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1 Introduction

If several hypotheses are to be tested simultaneously in the context of a sin-
gle statistical experiment, the classical test theory does not account for the
multiplicity of the test decisions. For example the classical F—test in a one—
way analysis of variance is only able to show overall significant differences
among the population means but it cannot specify them. More detailed
comparisons require a multiple test procedure to capture the complexity of
the statistical problem and the multiplicity of possibly wrong decisions.
Multiple tests are often applied in the context of multiple pairwise compar-
ison in the setting of an analysis of variance. In particular, for the case of
a balanced one—way layout numerous procedures have been developed and
improved by various suggestions, for instance with less restrictive adjust-
ments of the size of the individual tests. The corresponding multiple tests
can still be used after appropriate modifications in non—standard situations
such as unequal sample sizes or linear contrasts.

Multiple tests in the context of a two or multi-way ANOVA, however, has
not been paid much attention so far, so that for this case only few procedures
are known, e.g. the method of Hartley (1955) or Ottestad (1960, 1970).
Further, the procedure discussed in Bauer et al. (1998) can be adapted for

this situation, as we will show below.
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In this paper, multiple test procedures are derived, in particular for a two—
way ANOVA, which are less conservative than for instance a procedure
obtained from a Bonferroni adjustment of simultaneous tests originally pro-
posed for a one-way layout. As our proposals are mainly based on a modi-
fication of the Bonferroni—-Holm procedure, they can easily be extended to
applications in a multi-way layout. They are defined as step—wise test pro-
cedures and are thus more powerful than their simultaneous counterparts.
The underlying idea is to consider subfamilies of null hypotheses, for which
a ‘local’ test of multiple level & exists which is obtained using a Bonferroni—
(Holm—)type split (cf. Bauer et al., 1998). In addition, it is investigated
whether the proposed test procedures keep the multiple level a. It can be
shown that two of our proposals fulfill this property whereas the third mod-
ification does not. Nevertheless, all modifications are discussed since they
can all be encountered in practice. The procedures are then compared with
respect to their power by means of Monte—Carlo experiments based on the
simultaneous power (Maurer and Mellein, 1988) and the relative frequency

of correctly rejected false hypotheses.

2 Multiple tests in a two—way ANOVA

The multiple test procedures introduced in Section 2.2 are based on the
Bonferroni-Holm approach. This general principle for constructing step—
wise test procedures allows the application of any suitable level a test. Thus,

our procedures are not restricted to the classical Gaussian case as introduced
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in Section 2.1 nor do they require a balanced design. In fact any multi—way
layout where comparisons of different levels within subclasses are of interest
can be tackled with the proposed procedures and, if desirable or required,
non—parametric tests could be used. However, for the sake of simplicity we
restrict the exposition to the classical two—way ANOVA situation and the
simulation study (Section 3) is based on F—tests for the overall hypotheses

and multiple ¢-tests for the pairwise comparisons.

2.1 Basic notations

For convenience, let us briefly recall the classical two—way ANOVA setting,

where

Yiin = p+ ar + B + (af)m + €xin, (1)

fork=1,..,.K,l=1,....L,n=1,..., Ny, where Ny, are the frequencies of
combinations k in factor A and [ in factor B, and the error terms e, are
assumed to be i.i.d. A'(0,0?) random variables. The parameters oy and 3
are the main effects of factor A and B, respectively, () is the interaction
effect, and u the grand mean.

The family of hypotheses to be tested in this set—up mainly consists of
three intersection hypotheses concerning the main and interaction effects as
well as the hypotheses of all pairwise comparisons within the factors 4, B,
and the interactions A x B. For example, the intersection hypothesis w.r.t.

factor A is denoted as HJ' with

H64:a1=a2=...=aK
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and has to be tested against
H} 34 ke{l,. K}, j#k:a; # .

The intersection hypotheses HEP and H()“B are defined analogously. The
multiple pairwise comparisons are used to identify those factor levels which
actually differ regarding their effect on Y. For factor A, we have in total
T K (K — 1) pairwise comparisons of the type

A(jk) A(jk)

H, taj = ap vs  Hj Loy # ag, 1<j<k<K.

