
Causal Reasoning in Graphical Time Series Models

Michael Eichler
Department of Quantitative Economics

University of Maastricht, NL
m.eichler@ke.unimaas.nl

Vanessa Didelez
Department of Statistical Science
University College London, UK

vanessa@stats.ucl.ac.uk

Abstract

We propose a definition of causality for time
series in terms of the effect of an interven-
tion in one component of a multivariate time
series on another component at some later
point in time. Conditions for identifiability,
comparable to the back–door and front–door
criteria, are presented and can also be veri-
fied graphically. Computation of the causal
effect is derived and illustrated for the linear
case.

1 INTRODUCTION

In the time series literature, the notion of causality is
closely linked to the seminal ideas of Granger (1969).
Roughly speaking, he proposed to call a time series
noncausal for another series if the past of the former
does not predict the future of the latter given other
relevant information about the past. One might in-
fer from this that if a time series is not noncausal in
Granger’s sense then it is potentially causal, where the
emphasis is on ‘potentially’ due to the well–known fact
that ‘association is not causation.’

Here, we propose a definition and identifiability crite-
ria for when a time series is actually causal for another
series. Our approach is based on the notion of inter-
ventions, external changes to the system, which we
regard as being at the core of causal reasoning — typ-
ically one has a future (or past) intervention in mind
when the term cause is used. Hence, we consider the
effect of an intervention in one component of the time
series, at a given point in time, on another (or the
same) component at a later point in time.

We make use of a special graphical representation of
the dependence structure within multivariate time se-
ries in order to capture the dynamic nature of the de-
pendencies (Eichler, 2005, 2006, 2007). This is based

on conditional independencies between the past and
future of time series, leading us back to the ideas of
Granger. More specifically, noncausality in Granger’s
sense will be represented by the absence of an arrow
in the graph as detailed in Section 4.3. We can then
formulate graphical criteria that allow identification of
the effect of an intervention in a way resembling the
back– and front–door criteria (Pearl, 1995).

The outline of the paper is as follows. We set the scene
in Section 2, formalising in particular our understand-
ing of causality as effect of an intervention. Section 3
gives the time series version of the back–door criterion.
The main results are presented in Secion 4, where we
address the graphical verification of identifiability.

2 PRELIMINARIES

Throughout we consider a multivariate stationary
time series X = {X(t), t ∈ Z} with X(t) =
(X1(t), . . . , Xd(t))′. Let V be the index set {1, . . . , d}.
For any A ⊆ V we define XA = {XA(t)} as the multi-
variate subprocess with components Xa, a ∈ A. Fur-
thermore, XA(t) denotes the history of XA up to and
including t, i.e. the set {XA(s), s ≤ t}. Throughout
we assume that X is a stationary, mixing stochastic
process and that its conditional distributions, denoted
by P(X(t + 1)|X(t)), have regular almost surely abso-
lutely continuous versions.

2.1 INTERVENTIONS

The key to our definition of causal effect are so–called
intervention indicators (Pearl, 1993; Spirtes et al.,
2000; Lauritzen, 2001; Dawid, 2002), denoted by σa(t)
where σ stands for ‘strategy’, indicating whether or
not we intervene in the system and manipulate Xa(t),
a ∈ V , or whether we leave ‘nature’ free reign (cf. also
Didelez et al., 2006). More specifically, the role of σ is
defined as follows.

Definition 2.1 (Regimes) Let X be a multivari-



ate stationary time series. The intervention indicator
σa(t), a ∈ V , takes values in {∅, s ∈ S} with the fol-
lowing interpretations.

(i) Idle Regime: When σa(t) = ∅ we let Xa(t) arise
naturally without intervention. The conditional
distributions of Xa(t) given σa(t) and possibly
other components are not necessarily known. We
also call this the observational regime.

