0.9960.48 0.938 0.998 0.939 0.992 0.912 0.9980.51 0.973 0.999 0.975 0.997 0.962 0.999a de
ision about the �nal test pro
edure. Su
h an approa
h 
an be regardedas an adaptive pro
edure where the �nal multiple test depends on the givendata. When using su
h an adaptive pro
edure it needs to be 
he
ked, again,whether the multiple level is being kept and how the simultaneous power orpower II behave. To summarize, the results of Se
tion 3 may be regardedas rough hints when 
onfronted with the problem of sele
ting an adequatetest.Furthermore, it has to be mentioned that the three pro
edures introdu
ed in
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edure for multi{way ANOVA 25this paper are not optimal, sin
e none of them fully exhausts the signi�
an
elevel of 5%. The question arises whether improvements 
an be a
hieved bya more spe
i�
 determination of the adjusted levels, as for instan
e thoseproposed by Sha�er (1986) or Royen (1987) exploiting logi
al dependen
iesamong the null hypotheses and/or using di�erent test statisti
s (
f. Royen,1988, 1990, Finner, 1988, Bergmann and Hommel, 1988). Sin
e the proposedpro
edures of the Bonferroni{Holm type are generally appli
able they 
anbe easily modi�ed a

ounting for the approa
hes presented by the authorslisted above.Let us point out that another approa
h 
ould be based on a S
he��e{typepro
edure (S
he��e, 1953). The family of null hypotheses that we are investi-gating in the two{way layout 
an in fa
t be regarded as 
ontrasts in a one{way layout withK�L levels of one 
ombined fa
tor. However, as the S
he��epro
edure ensures the multiple level for all 
ontrasts, not only for those ofspe
i�
 interest, we expe
t it to perform worse than the above Bonferroni{Holm modi�
ations whi
h are designed to �nd the `deviant' main e�e
tsand intera
tions. Further simulations are required to 
orroborate this andespe
ially to quantify the di�eren
e in performan
e.As a last point to be made, it has to be examined how the three pro
eduresbehave w.r.t. their power, if they are used in the 
ontext of an ANOVA withmore than two fa
tors. Sin
e the adjusted levels will then be even smaller, itis obvious that any reje
tion of a hypothesis be
omes improbable for smalldi�eren
es. Other te
hniques based on modelling the 
orrelation stru
ture



26 Vanessa Didelez et al.e.g. in the framework of a multivariate t{distribution and thus avoiding anyadjustments may be more appropriate (
f. Bretz, 1999, and Bretz et al.,2001), although su
h an approa
h requires more spe
i�
 distributional as-sumptions.Finally, let us emphasize that the problems o

urring when adjusting formultipli
ity in a multi{way ANOVA point to the ne
essity to keep the num-ber of hypotheses to be tested small. It 
ould e.g. be thought about whetherall pairwise intera
tion hypotheses are equally important or whether someof them 
ould be dis
arded.
5 AppendixProof of Theorem 2 Consider �rst testing one interse
tion hypothesis, HA0say, together with the 
olle
tion of the 
orresponding pairwise 
omparisons.With G1 being the set 
ontaining the interse
tion hypothesis and G2 the
olle
tion of pairwise 
omparisons, G1 and G2 
an be regarded as two setsof partially ordered nullhypotheses as addressed in Maurer et al. (1995). Itis therefore 
lear that our pro
edure ensures that the null hypotheses in G1and G2 are tested at the multiple level �=3.Now, it follows immediately from the Bonferroni inequality that the wholeset of null hypotheses, the three types of interse
tions and their 
orrespond-ing pairwise 
omparisons, are being tested at the multiple level �.