The pairwise interaction comparisons are given by
AB(jk,l AB(jk,l
Hy PV (0 = (@B vs HPUR (0B # (@B)im,

for 1 < j <1< K,1< k< m < L. Other choices of the individual
hypotheses about the interactions are possible and depend on the respec-
tive application and interpretation. With the above choice, we consider the
general case of analysing any kind of differences among the interactions.
In practical applications, however, it will often be sensible to reduce these
to a smaller number of hypotheses being of main interest. For the sake of
simplicity, the hypotheses of pairwise comparisons are in the following con-

KU1 ang gB0)| gABG)

secutively numbered as H(f(j) with j = 1,..., =5 0

analogously.

2.2 Modifications of the Bonferroni—Holm procedure

As a first proposal, we consider the original Bonferroni-Holm procedure

which is straightforward to apply not only in the case of a one-way ANOVA
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but also in ANOVA settings with more than one factor.

To use the Bonferroni-Holm procedure in a two-way ANOVA the p—values
of the pairwise comparisons, only, are considered, irrespective of the par-
ticular factor or interaction to which they belong. These p—values are or-
dered such that pg) < pp) < ... < pr,) with n, = [%K(K -1 +
TL(L — 1) + 1KL(KL — 1)]. The corresponding null hypotheses are de-
noted as H(gl),H(g2), ...,H(gn*). The Bonferroni—-Holm procedure rejects in-
tersection hypotheses whenever at least one of the elementary hypotheses
of the pairwise comparisons forming the intersection is rejected. In contrast
to the procedures presented below the intersection hypotheses are not tested

explicitly.

The BH procedure is given as (p;; i = 1, ..., n,) with step—wise tests

iy =26, i=1n (2)
j=1
where
0 >
¢y =14 for pg) ﬁ i=1,..n., (3)
1 <

and @) are the individual tests for the elementary hypotheses ordered
according to the ordered p—values. For procedures of this type, the following

result originally derived by Holm (1977, 1979) holds.

Theorem 1

The BH procedure according to (2) and (3) keeps the multiple level a.
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Since the Bonferroni—-Holm procedure is applied to the pairwise comparisons

w.r.t. both factors and all interactions, the first adjusted significance level

is given by [K(Kf1)+L(L7?)+KL(KL71)]/2'

This may obviously be very small
which makes it in most applications difficult to reject the corresponding

hypotheses.

Bonferroni-Holm Modification I (BHM 1)

The second test procedure is a combination of the Bonferroni-Holm pro-
cedure and the simple Bonferroni adjustment applied to the intersection
hypotheses. This implies that first, a suitable level a/3 test for each of the
intersection hypotheses H{', HE, and H{'P is performed. If one of these is
rejected it is investigated which of the corresponding means differ signifi-
cantly from each other using the Bonferroni—-Holm procedure.

For a more formal description of this procedure let p;,i € {A, B, A x B},
denote the p-values for the intersection hypotheses, and p;;y, j = 1,...,n;,
the p—values for the corresponding pairwise comparisons such that p;1) <

. < Di(n,) for each i € {A,B,A x B}, where ny = K(Ig_l), ng =

L(L—1) _ KL(KL-1)
5 s MAXxB= ——5 -

The BHM I procedure is then given as ¢ = (¢;,¢:5;i € {4, B,Ax B},j €

{1,...,n;}) with

vi=19 if p a/3, i€ {4,B,Ax B}, (4)
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and Pi(j) = Pi - .]Z;:l @i(k): .7 = 17 ey Ty with

. . a/3
Pi(k) = it pik) n'—ié{;—kl’

k=1,..,n;. (5)
1 <

Here, ¢;(;j) represents the individual test for the elementary hypotheses of

the pairwise comparisons belonging to factor i and arranged according to

the p—values. Concerning the size of this procedure, the following result can

be shown.

Theorem 2

The BHM I procedure according to (4) and (5) keeps the multiple level .

As the proof of this thorem is essentially based on the Bonferroni inequal-
ity (cf. Appendix) it has to be expected that the nominal multiple level of
this test can become smaller than «. Thus, despite of the Bonferroni—-Holm
adjustment being applied separately to each factor as well as for the inter-

actions, the procedure may be rather conservative.