(ii) Atomic interventions: Here S = X , the domain
of Xa(t), such that σa(t) = x∗ means we inter-
vene and force Xa(t) to assume the value x∗. In
particular this means that

P(Xa(t) = x|XV (t− 1);σa(t) = x∗)
= P(Xa(t) = x|σa(t) = x∗) = δ{x∗}(x),

where δD(x) is one if x ∈ D and zero otherwise.
(iii) Conditional intervention: Here S consists of func-

tions g(xC(t − 1)) ∈ X , C ⊂ V , such that
σa(t) = g means Xa(t) is forced to take on a value
that depends on past observations of XC(t − 1),
i.e.

P(Xa(t) = x|XV (t− 1);σa(t) = g)
= P(Xa(t) = x|XC(t− 1);σa(t) = g)
= δ{g(XC(t−1))}(x).

(iv) Random intervention: Here S consists of distribu-
tions meaning that Xa(t) is forced to arise from
such a distribution, i.e. the conditional distribu-
tion P(Xa(t)|XV (t− 1);σa(t) = s) is known and
possibly a function of XC(t− 1), C ⊆ V .

Remark 2.2 (Non–randomness of σ) The inter-
vention indicator σa(t) is not a random variable. It
is a decision variable and indicates different situations
under which data could be generated or observed and
hence indexes the corresponding distributions.

In the following we use the symbol ⊥⊥ and proper-
ties of conditional independence as presented by Dawid
(1979). When this symbol is applied to the interven-
tion indicator, e.g. if we write Xb(t + h)⊥⊥σa(t), it
means that the distribution of Xb(t + h) is the same
under any regime considered (Dawid, 2002). Similarly
we write E∅ and Eσa(t)=s to distinguish between ex-
pectations with respect to the idle regime or under a
specific intervention s (the shorthand Es is used when
it is clear from the context what variable is intervened
in). In contrast EFX denotes conditional expectation
given F (e.g. Kallenberg, 2001).

We will make the following assumptions about how
an intervention in Xa(t) affects the remaining system.
These assumptions have to be checked in any given
application as to whether the particular intervention of

interest satisfies them, and will typically also depend
on what components X1, . . . , Xd are included in the
multivariate time series.

Assumption 2.3 (Intervention) Let X be a mul-
tivariate stationary time series. An intervention in
Xa(t) is assumed to have the following properties.

(i) (XV (t− 1), XV \{a}(t))⊥⊥σa(t);

(ii) {XV (t + j), j ∈ N}⊥⊥σa(t)|XV (t).

Part (i) ensures that whether or not we intervene in
Xa(t) is not informative or informed by any of the ear-
lier variables or the remaining contemporaneous vari-
ables. In particular this excludes instantaneous causal-
ity, as is justified when the variables XV (t) truely arise
at the same time.

The second assumption ensures that future variables
are not associated with the intervention other than
through past variables. The two together are meant to
reflect our concept of an intervention being an isolated
exogenous change of the system.

Remark 2.4 (Multiple interventions) Interven-
tions and their indicators can be extended to the case
of more than one variable, e.g. σA(t), A ⊂ V , as well as
to more than one point in time, e.g. σa(k), k ∈ K ⊂ Z.
In that case each σa(k), a ∈ A, k ∈ K, is assumed to
satisfy the above conditions individually. In the follow-
ing we mostly only consider the case of one component
and one point in time, though multiple interventions
are implicitly needed for the front–door criterion in
Section 4.5.

An obvious question to address is, why we should be-
lieve in Assumptions 2.3 for a given data situation. In
particular in cases of ‘confounding’ it is well known
that whether or not we intervene is informative for
variables other than only the one that is manipulated
because confounding typically means that the data (in
the observational regime) might exhibit some kind of
association that would not be present under an ex-
perimental setting. It is, in fact, the presence of such
potential confounding that motivates the methods pro-
posed in the following sections. The idea is to in-
clude in our considerations unobservable variables or
processes such that we can reasonably believe, based
on substantive background knowledge, that Assump-
tions 2.3 are satisfied. Then we give sufficient criteria
that guarantee that the causal effect can be identified
based on the observable processes alone. In the fol-
lowing we regard the whole multivariate time series
X = XV = (X1, . . . , Xd) as the system that includes
all components judged relevant but not necessarily ob-
servable, whereas XS , S ⊆ V , will denote a reduced
subprocess.