Modi�
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edure for multi{way ANOVA 27Proof of Theorem 3 The proof essentially refers to the one given in Baueret al. (1998). These authors 
onsider the 
ase of multi{dose experimentsin
luding an a
tive 
ontrol but it be
omes 
lear from the proof of theirLemma 2 that their pro
edure is more general. It 
an be used whenever a
olle
tion of nullhypotheses that are to be tested 
an be partioned su
h thatthe subsets 
an be tested at a given lo
al multiple level. It is not a
tuallyrelevant whi
h multiple test within the partitions is used to keep this lo
almultiple level | in our 
ase it is a Bonferroni{Holm pro
edure.Furthermore, in our 
ase, the null hypotheses are partioned naturally intothe pairwise 
omparisons of the main e�e
ts for ea
h fa
tor and the 
om-parisons of the intera
tions. The lo
al multiple levels themselves are again
hosen a

ording to the Bonferroni{Holm idea and this ensures (by Lemma2 of Bauer et al., 1998) the overall multiple level �.
Referen
es1. Bauer P, R�ohmel J, Maurer W, Hothorn L (1998) Testing strategies in multi-dose experiments in
luding a
tive 
ontrol. Statist. in Med. 17, 2133-2146.2. Bergmann B, Hommel G (1988) Improvements of general multiple test pro-
edures for redundant systems of hypotheses. In: Multiple hypotheses testing(Eds. Bauer P, Hommel G, Sonnemann E), 100-115. Springer Verlag, Berlin.3. Bretz F (1999) Powerful modi�
ations of Williams' test on trends. PhD{Thesis,University of Hannover.



28 Vanessa Didelez et al.4. Bretz F, Hayter AJ, Genz A (2001) Criti
al point and power 
al
ulations forthe studentized range test for generally 
orrelated means. J. Statist. Comput.and Simul. 71, 85-99.5. Finner H (1988) Abges
hlossene multiple Spannweitentests. In: Multiple hy-potheses testing (Eds. Bauer P, Hommel G, Sonnemann E), 10-32. SpringerVerlag, Berlin.6. Gabriel KR (1969) Simultaneous test pro
edures { some theory of multiple
omparisons. Ann. Math. Statist. 40, 224-250.7. Hartley HO (1955) Some re
ent developments in analysis of varian
e. Comm.Pure and Appl. Math. 8, 47-72.8. Holm S (1977) Sequentially reje
tive multiple test pro
edures. Statisti
al Re-sear
h Report 1977-1, Institute of Mathemati
s and Statisti
s, University ofUm�ea.9. Holm S (1979) A simple sequentially reje
tive multiple test pro
edure. S
and.J. Statist. 6, 65-70.10. Maurer W, Hothorn LA, Lehma
her W (1995) Multiple 
omparisons in drug
lini
al trials and pre
lini
al assays: a{priori ordered hypotheses. In: Biometriein der 
hmis
h{pharmazeutis
hen Industrie, Vol. 6 (Ed. Vollmer J), 3-18. Fis
herVerlag, Stuttgart.11. Maurer W, Mellein B (1988) On new multiple tests based on independent p{values and the assessment of their power. In: Multiple hypotheses testing (Eds.Bauer P, Hommel G, Sonnemann E), 48-66. Springer Verlag, Berlin.12. Moes
hlin O, Pohl C, Gry
ki E, Steinert F (1995) Statistik und Experimen-telle Sto
hastik. Birkh�auser, Basel.13. Ottestad P (1960) On the use of the F{test in 
ases in whi
h a number ofvarian
e ratios are 
omputed by the same error mean square. S
ien
e Reports



Modi�
ations of the Bonferroni{Holm pro
edure for multi{way ANOVA 29from the Agri
ulture College of Norway 39, 1-8.14. Ottestad P (1970) Statisti
al models and their experimental appli
ation. Grif-�n, London.15. Royen T (1987) Eine vers
h�arfte Holm{Prozedur zum Verglei
h aller Mittel-wertpaare. EDV in Medizin und Biologie 18, 45-49.16. Royen T (1988) The maximum range test { an improved step down pro
edurefor the 
omparison of all pairs of means. EDV in Medizin und Biologie 19, 58-63.17. Royen T (1990) A probability inequality for ranges and its appli
ation tomaximum range test pro
edures. Metrika 37, 145-154.18. Sha�er JP (1986) Modi�ed sequentially reje
tive multiple test pro
edures. J.Amer. Statist. Asso
. 81, 826-831.19. She��e H (1953) A method for judging all 
ontrasts in the analysis of varian
e.Biometrika 40, 87-104.