Bonferroni-Holm Modification II (BHM II)

The second modification of the Bonferroni—-Holm procedure is similar to the
BHM I procedure, with the only, but important, difference that the levels
of the three tests of the intersection hypotheses are not simply determined
by the Bonferroni inequality. They now depend on the results of the previ-
ous tests according to a second Bonferroni—-Holm adjustment, such that the

whole test may be regarded as a nested procedure.
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Therefore, the p—values of the tests of the three intersection hypotheses are
ordered such that p(;) < p2) < ps). This modification leads to a less con-
servative procedure since only the smallest p—value is now compared to «/3.
If it is larger than the adjusted level of significance, the procedure stops, and
all intersection hypotheses as well as all hypotheses for the pairwise compar-
isons cannot be rejected. Otherwise those pairwise comparisons have to be
tested, whose intersection yields the rejected intersection hypothesis. This
has to be done according to a Bonferroni-Holm procedure with multiple
level a/3. As soon as a p—value for a pairwise comparison exceeds the cor-
responding level of significance, this particular Bonferroni—-Holm procedure
stops, and the whole procedure continues with the next intersection hypoth-
esis, where p(,) is compared with a/2.

Thus, the whole procedure stops if and only if one of the intersection hy-
potheses cannot be rejected or all hypotheses are rejected. In contrast,
failing to reject one of the pairwise comparisons only implies that the in-
ner Bonferroni—-Holm procedure stops, without testing any further pairwise
comparisons, but the procedure continues with the examination of the next
intersection hypothesis. However, it does not keep the multiple level a, be-
cause apart from false decisions on the first level of the intersection hypothe-
ses a type I error can also be committed on the second level when carrying
out the pairwise comparisons.

The above procedure can, however, be improved so as to keep the multiple

level, namely if the procedure does not only stop as soon as one of the in-
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tersection hypotheses cannot be rejected, but also if one of the elementary
hypotheses of the pairwise comparisons has to be retained.

For a formal description of this BHM II test, let p;,i € {A, B, Ax B}, denote
the p—values for the intersection hypotheses and p(;) the corresponding or-
dered p—values. The ordered p—values for the pairwise comparisons are given
as p(i)(j) with j =1,...,n(;), where n¢;) = ng, and R(i) € {A,B,A x B}
is the anti-rank.

The BHM II procedure is given as (p;, ¢s; ¢ = 1,2,3, j = 1,...,n;) with

the step—wise tests

i—1 n(5)
©a) = D) [%) 11 %)(k)] and (6)
j=1 k=1
J
oG =26 - L1 2o (7)
k=1
where
0 >
Po =9 iy g =123, (8)
1 <
and
0 >
- . a/(3—1+1) . .

1 <
Here, ¢(;y and @(;)(j), respectively, denote the individual tests for the inter-
section and elementary hypotheses arranged according to the corresponding

@Gy ~

p—values. For i = 1, H;;ll (D) T1i21 @)kl is defined as 1.
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Theorem 3

The BHM II procedure according to (6) — (9) keeps the multiple level a.

For the proof we essentially refer to Bauer et al. (1998) as detailed in the
appendix. Like the BHM I procedure, but in other situations, the BHM II

procedure may be rather conservative as will be discussed below.

2.8 Comparison of the procedures

There is a crucial difference between the BH procedure and the BHM T as
well as the BHM II method. While the intersection hypotheses for the fac-
tors A, B and the interaction A x B are explicitly tested in the latter two
procedures, they are only implicitly tested in the BH procedure.

Let for instance the test of H'® have the smallest p-value. If now one of the
hypotheses related to the interaction cannot be rejected, then the BHM II
procedure stops without testing any of the pairwise comparisons related to
the main effects of A and B. Using the BH procedure, however, one might
have the chance to reject some of the pairwise hypotheses of the two main
effects. The BHM I procedure also allows for testing pairwise comparisons
related to the factors A and B, even if some of the pairwise interaction
hypotheses turn out to be non—significant, since here the two factors and
the interaction are treated separately.

As mentioned earlier, the BH procedure might result in very small adjusted
p—values, if many elementary hypotheses are to be tested. But this is also

the case for the other procedures. Consider again the situation that p(4x )
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is the smallest p—value of the intersection hypotheses. Then, the smallest
p—value of the BHM II pairwise comparisons is compared with %,
which is even smaller than the smallest of the BH procedure. However, if
P(ax B) is not the smallest p—value then the adjusted values will be larger.

The smallest possible adjusted level of the BHM I procedure is %,
too. However, the adjusted significance levels that the two smallest p—values
of factor A and B have to be compared with are greater for the BHM II
procedure than for the BHM I method. This is because the three intersec-
tion hypotheses are interconnected not simply by the Bonferroni inequality,
but according to the Bonferroni—-Holm principle.