2.2 CAUSAL EFFECT

In general, the causal effect of an intervention can be
any function of the post–intervention distribution of
{XV (t + j)|j ∈ N} given σa(t) = s. We define below
the causal effect of intervening in Xa(t) on Xb(t + h)
as the average of its post intervention distribution.

Definition 2.5 (Average causal effect) The av-
erage causal effect (ACE) of Xa(t) on Xb(t + h),
a, b ∈ V, h > 0 following strategy s is given by

ACEs = Eσa(t)=sXb(t + h).

As E∅Xb(t+h) = 0, the ACEs can be regarded as the
average difference between no intervention and strat-
egy s. Also, we can compare different strategies e.g.
by considering ACEs1−ACEs2

Even though we focus on the ACE, the results
presented in this paper hold more generally for
Eσa(t)f

(
Xb(t + h)

)
for any measurable function

f and thus for the post–intervention distribution
P(Xb(t + h)|σa(t) = s) itself.

3 IDENTIFICATION OF ACE

A priori there is no reason why data that is not col-
lected under the regime of interest should allow es-
timation of the ACE. By identifiability we mean the
possibility to express the ACE in terms of quantities
that are known or estimable under the observational
regime.

The criterion presented below ensures such an iden-
tification of the causal effect. It is called ‘back-door’
criterion due to the graphical way of checking it, which
will be presented in Section 4, where we will also briefly
sketch another criterion called ‘front-door’ criterion.

Theorem 3.1 (Back-door criterion) Let a, b ∈
S ⊆ V . Suppose that Assumptions 2.3 hold and
Xb(t + h)⊥⊥σa(t) | XS(t) for all h ∈ N. If a con-
ditional intervention s is considered, as in Definition
2.1(iii, iv), then we also assume that the conditioning
components are contained in S, i.e. C ⊂ S.
Then S identifies the effect of Xa(t) on Xb(t + h) for
all h ∈ N, and the ACEs is given by

EsXb(t+h) = E∅E
Xa(t−1),XS\a(t)
s E

XS(t)
∅ Xb(t+h). (1)

Proof: As we assume Xb(t + h)⊥⊥σa(t)|XS(t) it fol-
lows that

E
XS(t)
s Xb(t + h) = EXS(t)

∅ Xb(t + h)

yielding the term on the very right of (1). The
expectation in the middle of (1) is known as

C ⊂ S. Furthermore, from Asumptions 2.3 and
the properties of conditional independence, we have
XS(t−1), XS\{a}(t)⊥⊥σa(t), which yields EsZ = E∅Z
for all σ{XS(t − 1), XS\{a}(t)}–measurable random
variables Z, which yields the first expectation of (1)
and concludes the proof.

In (1) we can estimate EXS(t)
∅ Xb(t + h) from observa-

tional data, while EXa(t−1),XS\a(t)
s is the expectation

w.r.t. the intervention which is fully known. The outer
expectation is again observational. Hence, provided
that XS has been observed, we can use the above to
estimate the causal effect. Dawid (2002) calls such a
set S ‘sufficient covariates’ or ‘de–confounder’. Note
that under Assumptions 2.3, V always has to identify
the causal effect due to condition (ii). In this sense we
can say that the whole system V contains all ‘relevant’
variables or components.
Example 3.2 Let X be a purely nondeterministic sta-
tionary Gaussian process with spectral matrix f(λ),
λ ∈ [−π, π] such that the eigenvalues of f(λ) are
bounded and bounded away from zero uniformly for
all λ ∈ [−π, π]. Furthermore, suppose that we are in-
terested in the average causal effect of setting Xa(t)
to the value x∗ and that the effect is identified by the
variables in S. By the assumptions on the spectral ma-
trix, the subprocess XS has a mean-square convergent
autoregressive representation

XS(t) =
∞∑

j=1

Φ(j) XS(t− j) + εS(t), (2)

where ε(t), t ∈ Z, are independent and identically nor-
mally distributed with mean zero and non-singular co-
variance matrix Σ. Moreover, the best h-step predic-
tor EXS(t)

∅ Xb(t + h) is equal to the best linear h-step
predictor, that is,

E
XS(t)
∅

(
Xb(t+h)

)
=

∑
j∈N

∑
s∈S

Φ(h)
bs (j)Xs(t−j+1). (3)

It follows from Theorem 3.1 that the causal effect of
an intervention s setting Xa(t) to x∗ is given by

Es

(
Xb(t + h)

)
= Φ(h)

ba (1)x∗,

that is, the ACE is identical to the best linear predictor
given a single observation Xa(t) = x∗. The coefficient
Φ(h)

ba (1) of the multi-step predictor can be computed
recursively from the coefficients of the autoregressive
representation in (2) using the relations

Φ(h)
ba (1) =

h−1∑
j=1

∑
s∈S

Φ(1)
bs (j)Φ(h−j)

sa (1) + Φ(1)
ba (h)

where Φ(1)(j) = Φ(j) (Box et al., 1994, Section 5.3).



4 GRAPHICAL CRITERIA

We suggest a graphical representation of the depen-
dencies which allows us to link Granger–(non)causality
to intervention causality and to read off the graphs
whether the back–door criterion is met.

4.1 GRANGER–NONCAUSALITY

The following notion of strong Granger–noncausality
(e.g. Florens and Mouchart, 1982) forms the base of
our graphical time series models.

Definition 4.1 (Granger–noncausality) Let X =
XV be a stationary multivariate time series. Let A
and B be disjoint subsets of V and let XA, XB be the
corresponding subprocesses of X.

(i) Then XA is (strongly) Granger–noncausal for XB

up to horizon h, h ∈ N, with respect to the pro-
cess XV if

XB(t + k)⊥⊥XA(t)|XV \A(t)

for all k = 1, . . . , h and t ∈ Z. If the above holds
only for h = 1 we simply say that XA is (strongly)
Granger–noncausal for XB with respect to XV ,
and this will be denoted by XA 9 XB [XV ]. If
the above holds for all h ∈ N we say that XA is
(strongly) Granger–noncausal for XB at all hori-
zons, and this will be denoted by XA

∞9 XB [XV ].
(ii) The processes XA and XB are contemporaneously

independent with respect to the process XV if

XA(t + 1)⊥⊥XB(t + 1)|XV (t)

for all t ∈ Z. Contemporaneous independence will
be denoted by XA � XB [XV ].

Strong Granger–noncausality means that the past of
XB up to time t does not help to predict XA at
the next point in time t + 1 given information about
the past of all the remaining components (including
XA’s past). In contrast, strong Granger–noncausality
at all horizons implies that this holds for any time
in the future. The latter is more restrictive and if
not stated otherwise we will only deal with strong
Granger–noncausality at horizon h = 1. Both proper-
ties are ‘strong’ because they are phrased in terms of
stochastic independence, not correlation; but for ease
of notation we usually drop the ‘strong’. A reason
for the possible presence of contemporaneous depen-
dence are hidden variables or processes not contained
in X1, . . . , Xd which might induce dependencies that
cannot be explained by the observed past. This will
play an important role when it comes to causal infer-
ence.

1 2 3

z

Figure 1: Mixed graph associated with the processes
X and Z in Example 4.2.

We represent Granger–noncausality graphically by
identifying the components of X with the nodes of
a graph, where the absence of a directed edge a� b
means Xa 9 Xb [XV ] and the absence of a undirected
(dashed) edge a� b stands for Xa � Xb [XV ].

We note that more detailed representations of the dy-
namic dependencies among the components of X could
be obtained by treating every variable at every point
in time separately (e.g. Dahlhaus and Eichler, 2003;
Moneta and Spirtes, 2005). However, this can lead
to unwieldy graphs with much redundant information.
Also, such a representation would depend on the sam-
pling frequency which is often chosen arbitrarily.