Another aspect of multiple test procedures besides committing errors of
type I concerns the possibility that their components may lead to overall
decisions which are not free of contradictions. Comparing the above proce-
dures w.r.t. the concepts of coherence and consonance introduced by Gabriel
(1969) it is obvious that all three procedures are coherent by construction,

but only the original Bonferroni—-Holm procedure is also consonant, whereas

the BHM T and BHM II procedures may yield non—consonant decisions.

3 Simulation

In the previous section, it was shown that the Bonferroni—-Holm procedure
and two of its modifications, namely BHM I and BHM II, keep the multiple
level a and thus also control the per—comparison error rate. To get an idea,

which of these three test procedures is best regarding its power, a small
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simulation study is performed, with 1000 simulation runs carried out for
each constellation.

The comparison is based on the simultaneous power, briefly denoted as
power I in the following, as analogue to the multiple level, and on the
proportion of correctly rejected false hypotheses, briefly denoted as power

II, corresponding to the per—comparison error rate.

3.1 Design

The simulation study is based on model (1) assuming normality for the error
terms, homogeneity of variances, and a balanced design. For each factor we
have three levels, i.e. K = L = 3. This results in three pairwise comparisons
for each factor and in 36 hypotheses concerning all possible interaction com-
parisons. The individual tests are performed as F—tests for the intersection
hypotheses and as t—tests for the pairwise comparisons.

The multiple level « is fixed at 5%, which results in 5.95-10~* as adjusted
significance level in the first step of the BH procedure. If p 4« p) is the small-
est p—value of the three intersection hypotheses, the smallest p—value of the
pairwise comparisons using the BHM I or BHM II procedure is compared
with 2.31 - 10~%, which is even smaller than the one of the BH procedure
as noted above. The adjusted significance levels, with which the two small-
est p-values of the tests for the pairwise comparisons within factors A and
B are compared afterwards, are larger using the BHM II procedure with

4.17-1073 and 8.33- 1072 than using the BHM I procedure with 2.78-1073.



14 Vanessa Didelez et al.

Using the polar Marsaglia procedure (Moeschlin et al., 1995) normally dis-
tributed random numbers are generated. The sample size N is fixed at 100
and the grand mean p is 0 without loss of generality. Regarding the vari-
ance, another parameter is important to judge the power of the different
multiple tests: the smallest difference of two (non equal) means denoted by
0. Different values of § allow us to get an idea of the capacity of the various
procedures to detect small differences in the means. It seems reasonable
not to look at § and o separately, but to use a combined measure, i.e. §/o.
Thus, the actual value of ¢ is no longer of particular interest. It is therefore
fixed at 1, but varying values of §/o are considered ranging from 0.03 to
0.90 with a step width of 0.03. The obtained Monte—Carlo results are only
reported for the most interesting cases.

Three constellations of true and false elementary hypotheses are investi-
gated. First, all elementary hypotheses, i.e. those belonging to the two fac-
tors and to the interaction, are true. Second, they are all false, and in the
third case they are partially true and false.

Let us denote the number of true elementary hypotheses belonging to the
factors A, B and the interaction A x B as |I;| as above, the number of false
elementary hypotheses as |I;],i € {A, B, A x B}. If some of the elementary
hypotheses of the interaction are false, there are different possibilities for
the number of true and false hypotheses. We decide to report only the cases
|[Taxp| = 12 or 5. For all other situations with |I4x | < 12, the results tend

to be of the same order of magnitude. For |I4 p| >18, however, the results
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Table 1 Power I and power II for the situation of main effects for exactly two

levels of each factor A and B and no interactions.

BHM I BHM II BH
0/c | Power I Power II | Power I Power II | Power I Power II
0.15 0.006 0.156 0.000 0.139 0.000 0.073
0.18 0.028 0.306 0.000 0.255 0.006 0.153
0.21 0.074 0.436 0.000 0.333 0.011 0.244
0.24 0.188 0.565 0.000 0.394 0.022 0.357
0.27 0.383 0.755 0.000 0.466 0.138 0.531
0.30 0.590 0.859 0.000 0.488 0.270 0.664
0.33 0.730 0.919 0.000 0.499 0.459 0.786
0.36 0.858 0.964 0.000 0.500 0.644 0.881
0.39 0.929 0.985 0.000 0.500 0.781 0.934
0.42 0.982 0.994 0.000 0.500 0.892 0.968
0.45 0.997 0.999 0.000 0.500 0.942 0.984

are quite different especially concerning the most powerful test. Only in the
case described in Table 4 the results obtained for |I4 x| > 18 are in general
of similar size as those obtained for [I4xp| < 12. Some selected simulation

results are summarized in Tables 1-8.