Example 4.2 Consider the following trivariate Gaus-
sian process X with

X1(t) = α1 Z(t− 2) + β12 X2(t− 1) + ε1(t),
X2(t) = α2 Z(t− 1) + β23 X3(t− 1) + ε2(t),
X3(t) = β32 X2(t− 1) + ε3(t),

where Z and εi, i = 1, 2, 3, are independent Gaussian
white noise processes with mean 0 and variance σ2.
The corresponding graph is shown in Figure 1.

In order to be more specific about the properties of
such graphs, we need to introduce some notation first.

4.2 GRAPH NOTATION

The graphs G = (V,E) used here are so–called mixed
graphs that may contain two types of edges directed
edges a � b or a � b, and (dashed-) undirected1

edges a � b for distinct nodes a, b. Multiple edges
between two nodes are allowed if they are of different
type or orientation, i.e. there can be up to three edges
between two nodes. Most of the terminology known
for directed acyclic graphs can still be applied for these
mixed graphs except for the notion of paths. A path in
our graphs cannot uniquely be defined by a sequence
of nodes as there may be different edges between two
nodes. Hence a path π from a to b is defined as a
sequence π = (e1, . . . , en) of not necessarily distinct

1In contrast to Richardson (2003), we use dashed undi-
rected edges� instead of bi–directed edges� as we use
directed edges exclusively for indicating direction in time;
dashed edges with a similar connotation have been used by
Cox and Wermuth (1996).



edges ei ∈ E, such that ei is an edge between vi−1

and vi for some sequence of not necessarily distinct
vertices v0 = a, v1, . . . , vn = b. A path π in G is called
a directed path if it is of the form a� . . .� b or a�
. . . � b. Similarly, if π consists only of undirected
edges, it is called an undirected path. Furthermore, a
path between vertices a and b is said to be b-pointing
if it has an arrowhead at the endpoint b, that is, en =
vn−1� b. More generally, we call a path a B-pointing
path if it is b-pointing for some b ∈ B. Similarly, we
call a path between vertices a and b bi–pointing if it has
an arrowhead at both endpoints, that is, e1 = a� v1

and en = vn−1� b. In particular we will make use of
the following definition.

Definition 4.3 (Front– and back–door paths)
Let π = (e1, . . . , en) be a path from a to b. We say
that π is a front-door path from a to b if e1 = a� v1.
Otherwise we call π a back-door path from a to b.

As in Frydenberg (1990), a node b is said to be an
ancestor of a if either b = a or there exists a directed
path b � · · · � a in G. The set of all ancestors
of elements in A is denoted by an(A), which by defi-
nition includes A itself. Notice that this differs from
Lauritzen (1996). A subset A is called an ancestral set
if it contains all its ancestors, that is, an(A) = A.

For our mixed graphs the concept of separation is
based on the following notion of colliders. An interme-
diate vertex c ∈ {v1, . . . , vm−1} on a path π is said to
be an m–collider if the edges preceding and succeeding
c on the path both have an arrowhead or a dashed tail
at c (e.g.� c�,� c�,� c�); otherwise the
vertex c is said to be an m–non–collider on the path
(e.g. � c �, � c �, � c �). Notice that at
least one of the edges that are adjacent to an m–non–
collider c on a path must be a directed edge with a
tail at c. Also notice that endpoints are neither collid-
ers nor non–colliders. Furthermore, if the path passes
through a vertex c more than once, this vertex may be
a m–collider as well as a m–non–collider depending on
its position on the path. With these definitions, a path
π between vertices a and b is said to be m–connecting
given a set S if

(i) every m–non–collider on the path is not in S, and
(ii) every m–collider on the path is in S,

otherwise we say the path is m–blocked given S. Note
that the path is also blocked when the same node is
a m–collider and a m–non–collider at different stages
on the path because then (i) and (ii) cannot both be
satisfied.

Definition 4.4 (m–separation) Let G be a mixed
graph, and let a, b ∈ V and S ⊆ V . If all paths between
a and b are m–blocked given S, then the vertices a and

a c b

Figure 2: Example of a mixed graph.

b are said to be m–separated given S. Similarly, if A
and B are disjoint subsets of V , the sets A and B are
said to be m–separated given S if, for every pair a ∈ A
and b ∈ B, a and b are m–separated given S.