3.2 Results

Level of Significance

The situation of homogeneity of means and of no interaction effects is mainly
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considered to assess the nominal multiple level achieved by the proposed
procedures. In the simulation, we observe a multiple level of significance
of 3.7% for the BHM I and II procedure and a value of 3.5% for the BH
procedure. Thus, the problem already addressed above, that the nominal
level can be clearly below «, in fact occurs. All procedures are conservative
with the BH procedure slightly more conservative than the others.

For the nominal per—comparison error rate we get a value of 0.22% using the
BHM I and IT procedure and a value of 0.14% using the BH method. Again,
the latter is most conservative. Note that the nominal multiple level and
the nominal per—comparison error rate are also kept with designs different

from the one chosen here.

Power

The simultaneous power depends substantially more on the size of the dif-
ferences in the means than the power II. To achieve a simultaneous power
larger than zero, /0 has to be at least — with a few exceptions — 0.15 if all
elementary hypotheses concerning the interaction terms are true. Otherwise
d/o must be larger than 0.27. For a positive power I, however, we only need
the differences in the means to be 0.03 times the standard deviation.
Regarding the remaining simulation results, let us point out that there is
no simple answer to the question which of the procedures is best with re-
gard to its power. One should be aware of the fact that the performances

of the test procedures heavily depend on the true parameter values. But
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Table 2 Power I and power II for the situations of no (one) true null hypothesis
for the main effects of factor A, one (no) for the main effects of factor B, and 12
true (in brackets 5) null hypotheses for the interactions. The results are the same

for both constellations of factors A and B.

BHM 1 BHM II BH

d/c | Power I Power II | Power I Power II | Power I Power II

0.39 | 0.040 0.850 0.000 0.721 0.101 0.879
(0.114)  (0.941) | (0.000)  (0.763) | (0.242)  (0.957)
0.42 | 0.137 0.890 0.000 0.762 0.232 0.919
(0.143)  (0.958) | (0.000)  (0.781) | (0.314)  (0.970)
045 | 0.194 0.923 0.000 0.808 0.381 0.946
(0.359)  (0.977) | (0.000)  (0.798) | (0.540)  (0.980)
0.48 | 0.364 0.951 0.000 0.842 0.539 0.968
(0.548)  (0.983) | (0.000)  (0.806) | (0.727)  (0.990)
0.51 | 0.493 0.970 0.000 0.857 0.664 0.981
(0.793)  (0.994) | (0.000)  (0.822) | (0.850)  (0.997)
0.54 | 0.644 0.980 0.000 0.873 0.797 0.989
(0.824)  (0.995) | (0.000)  (0.840) | (0.922)  (0.998)
0.57 | 0.784 0.989 0.000 0.886 0.855 0.993
(0.880)  (0.997) | (0.000)  (0.869) | (0.954)  (0.999)
0.60 | 0.859 0.994 0.000 0.896 0.937 0.997
(0.934)  (0.998) | (0.000)  (0.900) | (0.973)  (0.999)
0.63 | 0.902 0.996 0.000 0.895 0.959 0.998
(0.981)  (0.999) | (0.000)  (0.914) | (0.992)  (1.000)

0.66 0.972 0.999 0.000 0.901 0.992 1.000

(0.987)  (1.000) | (0.000)  (0.922) | (0.993)  (1.000)




18 Vanessa Didelez et al.

Table 3 Power I and power II for the situations of three (one) true null hypotheses
for the main effects of factor A, one (three) for the main effects of factor B, and

no interactions. The results are the same for both constellations.

BHM I BHM II BH
0/c | Power I Power II | Power I Power II | Power I Power II
0.15 0.084 0.184 0.084 0.184 0.031 0.089
0.18 0.135 0.275 0.135 0.275 0.025 0.121
0.21 0.301 0.447 0.301 0.447 0.108 0.238
0.24 0.443 0.614 0.443 0.614 0.213 0.379
0.27 0.595 0.717 0.595 0.717 0.550 0.513
0.30 0.721 0.832 0.721 0.832 0.464 0.633
0.33 0.881 0.933 0.881 0.933 0.668 0.790
0.36 0.934 0.965 0.934 0.965 0.809 0.889
0.39 0.961 0.985 0.961 0.985 0.890 0.931
0.42 0.976 0.992 0.976 0.992 0.940 0.966
0.45 1.000 1.000 1.000 1.000 0.992 0.998

additional information for instance due to subject—matter knowledge may
help to reach a decision. The results are now given in more detail.

A striking result is that the simultaneous power of the BHM II procedure
is exactly zero whenever at least two of the intersection hypotheses but not
all of the associated pairwise hypotheses are false (cf. Tables 1, 2). Since
this procedure stops as soon as one of the elementary hypotheses cannot

be rejected, the false hypotheses belonging to the other factor will always
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Table 4 Power I and power II for the situations of no main effects of the factors

A and B, and 12 (in brackets 5) true null hypotheses for the interactions.

BHM I BHM II BH
0/c | Power I Power II | Power I Power II | Power I Power II
0.39 0.037 0.800 0.037 0.800 0.085 0.848
(0.083) (0.932) (0.083) (0.932) (0.154) (0.945)
0.42 0.104 0.870 0.104 0.870 0.200 0.902
(0.218) (0.955) (0.218) (0.955) (0.284) (0.963)
0.45 0.216 0.906 0.216 0.906 0.344 0.930
(0.400) (0.972) (0.400) (0.972) (0.488) (0.978)
0.48 0.367 0.939 0.367 0.939 0.473 0.956
(0.585) (0.985) (0.585) (0.985) (0.657) (0.988)
0.51 0.485 0.957 0.485 0.957 0.593 0.970
(0.696) (0.989) (0.696) (0.989) (0.757) (0.991)
0.54 0.617 0.971 0.617 0.971 0.741 0.982
(0.834) (0.994) (0.834) (0.994) (0.869) (0.995)
0.57 0.774 0.985 0.774 0.985 0.848 0.991
(0.872) (0.996) (0.872) (0.996) (0.919) (0.997)
0.60 0.859 0.992 0.859 0.992 0.894 0.994
(0.957) (0.998) (0.957) (0.998) (0.963) (0.999)
0.63 0.921 0.996 0.921 0.996 0.958 0.998
(0.963) (0.999) (0.963) (0.999) (0.978) (0.999)
0.66 0.946 0.998 0.946 0.998 0.978 0.999
(0.995) (1.000) (0.995) (1.000) (0.997) (1.000)
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Table 5 Power I and power II for the situation of no main effects of the factors

A and B and all possible interactions present.

BHM I BHM II BH
0/c | Power I Power II | Power I Power II | Power I Power II
0.24 0.000 0.856 0.000 0.856 0.000 0.868
0.27 0.025 0.898 0.025 0.898 0.006 0.904
0.30 0.133 0.932 0.133 0.932 0.095 0.933
0.33 0.350 0.959 0.350 0.959 0.245 0.957
0.36 0.530 0.976 0.530 0.976 0.421 0.973
0.39 0.648 0.986 0.648 0.986 0.563 0.983
0.42 0.774 0.992 0.774 0.992 0.659 0.987
0.45 0.878 0.996 0.878 0.996 0.810 0.994
0.48 0.954 0.999 0.954 0.999 0.894 0.997

be retained which yields the above phenomenon. In addition, its power II
can never reach 1 in these situations since the BHM II procedure can reject
all false elementary hypotheses within one factor, but not those within the
other one if it stops when not rejecting some true elementary hypotheses.
As illustrated in Table 1, the power II, for instance, cannot exceed 50% if
there are exactly two false elementary hypotheses per factor regarding the
main effects (and no interactions).

Another general result is that both modifications, BHM T and BHM 1II, have
the same power I and II when exactly one intersection hypothesis is false

(cf. Tables 3, 4, 5). This seems plausible as both procedures would typically
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Table 6 Power I and power II for the situation of all three main effects of factor

A and B being present and no interactions.