Example 4.5 In the simple graph given in Figure 2
we find that a and b are not m–separated by whatever
set. This is because there are some paths on which c
is a m–collider like a� c� b and some where it is
a m–non–collider like a� c� b. Hence, the latter
path is m–blocked by c but the former is not.

4.3 GRAPHICAL TIME SERIES MODELS

The probabilistic time series model corresponding to a
mixed graph has to satisfy the following Markov prop-
erty which is a generalisation of Eichler (2007) and
similar to Eichler (2001).

Definition 4.6 (Global Markov property) Let
X be a multivariate stationary time series and G =
(V,E) be a mixed graph. Then X satisfies the global
Granger–causal Markov property with respect to G if
the following two conditions hold for all disjoint sub-
sets A, B, and C of V .

(i) If every B-pointing path between A and B is m–
blocked given B ∪ C, then XA 9 XB [XA∪B∪C ].

(ii) If every bi–pointing path between A and B is m–
blocked given A∪B∪C and there is no undirected
edge between A and B, then XA � XB [XA∪B∪C ].

Note that in the absence of undirected edges, i.e. in the
absence of contemporaneous dependence, the above
graphs are the discrete time analogue of ‘local indepen-
dence graphs’ for continuous time Markov processes
(Didelez, 2006).

Example 4.7 For the graph in Figure 3 every path
between a and b is b–pointing. Further we find that
c but not d m–separates these two nodes. This is be-
cause every path has to go through c which is always
a m–non–collider due to the directed edge to b. In
contrast, d can be a m–collider or m–non–collider on
different paths and it is hence not enough to condi-
tion on d. Consequently, Xa is Granger–noncausal for
Xb with respect to X{a,b,c} but not with respect to
X{a,b,d}. In contrast, Xb 9 Xa [X{a,b,c}] as well as
Xb 9 Xa [X{a,b,d}] because on every a–pointing path
c as well as d are always m–non–colliders. For the
same reason Xa � Xb [X{a,b,c}] as well as Xa � Xb

[X{a,b,d}].



a d c b

Figure 3: Illustration of global Markov property.

In particular cases we can read off a time series
graph when Granger–noncausality holds at all hori-
zons. These are characterised as follows.

Theorem 4.8 Suppose that X satisfies the global
Granger–causal Markov property with respect to a
mixed graph G. Let A,B, C be disjoint subsets of
V . Then if every an(B)-pointing path between A and
an(B) is m–blocked given B ∪ C, XA is Granger–
noncausal at all horizons with respect to XA∪B∪C

(XA
∞9XB [XA∪B∪C ])

Example 4.9 In Figure 3 only Xb is Granger–
noncausal at all horizons for the other components.
In particular, as an(b) = {a, b, c, d} we have that Xa

is not Granger–noncausal at all horizons for Xb given
any conditioning set.

4.4 BACK–DOOR CRITERION

So far, the above graphs are just representing condi-
tional (in)dependencies between past and present of
time series. In order to make causal statements we
need to include interventions; the following lemma
provides the key in linking such interventions to the
graphical representation of time series.

Lemma 4.10 Suppose that X satisfies the global
Granger–causal Markov property with respect to a
mixed graph G (under σa(t) = ∅, i.e. in the obser-
vational regime) and that Assumptions 2.3 hold. Let
a, b ∈ S ⊆ V .
If every an(b)-pointing back-door path between a and
an(b) is m–blocked given S, then

Xb(t + h)⊥⊥σa(t)|XS(t)

for all h ∈ Z, t ∈ Z.

Proof: In order to see this consider an auxiliary
graph G̃ which is an augmented version of G in that
it includes an additional node ã for a time series
{Fã(t), t ∈ Z}. This time series indicates when
an intervention in Xa takes place. Let t∗ be the
potential time of the intervention, then Fã is defined
as Fã(t) = ∅ for t 6= (t∗ − 1) and Fã(t∗ − 1) = σa(t∗).
Note that as it must be decided before t∗ whether
or not an intervention in Xa(t∗) takes place and
X(t∗ − 1)⊥⊥σa(t∗) (by Assumptions 2.3) we can
assume without loss of generality that the value of
σa(t∗) is known at t∗ − 1. The node ã is included
in G with a single directed edge into the node a
reflecting Assumptions 2.3. For the same reason

the conditional distributions of Xa(t) given the past
remain unchanged for t 6= t∗ and are determined by
Definition 2.1 for t = t∗. As every an(b)-pointing
back-door path between a and an(b) is m–blocked
given S and ã has a directed edge only into a, we know
that every an(b)-pointing back-door path between ã
and an(b) is m–blocked given S. Applying Theorem
4.8 yields that Fã is noncausal for Xb at all horizons
given S, so in particular Xb(t + h)⊥⊥σa(t)|XS(t).

Lemma 4.10 gives sufficient conditions so that the con-
ditional distributions of Xb(t + h) given XS(t) under
an interventional and the observational regime are the
same. Hence, we can use data from an observational
study to predict effects of interventions if the processes
in S have been observed. The following is immediately
obvious.
Theorem 4.11 (Back-door criterion) The as-
sumptions of Theorem 3.1 are satisfied if all an(b)-
pointing back-door paths between a and an(b) are m–
blocked given S.
Example 4.12 Assume we want to assess the causal
effect of Xa on Xb in Figure 3. We know that Xa is
not Granger–noncausal for Xb unless we condition on
Xc and in particular we know that Xa is not Granger–
noncausal for Xb at all horizons. This raises the ques-
tion of Xa’s actual causal effect on Xb. To check iden-
tifiability of this effect we consider every back–door
path from a to an(b) = {a, b, c, d}. All these paths will
start with a� d hence d is always a m–non–collider.
Therefore we choose S = {a, b, d} and can apply the
above theorem. If Xd is a latent unobservable process
then the causal effect cannot be identified. Note that
conditioning on c is not required and not enough.

To illustrate the actual calculation of the ACE using
the back–door criterion consider again Example 4.2.

Example 4.2 ctd. Suppose that we are interested in
the effect of an intervention s setting X3(t) to x∗3 on
X1(t + 2). Simple calculations show that X has the
autoregressive representation

X1(t) =
(

α1α2

1 + α2
2

+ β12

)
X2(t− 1)

− α1α2β23

1 + α2
2

X3(t− 2) + ε̃1(t),

X2(t) =β23 X3(t− 1) + ε̃2(t),
X3(t) =β32 X2(t− 1) + ε̃3(t)

(4)

where ε̃i, i = 1, 2, 3, are again independent zero mean
Gaussian white noise processes and independent of the
other X components. Hence, from the full model, we
immediately obtain that

EsX1(t + 2) = β12β23x
∗
3.



Now suppose that only X has been observed and the
process Z takes the role of an unobserved variable.
To apply Theorem 3.1, we note that in Figure 1 ev-
ery pointing back–door path between 3 and some other
node v is bi–pointing starting with the edge 3� 2 and
hence is m–blocked given S = {1, 2, 3} because 2 is a
noncollider. Thus, S identifies the effect of X3(t) on
X1(t+2) and the average causal effect can be obtained
from the autoregressive representation of X in (4) by

EsX1(t + 2) = φ
(2)
13 (1) = φ12(1)φ23(1) + φ13(2)

= β12β23x
∗
3.

4.5 FRONT–DOOR CRITERION

Due to space limitation we do not go into the technical
details of the front–door criterion but rather give an
idea of its use with an example. The following theo-
rem states graphical conditions, that are sufficient to
identify the causal effect and are different from the
back–door conditions.

Theorem 4.13 Suppose that X satisfies the global
Granger–causal Markov property with respect to a
mixed graph G (under σa(t) = ∅). Further, let a, b ∈
S ⊂ V and let C = S\{a, b}. If the following graphical
conditions hold the causal effect of Xa(t) on Xb(t + h)
can be identified.