BHM I BHM II BH
0/c | Power I Power II | Power I Power II | Power I Power II
0.15 0.000 0.495 0.003 0.336 0.000 0.284
0.18 0.006 0.641 0.026 0.423 0.000 0.402
0.21 0.064 0.755 0.088 0.538 0.000 0.500
0.24 0.190 0.842 0.254 0.693 0.006 0.586
0.27 0.361 0.894 0.445 0.797 0.032 0.678
0.30 0.652 0.950 0.711 0.902 0.177 0.795
0.33 0.802 0.973 0.843 0.955 0.383 0.866
0.36 0.882 0.985 0.906 0.973 0.600 0.925
0.39 0.965 0.996 0.974 0.994 0.763 0.957
0.42 0.991 0.999 0.992 0.997 0.886 0.980
0.45 0.997 1.000 0.998 0.999 0.942 0.993

start by testing this intersection hypothesis using the same local level of
significance.

In the case that there are no interactions, the power of the Bonferroni—-Holm
procedure is usually the worst (cf. Tables 1, 3, 6). This is because the BHM

I and IT procedures start with an adjusted significance level for the pairwise

a/3
3—i+1

comparisons of the main effects of which is much larger than the one

of the BH procedure with T for 1 < i < 3. The bad performance of the

Bonferroni-Holm procedure, here, is due to the much higher number of el-
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ementary hypotheses for the interactions than for the main effects together
with all these interaction hypotheses being true. In a situation where the
subsets of elementary hypotheses are of equal size one might expect results
that are more favourable for the BH procedure. Further, if there are no
interactions and the power I of the BHM II procedure is not zero, BHM II
is usually better than BHM I w.r.t. power I but worse regarding power II
(e.g. Table 6) so that no clear ranking of these two modifications can be
established for these constellations.

If there is a considerable amount of interactions, however, the Bonferroni—
Holm procedure is usually the most powerful (cf. Tables 2, 4, 7). A few
ambiguous situations occur when all interactions are present with no main
effects in one ore both factors (cf. Tables 5, 8) but the power IT of BHM I

and of the original Bonferroni—-Holm then still seem to be very similar.

4 Discussion

From the above simulation results it becomes obvious that no simple and
general rule can be given for one of the procedures being the best one. Such
a rule does not even exist if it is restricted to particular situations since
the performance of the tests heavily depends on the true parameter con-
stellation. It would of course be helpful to have some further knowledge of
the empirical situation before choosing a test procedure. Typically, such an
information is, however, not known in advance. Without going into details,

one possible way—out might be to perform preliminary tests in order to reach
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Table 7 Power I and power II for the situations of no (all) main effects of factor
A, all (no) main effects of factor B, and 12 (in brackets 5) true null hypotheses

for the interactions. The results are the same for both constellations.

BHM 1 BHM II BH

0/c | Power I Power II | Power I Power II | Power I Power II

0.39 | 0.051 0.840 0.078 0.841 0.119 0.881
(0.093)  (0.937) | (0.000)  (0.828) | (0.181)  (0.951)
042 | 0.131 0.882 0.151 0.896 0.231 0.914
(0.189)  (0.961) | (0.000)  (0.850) | (0.354)  (0.972)
045 | 0.245 0.923 0.282 0.927 0.398 0.946
(0.402)  (0.975) | (0.003)  (0.865) | (0.583)  (0.983)
0.48 | 0.383 0.950 0.417 0.951 0.520 0.965
(0.524)  (0.983) | (0.010)  (0.875) | (0.644)  (0.988)
0.51 | 0.507 0.966 0.556 0.968 0.671 0.979
(0.690)  (0.990) | (0.060)  (0.889) | (0.773)  (0.993)
0.54 | 0.639 0.979 0.686 0.981 0.760 0.987
(0.847)  (0.996) | (0.247)  (0.914) | (0.884)  (0.997)
0.57 | 0.797 0.984 0.800 0.986 0.896 0.995
(0.893)  (0.997) | (0.474)  (0.945) | (0.942)  (0.998)
0.60 | 0.839 0.991 0.861 0.992 0.895 0.994
(0.927)  (0.998) | (0.758)  (0.974) | (0.951)  (0.999)
0.63 | 0.926 0.995 0.926 0.996 0.956 0.998
(0.972)  (0.999) | (0.912)  (0.991) | (0.992)  (1.000)
0.66 | 0.971 0.999 0.986 0.998 0.990 0.999

(1.000)  (1.000) | (0.984)  (0.997) | (1.000)  (1.000)
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Table 8 Power I and power II for the situations of no (all) main effects of factor
A, all (no) main effects of factor B, and all interactions present. The results are

the same for both constellations.