1. Every directed path from a to b is m–blocked given
C.

2. Every an(C)-pointing back-door path between a
and an(C) is m–blocked given S.

3. Every an(b)-pointing back-door path between C
and an(b) is m–blocked given S.

Proof: Eichler and Didelez (2007).

Notice that the second and third conditions are the
same as in Theorem 3.1 and ensure that the causal
effects of Xa on XC as well as of XC on Xb can be
identified.

Example 4.14 For an illustration, consider the
trivariate process X given by

X1(t) = α Z(t− 2) + β12 X2(t− 1) + ε1(t),
X2(t) = β23 X3(t− 1) + ε2(t),
X3(t) = ε3(t),

where Z and εi, i = 1, 2, 3, are Gaussian white noise
processes with mean 0, variance σ2, and

corr
(
Z(t), ε3(t)

)
= ρ,

while all other correlations between Z and εi, i = 1, 2,
are 0. Again, the process Z takes the role of an unob-
served variable. The path diagram associated with X

1 2 3

z

Figure 4: Path diagram associated with the processes
X and Z in Example 4.14.

and Z is shown in Figure 4. Simple calculations show
that X has the autoregressive representation

X1(t) = β12 X2(t− 1) + αρ X3(t− 2) + ε̃1(t),
X2(t) = β23 X3(t− 1) + ε̃2(t), (5)
X3(t) = ε̃3(t),

where ε̃i, i = 1, 2, 3, are again independent zero mean
Gaussian white noise processes, and independent of
the X variables in their respective equations.

Now suppose that we are interested in the average
causal effect of X3(t) on X1(t + 2). Since 3� z� 1
constitutes an an(1)-pointing back-door path that is
m–connecting given S = {1, 2, 3}, we cannot apply the
back-door criterion. On the other hand, the graph-
ical conditions for the front-door criterion are easily
verified: First, the only directed path from 3 to 1 is
m–blocked by node 2. Second, noting an(2) = {2, 3},
every {2, 3}-pointing back-door path between 3 and 2
must end with the edge 3� 2 and thus is m–blocked
by 3 ∈ S. Finally, every an(1)-pointing back-door path
between 2 and 1 starts with the edge 2� 3 and thus
is also m–blocked given 3 ∈ S. Therefore, by Theorem
4.13, the average causal effect of setting X3(t) = x∗3 on
X1(t + 2) is identified and can, in the present case, be
calculated as

EsX1(t + 2) = φ12(1)φ23(1)x∗3 = β12β23 x∗3,

where φab(1) are the coefficients of the autoregressive
representation in (5).

5 CONCLUSION

In conclusion, let us summarise the relation between
Granger–(non)causality and causal effects in terms of
interventions. It can easily be seen, by a similar rea-
soning as for Lemma 4.10, that if a � b /∈ E then
Xa(t) has also no causal effect on Xb(t+1) and that if
a /∈ an(b) then it has no causal effect on Xb(t + h),
h ∈ N, in the sense that ACEs = 0. Hence, as
mentioned in the introduction, we can regard the di-
rected edges, i.e. Granger causal relations, as poten-
tially causal. However, we emphasise that in addi-
tion we require Assumptions 2.3 to be satisfied, which
means we need to be able to actually carry out an in-



tervention in Xa(t) and the set V of considered com-
ponents of the multivariate time series must be ‘rich’
enough to satisfy these assumptions. Granger (1969)
has not considered the question of whether an inter-
vention is at all possible, but he has considered the lat-
ter by requiring that XV consists of all ‘relevant’ pro-
cesses. To our knowledge, White (2006) is one of the
few who addresses the effect of interventions in time
series in a similar sense as considered here. The back–
and front–door criteria given in the present paper then
ensure that this causal effect of an intervention can be
estimated from the observable data.

An open question is the use of the proposed graph-
ical representation of multivariate time series based
on Granger–noncausality to address multiple interven-
tions at sequential points in time (such as considered
in Robins, 1986; Pearl and Robins, 1995; Dawid and
Didelez, 2005), which might be of particular interest
in a dynamic context such as time series. This will be
addressed in more detail in Eichler and Didelez (2007).
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