BHM I BHM II BH
0/c | Power I Power II | Power I Power II | Power I Power II
0.24 0.000 0.835 0.000 0.789 0.000 0.853
0.27 0.021 0.897 0.022 0.811 0.032 0.932
0.30 0.094 0.932 0.099 0.850 0.135 0.943
0.33 0.244 0.961 0.257 0.893 0.240 0.962
0.36 0.616 0.980 0.622 0.945 0.633 0.983
0.39 0.676 0.987 0.677 0.956 0.641 0.988
0.42 0.770 0.993 0.773 0.972 0.757 0.994
0.45 0.889 0.996 0.890 0.985 0.883 0.996
0.48 0.938 0.998 0.939 0.992 0.912 0.998
0.51 0.973 0.999 0.975 0.997 0.962 0.999

a decision about the final test procedure. Such an approach can be regarded
as an adaptive procedure where the final multiple test depends on the given
data. When using such an adaptive procedure it needs to be checked, again,
whether the multiple level is being kept and how the simultaneous power or
power II behave. To summarize, the results of Section 3 may be regarded
as rough hints when confronted with the problem of selecting an adequate
test.

Furthermore, it has to be mentioned that the three procedures introduced in
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this paper are not optimal, since none of them fully exhausts the significance
level of 5%. The question arises whether improvements can be achieved by
a more specific determination of the adjusted levels, as for instance those
proposed by Shaffer (1986) or Royen (1987) exploiting logical dependencies
among the null hypotheses and/or using different test statistics (cf. Royen,
1988, 1990, Finner, 1988, Bergmann and Hommel, 1988). Since the proposed
procedures of the Bonferroni—-Holm type are generally applicable they can
be easily modified accounting for the approaches presented by the authors
listed above.

Let us point out that another approach could be based on a Scheffé-type
procedure (Scheffé, 1953). The family of null hypotheses that we are investi-
gating in the two—way layout can in fact be regarded as contrasts in a one—
way layout with K x L levels of one combined factor. However, as the Scheffé
procedure ensures the multiple level for all contrasts, not only for those of
specific interest, we expect it to perform worse than the above Bonferroni—
Holm modifications which are designed to find the ‘deviant’ main effects
and interactions. Further simulations are required to corroborate this and
especially to quantify the difference in performance.

As a last point to be made, it has to be examined how the three procedures
behave w.r.t. their power, if they are used in the context of an ANOVA with
more than two factors. Since the adjusted levels will then be even smaller, it
is obvious that any rejection of a hypothesis becomes improbable for small

differences. Other techniques based on modelling the correlation structure
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e.g. in the framework of a multivariate ¢t—distribution and thus avoiding any
adjustments may be more appropriate (cf. Bretz, 1999, and Bretz et al.,
2001), although such an approach requires more specific distributional as-
sumptions.

Finally, let us emphasize that the problems occurring when adjusting for
multiplicity in a multi-way ANOVA point to the necessity to keep the num-
ber of hypotheses to be tested small. It could e.g. be thought about whether
all pairwise interaction hypotheses are equally important or whether some

of them could be discarded.

5 Appendix

Proof of Theorem 2 Consider first testing one intersection hypothesis, Hg!
say, together with the collection of the corresponding pairwise comparisons.
With G being the set containing the intersection hypothesis and G5 the
collection of pairwise comparisons, G; and G5 can be regarded as two sets
of partially ordered nullhypotheses as addressed in Maurer et al. (1995). It
is therefore clear that our procedure ensures that the null hypotheses in G
and G, are tested at the multiple level a/3.

Now, it follows immediately from the Bonferroni inequality that the whole
set of null hypotheses, the three types of intersections and their correspond-

ing pairwise comparisons, are being tested at the multiple level «.
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Proof of Theorem 8 The proof essentially refers to the one given in Bauer
et al. (1998). These authors consider the case of multi-dose experiments
including an active control but it becomes clear from the proof of their
Lemma 2 that their procedure is more general. It can be used whenever a
collection of nullhypotheses that are to be tested can be partioned such that
the subsets can be tested at a given local multiple level. It is not actually
relevant which multiple test within the partitions is used to keep this local
multiple level — in our case it is a Bonferroni-Holm procedure.

Furthermore, in our case, the null hypotheses are partioned naturally into
the pairwise comparisons of the main effects for each factor and the com-
parisons of the interactions. The local multiple levels themselves are again
chosen according to the Bonferroni—-Holm idea and this ensures (by Lemma

2 of Bauer et al., 1998) the overall multiple level .
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